Mineralogy and Sr Isotope Characteristics of Dahua Stratified Tremolite Nephrite and Host Rocks, Guangxi Province, China
Abstract
:1. Introduction
2. Geological Overview of Dahua Tremolite Nephrite
3. Deposit Geology and Occurrence Characteristics of Dahua Tremolite Nephrite
4. Sample Collection and Analysis Testing
5. Analysis Results
5.1. Petrography
5.1.1. Limestone and Marble
5.1.2. Diabase
5.1.3. Tremolite Nephrite
5.2. Electron Probe
5.2.1. Limestone and Marble
5.2.2. Diabase
5.2.3. Tremolite Nephrite
5.3. In Situ Trace Element Analysis
5.4. Sr Isotope Characteristics
6. Discussion
6.1. Analysis of Metallogenic Hydrothermal Fluid
6.2. Source of Ore-Forming Material
7. Conclusions
- (1)
- The mineral composition, REE partition pattern and 87Sr/86Sr values of limestone and marble in the Dahua stratified tremolite nephrite metallogenic belt are similar, indicating that marble forms through thermal metamorphism of limestone. The intrusive rock in the metallogenic belt is diabase, which has undergone hydrothermal alteration, resulting in the formation of titanite, chamosite and zoisite from ilmenite, pyroxene and plagioclase, respectively.
- (2)
- The abrupt contact relationship between Dahua stratified tremolite nephrite and marble indicates that it is of hydrothermal origin, and the metallogenic hydrothermal fluid is rich in Si, Mg and Ca.
- (3)
- The hydrothermal calcite in stratified tremolite nephrite has a similar REE distribution pattern to marine carbonate rock, but it differs from limestone and marble. This suggests that limestone or marble is not the rock that underwent hydrothermal alteration.
- (4)
- This indicates that 87Sr/86Sr in Dahua stratified tremolite nephrite is controlled by two resources, one is marine carbonate rock with higher 87Sr/86Sr and the other is diabase with lower 87Sr/86Sr. The average value of Y/Ho in hydrothermal calcite in stratified tremolite nephrite is 51.34, which is within the range of seawater, indicating that the hydrothermal fluid is not contaminated by continental substances.
- (5)
- Based on the characteristics of diabase alteration, it can be inferred that carbonate alteration resulted in the formation of a hydrothermal solution rich in Ca and Si. This hydrothermal fluid flowed through the diabase, causing alteration of minerals such as ilmenite, pyroxenes and feldspar. As a result, elements like Si, Ca, Fe and Mg were enriched, leading to the formation of a metallogenic hydrothermal fluid. This fluid migrated along fissures and gradually crystallized under suitable ore-forming conditions, eventually forming tremolite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Y.L.; Liu, D.Q.; Zhou, R.H. On the classification and nomenclature of tremolite nephrite. J. Mineral. Petrogr. 1998, 18, 17–21. (In Chinese) [Google Scholar]
- Barnes, G.L. Understanding Chinese jade in a world context. J. Br. Acad. 2018, 6, 1–63. [Google Scholar] [CrossRef]
- Wang, B.; Shao, Z.Y.; Liao, Z.T.; Zhou, Z.Y. Gemological and mineralogical characteristics of Dahua nephrite from Guangxi. J. Gems Gemol. 2012, 14, 6–11, (In Chinese with English abstract). [Google Scholar]
- Xu, L.G.; Yu, J.X.; Wang, S.Q. The gemological characteristics and origin of Donggang village tremolite nephrite in Dahua, Guangxi. Acta Pet. Min. 2014, 33, 55–60, (In Chinese with English abstract). [Google Scholar]
- Li, L.; Liao, Z.; Zhong, Q.; Zhou, Z.; Lai, M.; Cui, D. Chemical composition and spectral characteristics of nephrite from Luodian, Guizhou and Dahua, Guangxi. J. Gems Gemol. 2019, 21, 18–24, (In Chinese with English abstract). [Google Scholar]
- Zhong, Q.; Liao, Z.; Zhou, Z.; Lai, M.; Cui, D.; Li, L. Characteristic, development and utilization of nephrite from Luodian, Guizhou Province. J. Gems Gemol. 2019, 21, 40–48, (In Chinese with English abstract). [Google Scholar]
- Xu, L.; Wang, S. Gemological characteristics and genesis of nephrite from Dahua, Guangxi. Acta Pet. Min. 2016, 35, 1–11, (In Chinese with English abstract). [Google Scholar]
- Yin, Z.W.; Wang, W.W.; Zhou, Q.C. Origin characteristics of tremolite nephrite in Dahua County, Guangxi. Geol. Sci. Technol. Bull. 2021, 40, 114–123. [Google Scholar]
- Du, J.M. Study on the Mineralogical Characteristics of Dahua Tremolite Nephrite in Guangxi; China University of Geosciences (Beijing): Beijing, China, 2015. [Google Scholar]
- Peng, F.; Zhao, Q.H.; Pei, L. Study of Mineralogical and Spectroscopic Characteristics of Black Nephrite from Dahua in Guangxi. Spectrosc. Spectr. Anal. 2017, 37, 2237–2241. [Google Scholar]
- Li, J.J. Study on the Mineralogical Characteristics and Genetic Causes of Dahua Tremolite Nephrite in Guangxi; China University of Geosciences (Beijing): Beijing, China, 2020. [Google Scholar]
- Deng, J.; Wang, Q.; Li, G.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- GB/T15074-2008; General Guide of Quantitative Analysis by EPMA. Standards Press of China: Beijing, China, 2008.
- Chen, Q.L.; Wang, Q.X.; Jin, W.J. Study on the Composition and Structure Characteristics of “Lulongjing” from Russia. Spectrosc. Spectr. Anal. 2017, 37, 22–25. [Google Scholar]
- Hurlbut, C.S.; Klein, C. Manual of Mineralogy; Wiley: Hoboken, NJ, USA, 1977. [Google Scholar]
- She, Y.W.; Song, X.Y.; Yu, S.Y.; Zhan, M.; Wei, Y.; Zheng, W.Q. Genetic constraints of magnetite and ilmenite composition on the apatite rich vanadium-titanium magnet deposit in Taihe, Sichuan Province. Acta Pet. Sin. 2014, 30, 1443–1456. [Google Scholar]
- Chen, Z.Y.; Zeng, L.S.; Liang, F.H.; Zhang, Z.M. On the Mineral Chemistry of Apatite in Eclogites from the CCSD Main Borehole and the Geochemical Behaviors of F, Cl, Sr and Other Elements in Eclogites. Acta Geo. Sin. 2006, 80, 1842–1850. [Google Scholar]
- Laird, J. Chlorites: Metamorphic petrology. Rev. Mineral. 1998, 19, 405–453. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals; Longmans, Green & Co.: London, UK, 1962; pp. 1–5. [Google Scholar]
- Schnetzler, C.C.; Philpotts, J.A. Partition coefficients of rare earth elements between igneous matrix material and rock forming mineral phenocrysts. Geochim. Cosmochim. Acta 1970, 34, 331–340. [Google Scholar] [CrossRef]
- Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim. Cosmochim. Acta 1996, 60, 1709–1725. [Google Scholar] [CrossRef]
- Shields, G.A.; Webb, G.E. Has the REE composition of seawater changed over geological time. Chem. Geol. 2004, 204, 103–107. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology; Science Press: Beijing, China, 1986; pp. 86–106. [Google Scholar]
- Cai, Y.; Zhang, Q.; Zhang, Y.B.; Li, K.W. Study on the strontium isotope of hydrothermal calcite in the carbonate talc deposit in Guizhong Town. GeoChem 2015, 44, 427–437. [Google Scholar]
- Souza, G.; Reynolds, B.; Kiczka, M. Evidence for mass dependent isotopic fractionation of strontium in a glaciated granitic watershed. Geochim. Cosmochim. Acta 2010, 74, 2596–2614. [Google Scholar] [CrossRef]
- Wang, L.C.; Hu, W.X.; Wang, X.L.; Chao, J.; Wu, H.G.; Liao, Z.W.; Wan, Y. Variation of Sr content and 87Sr/86Sr isotope fractionation during dolomitization and their implications. Oil Gas. Geol. 2016, 37, 464–472, (In Chinese with English abstract). [Google Scholar]
- Goede, A.; McCulloch, M.; McDermott, F.; Hawkesworth, C. Aeolian contribution to strontium and strontium isotope variations in a Tasmanian speleothem. Chem. Geol. 1998, 149, 37–50. [Google Scholar] [CrossRef]
- Peng, J.T.; Hu, R.Z.; Burnard, P.G. Samarium neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit in Hunan, China, the potential of calcite as a geochronometer. Chem. Geol. 2003, 200, 129–136. [Google Scholar] [CrossRef]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Bolhar, R.; Kamber, B.S.; Moorbath, S.; Fedo, C.M.; Whitehouse, M.J. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 2004, 222, 43–60. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Greig, A.; Collerson, K.D. Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquat. Geochem. 2006, 12, 39–72. [Google Scholar] [CrossRef]
- Hillier, S.; Velde, B. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner. 1991, 26, 149–168. [Google Scholar] [CrossRef]
- Zang, W.; Fyfe, W.S. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Miner. Depos. 1995, 30, 30–38. [Google Scholar] [CrossRef]
- Cathelineau, M.; Nieva, D.A. Chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 1985, 91, 235–244. [Google Scholar] [CrossRef]
- Cathelineau, M. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Nieto, F. Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach. Eur. J. Mineral. 1997, 9, 829–842. [Google Scholar] [CrossRef]
- Battaglia, S. Applying X-ray geothermometer diffraction to a chlorite. Clays Clay Miner. 1999, 47, 54–63. [Google Scholar] [CrossRef]
Sample | Na2O | SiO2 | Al2O3 | MgO | CaO | P2O5 | FeO | V2O3 | K2O | Cr2O3 | MnO | TiO2 | Total | Mineral Name |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Limestone | 0.00 | 0.00 | 0.00 | 0.51 | 55.71 | 0.10 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 56.36 | Calcite |
0.01 | 0.00 | 0.00 | 0.45 | 55.95 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 56.55 | Calcite | |
0.02 | 95.53 | 0.03 | 0.01 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.02 | 95.82 | Quartz | |
Marble | 0.00 | 0.00 | 0.00 | 0.69 | 55.49 | 0.03 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.01 | 56.27 | Calcite |
0.00 | 0.00 | 0.02 | 0.38 | 55.34 | 0.02 | 0.02 | 0.08 | 0.00 | 0.03 | 0.08 | 0.04 | 55.71 | Calcite | |
0.00 | 96.01 | 0.00 | 0.01 | 0.36 | 0.00 | 0.01 | 0.08 | 0.01 | 0.00 | 0.00 | 0.01 | 96.48 | Quartz | |
Tremolite nephrite | 0.09 | 58.79 | 0.29 | 24.12 | 13.52 | 0.02 | 0.81 | 0.03 | 0.06 | 0.02 | 0.11 | 0.03 | 97.88 | Tremolite |
0.07 | 58.68 | 0.19 | 24.20 | 13.39 | 0.02 | 0.80 | 0.03 | 0.06 | 0.00 | 0.11 | 0.00 | 97.54 | Tremolite | |
0.08 | 59.46 | 0.35 | 24.08 | 12.38 | 0.03 | 0.92 | 0.08 | 0.05 | 0.03 | 0.18 | 0.03 | 97.69 | Tremolite | |
0.01 | 0.82 | 0.00 | 1.27 | 57.06 | 0.02 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 59.26 | Calcite-1 | |
0.04 | 0.96 | 0.00 | 1.44 | 57.22 | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.04 | 0.00 | 59.81 | Calcite-1 | |
0.00 | 0.73 | 0.01 | 1.24 | 55.19 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 57.23 | Calcite-2 | |
0.01 | 1.21 | 0.02 | 1.51 | 54.46 | 0.04 | 0.14 | 0.11 | 0.01 | 0.01 | 0.07 | 0.00 | 57.59 | Calcite-2 | |
0.02 | 97.69 | 0.09 | 2.95 | 0.29 | 0.00 | 0.23 | 0.00 | 0.03 | 0.04 | 0.00 | 0.02 | 101.36 | Quartz-1 | |
0.00 | 99.45 | 0.04 | 0.72 | 0.43 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00 | 100.68 | Quartz-1 | |
0.02 | 35.75 | 13.53 | 34.49 | 0.37 | 0.00 | 3.35 | 0.06 | 0.02 | 0.07 | 0.09 | 0.00 | 87.75 | Penninite | |
0.00 | 35.01 | 13.84 | 34.12 | 0.39 | 0.02 | 4.11 | 0 | 0.01 | 0.03 | 0.08 | 0.00 | 87.61 | Penninite | |
Diabase | 0.30 | 39.19 | 25.15 | 0.05 | 23.96 | 0.02 | 9.80 | 0.09 | 0.09 | 0.00 | 0.10 | 0.08 | 98.84 | Anorthite |
11.66 | 67.43 | 20.62 | 0.04 | 1.81 | 0.00 | 0.33 | 0.00 | 0.24 | 0.01 | 0.01 | 0.01 | 102.16 | Albite | |
0.44 | 48.31 | 3.23 | 12.85 | 21.52 | 0.02 | 9.84 | 0.16 | 0.02 | 0.15 | 0.28 | 1.40 | 98.23 | Augite | |
0.41 | 48.56 | 4.01 | 12.26 | 21.81 | 0.03 | 10.53 | 0.17 | 0.01 | 0.02 | 0.28 | 2.04 | 100.12 | Augite | |
0.00 | 0.05 | 0.03 | 0.00 | 0.21 | 0.00 | 44.88 | 0.55 | 0.00 | 0.02 | 1.69 | 52.42 | 99.84 | Ilmenite | |
0.00 | 0.11 | 0.31 | 0.04 | 0.02 | 0.00 | 45.14 | 0.35 | 0.00 | 0.76 | 1.50 | 51.89 | 99.80 | Ilmenite | |
0.30 | 39.19 | 25.15 | 0.05 | 23.96 | 0.02 | 9.80 | 0.09 | 0.09 | 0.00 | 0.10 | 0.08 | 98.84 | Epidote | |
0.16 | 38.75 | 25.12 | 0.05 | 24.01 | 0.00 | 9.97 | 0.03 | 0.10 | 0.03 | 0.08 | 0.06 | 98.35 | Epidote | |
0.02 | 29.17 | 2.23 | 0.06 | 30.01 | 0.00 | 1.39 | 0.76 | 0.02 | 0.00 | 0.00 | 36.41 | 100.07 | Titanite | |
0.03 | 0.30 | 0.00 | 0.15 | 48.96 | 40.34 | 0.48 | 0.00 | 0.01 | 0.00 | 0.02 | 0.03 | 90.32 | Apatite | |
0.02 | 0.26 | 0.00 | 0.19 | 48.76 | 40.57 | 0.70 | 0.01 | 0.00 | 0.00 | 0.05 | 0.13 | 90.66 | Apatite | |
0.11 | 42.23 | 22.84 | 0.01 | 24.98 | 0.01 | 1.02 | 0.00 | 0.02 | 0.00 | 0.01 | 0.14 | 91.36 | Zoisite | |
0.23 | 42.35 | 22.23 | 0.10 | 24.00 | 0.02 | 1.78 | 0.02 | 0.03 | 0.02 | 0.04 | 0.17 | 90.99 | Zoisite | |
0.01 | 24.94 | 15.28 | 14.36 | 0.12 | 0.00 | 32.89 | 0.06 | 0.11 | 0.00 | 0.14 | 0.00 | 87.89 | Chamosite | |
0.12 | 23.25 | 15.87 | 18.84 | 0.16 | 0.00 | 28.88 | 0.04 | 0.19 | 0.00 | 0.44 | 0.00 | 87.79 | Chamosite |
Sample | Calcite in Tremolite Nephrite | Average | Calcite in Limestone | Average | Calcite in Marble | Average | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
La | 0.90 | 1.51 | 2.77 | 2.40 | 1.89 | 3.57 | 3.42 | 3.49 | 8.95 | 5.25 | 7.10 |
Ce | 0.28 | 0.41 | 0.79 | 0.92 | 0.60 | 1.15 | 1.19 | 1.17 | 2.76 | 1.61 | 2.18 |
Pr | 0.15 | 0.28 | 0.44 | 0.45 | 0.33 | 0.60 | 0.53 | 0.57 | 1.46 | 0.92 | 1.19 |
Nd | 0.58 | 1.65 | 2.24 | 2.07 | 1.63 | 2.29 | 1.98 | 2.14 | 6.03 | 3.90 | 4.97 |
Sm | 0.19 | 0.39 | 0.50 | 0.56 | 0.41 | 0.46 | 0.37 | 0.41 | 1.08 | 0.74 | 0.91 |
Eu | 0.07 | 0.15 | 0.17 | 0.13 | 0.13 | 0.10 | 0.07 | 0.08 | 0.16 | 0.06 | 0.11 |
Gd | 0.29 | 0.97 | 0.78 | 0.78 | 0.71 | 0.46 | 0.34 | 0.40 | 1.09 | 0.68 | 0.89 |
Tb | 0.11 | 0.18 | 0.16 | 0.17 | 0.16 | 0.08 | 0.06 | 0.07 | 0.18 | 0.12 | 0.15 |
Dy | 0.77 | 1.55 | 1.44 | 1.35 | 1.28 | 0.50 | 0.34 | 0.42 | 1.17 | 0.71 | 0.94 |
Ho | 0.28 | 0.36 | 0.34 | 0.34 | 0.33 | 0.12 | 0.08 | 0.10 | 0.27 | 0.17 | 0.22 |
Er | 0.64 | 1.35 | 1.22 | 0.97 | 1.04 | 0.32 | 0.21 | 0.26 | 0.71 | 0.44 | 0.57 |
Tm | 0.10 | 0.22 | 0.24 | 0.16 | 0.18 | 0.05 | 0.03 | 0.04 | 0.10 | 0.07 | 0.08 |
Yb | 0.68 | 1.77 | 1.84 | 1.02 | 1.33 | 0.28 | 0.17 | 0.22 | 0.54 | 0.36 | 0.45 |
Lu | 0.08 | 0.18 | 0.31 | 0.15 | 0.18 | 0.04 | 0.03 | 0.03 | 0.08 | 0.05 | 0.07 |
Y | 13.72 | 20.12 | 17.76 | 16.74 | 17.08 | 5.88 | 3.69 | 4.79 | 13.18 | 7.83 | 10.51 |
∑(REE-Y) | 5.12 | 10.98 | 13.24 | 11.48 | 10.20 | 10.00 | 8.82 | 9.41 | 24.57 | 15.07 | 19.82 |
δCe | 0.16 | 0.15 | 0.16 | 0.20 | 0.17 | 0.18 | 0.19 | 0.19 | 0.17 | 0.17 | 0.17 |
δEu | 0.72 | 0.71 | 0.84 | 0.62 | 0.72 | 0.67 | 0.56 | 0.61 | 0.45 | 0.25 | 0.35 |
Y/Ho | 48.98 | 55.30 | 51.85 | 49.24 | 51.34 | 50.92 | 46.83 | 48.88 | 49.11 | 47.30 | 48.21 |
(La/Yb)N | 1.00 | 1.18 | 1.08 | 1.69 | 1.24 | 9.30 | 14.73 | 12.02 | 11.98 | 10.47 | 11.23 |
(La/Sm)N | 2.95 | 2.53 | 3.59 | 2.76 | 2.96 | 5.06 | 6.05 | 5.55 | 5.36 | 4.61 | 4.99 |
(Gd/Yb)N | 0.45 | 0.45 | 0.35 | 0.64 | 0.47 | 1.40 | 1.70 | 1.55 | 1.68 | 1.57 | 1.63 |
Rock Type | Sr (ppm) | Rb (ppm) | Rb/Sr | 87Sr/86Sr | ±2σ (×10−6) |
---|---|---|---|---|---|
Limestone | 807.826 | 0.627 | 0.0008 | 0.7073 | ±13 |
Limestone | 807.826 | 0.627 | 0.0008 | 0.7073 | ±12 |
Average value | 807.826 | 0.627 | 0.0008 | 0.7073 | |
Marble | 733.854 | 0.057 | 0.0001 | 0.7075 | ±15 |
Marble | 661.076 | 0.228 | 0.0003 | 0.7079 | ±14 |
Marble | 781.969 | 0.086 | 0.0001 | 0.7072 | ±12 |
Average value | 725.633 | 0.124 | 0.0002 | 0.7075 | |
Tremolite nephrite | 91.694 | 0.419 | 0.0046 | 0.7068 | ±9 |
Tremolite nephrite | 73.196 | 0.493 | 0.0067 | 0.7069 | ±10 |
Tremolite nephrite | 62.468 | 0.577 | 0.0092 | 0.7072 | ±11 |
Tremolite nephrite | 75.850 | 0.519 | 0.0068 | 0.7070 | ±13 |
Tremolite nephrite | 119.200 | 0.293 | 0.0025 | 0.7068 | ±10 |
Average value | 84.482 | 0.460 | 0.0055 | 0.7069 | |
Diabase | 618.000 | 15.550 | 0.0252 | 0.7061 | ±13 |
Diabase | 662.800 | 16.730 | 0.0252 | 0.7061 | ±10 |
Average value | 640.400 | 16.140 | 0.0252 | 0.7061 |
Sample | Chlorite in Marble Contact Zone | Chlorite in Tremolite Nephrite Contact Zone | Chlorite in Diabase | |||
---|---|---|---|---|---|---|
Na2O (wt.%) | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0. 12 |
SiO2 (wt.%) | 33.80 | 33.29 | 35.75 | 35.01 | 27.82 | 23.25 |
Al2O3 (wt.%) | 14. 19 | 15.00 | 13.53 | 13.84 | 14.21 | 15.87 |
MgO (wt.%) | 32.61 | 32.32 | 34.49 | 34.12 | 11.16 | 18.84 |
CaO (wt.%) | 0.40 | 0.29 | 0.37 | 0.39 | 0.40 | 0. 16 |
P2O5 (wt.%) | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 |
FeO (wt.%) | 6.20 | 7.30 | 3.35 | 4.11 | 33.24 | 28.88 |
V2O3 (wt.%) | 0.04 | 0.00 | 0.06 | 0.00 | 0.00 | 0.04 |
K2O (wt.%) | 0.03 | 0.04 | 0.02 | 0.01 | 0.01 | 0. 19 |
Cr2O3 (wt.%) | 0.01 | 0.06 | 0.07 | 0.03 | 0.03 | 0.00 |
MnO (wt.%) | 0.06 | 0. 11 | 0.09 | 0.08 | 0.08 | 0.44 |
TiO2 (wt.%) | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total (wt.%) | 87.36 | 88.41 | 87.75 | 87.61 | 86.82 | 87.79 |
nSi4+ | 3.21 | 3. 15 | 3.32 | 3.28 | 2.78 | 2.57 |
nAl3+ | 1.59 | 1.67 | 1.48 | 1.53 | 2.00 | 2.06 |
nAlIV | 0.77 | 0.85 | 0.68 | 0.72 | 1.22 | 1.43 |
nAlVI | 0.82 | 0.82 | 0.80 | 0.83 | 0.78 | 0.63 |
nMg2+ | 4.65 | 4.58 | 4.81 | 4.79 | 1.00 | 1.21 |
nFe2+ | 0.49 | 0.58 | 0.26 | 0.32 | 3.05 | 2.66 |
nFe2+/R2+ | 0.10 | 0.11 | 0.05 | 0.06 | 0.75 | 0.69 |
w(CaO + K2O + Na2O) | 0.43 | 0.33 | 0.41 | 0.40 | 0.23 | 0.47 |
nAl/n (Al + Mg + Fe) | 0.24 | 0.24 | 0.23 | 0.23 | 0.27 | 0.26 |
d001/0.1 nm | 14.24 | 14.23 | 14.26 | 14.25 | 14.13 | 14.12 |
T/°C | 139 | 150 | 121 | 128 | 244 | 260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yu, H.; Lan, Y.; Ruan, Q. Mineralogy and Sr Isotope Characteristics of Dahua Stratified Tremolite Nephrite and Host Rocks, Guangxi Province, China. Minerals 2024, 14, 257. https://doi.org/10.3390/min14030257
Zhang Y, Yu H, Lan Y, Ruan Q. Mineralogy and Sr Isotope Characteristics of Dahua Stratified Tremolite Nephrite and Host Rocks, Guangxi Province, China. Minerals. 2024; 14(3):257. https://doi.org/10.3390/min14030257
Chicago/Turabian StyleZhang, Yuye, Haiyan Yu, Ye Lan, and Qingfeng Ruan. 2024. "Mineralogy and Sr Isotope Characteristics of Dahua Stratified Tremolite Nephrite and Host Rocks, Guangxi Province, China" Minerals 14, no. 3: 257. https://doi.org/10.3390/min14030257
APA StyleZhang, Y., Yu, H., Lan, Y., & Ruan, Q. (2024). Mineralogy and Sr Isotope Characteristics of Dahua Stratified Tremolite Nephrite and Host Rocks, Guangxi Province, China. Minerals, 14(3), 257. https://doi.org/10.3390/min14030257