Behavior of Tantalum in a Fe-Dominated Synthetic Fayalitic Slag System—Phase Analysis and Incorporation
Abstract
:1. Introduction
2. Background
2.1. Recovery Routes for Ta
2.2. Natural Occurrence and Incorporation of Ta into (Slag) Phases
2.3. Relevant Basic Compounds of Ta
- The literature survey shows that pyrometallurgical approaches are actually only used in combination with hydrometallurgical processes. A purely pyrometallurgical approach for the recovery of Ta from residual materials does not seem to have been considered so far.
- In nature, Ta is pentavalent and is bound in the form of various oxides. It does not occur in silicates.
- Ta is expected to be incorporated mainly in perovskite-type oxides. Due to the high availability of Si and the usually high viscosity of silicate melts, it is to be expected that part of the Ta is found in more or less amorphous pyroxene-like silicate structures.
- Diadochic replacement of Fe cations with Ta in spinel-like oxides is plausible because of comparable ionic radii and the natural occurrence of oxides like ixiolite [(Ta,Mn,Nb)O2].
2.4. Basics on Fayalitic Slag
3. Materials and Methods
3.1. Materials and Sample Preparation
3.2. Thermochemical Modeling and Simulation
3.3. Methods of Analysis
3.3.1. Speciation Analysis with XANES
3.3.2. Chemical Bulk Analysis
3.3.3. Mineralogical Investigation
4. Results
4.1. Thermochemical Modelling and Simulation
4.2. Speciation Analysis of Ta and Fe
4.3. Bulk Chemistry
4.4. Mineralogical Characterization
4.4.1. Morphology
Cooling Rate of 300 °C/h
Cooling Rate of 200 °C/h
Cooling Rate of 50 °C/h
4.4.2. Detailed Phase Analysis
4.5. Estimation of Phase Composition and Ta Balancing
5. Discussion
5.1. Speciation Analysis of Ta and Fe
5.2. Behavior of the Selected Slag System
5.3. Ta Compounds Discovered in the SFS
5.4. Relationships between Ta Compounds
5.5. Assessment of Potential Engineered Artificial Minerals, Ta-EnAMs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
wt.% | Fe | Ca | Si | Al | Ta | O | Total |
---|---|---|---|---|---|---|---|
300 °C/h | 13.5 | 0.297 | 0.257 | 0.062 | 68.4 | 19.5 | 102.0 |
13.8 | 0.42 | 0.503 | 0.102 | 66.9 | 19.6 | 101.3 | |
13.2 | 0.296 | 0.225 | 0.064 | 66.6 | 18.9 | 99.3 | |
15.4 | 0.499 | 0.229 | 0.043 | 65.6 | 19.4 | 101.2 | |
19.8 | 0.337 | 0.618 | 0.119 | 58.2 | 19.5 | 98.5 | |
47.3 | 0.349 | 0.549 | 0.571 | 30.2 | 21.5 | 100.4 | |
49.7 | 0.347 | 0.215 | 0.784 | 25.6 | 21.0 | 97.6 | |
50.8 | 0.327 | 0.217 | 0.79 | 24.4 | 21.0 | 97.6 | |
51.4 | 0.369 | 0.78 | 0.794 | 23.5 | 21.7 | 98.5 | |
51.0 | 0.484 | 0.436 | 0.809 | 23.0 | 21.1 | 96.8 | |
53.0 | 0.232 | 0.508 | 1.057 | 22.5 | 21.8 | 99.1 | |
50.5 | 0.336 | 0.6 | 2.144 | 22.2 | 22.1 | 97.9 | |
54.1 | 0.333 | 0.615 | 1.917 | 19.8 | 22.4 | 99.2 | |
58.4 | 0.196 | 0.461 | 1.404 | 13.4 | 21.5 | 95.4 | |
200 °C/h | 9.7 | 11.01 | 0.355 | 0.184 | 60.8 | 21.2 | 103.2 |
10.5 | 11.45 | 0.671 | 1.109 | 57.5 | 22.0 | 103.2 | |
50 °C/h | 7.5 | 10.8 | 0.606 | 0.098 | 60.5 | 20.6 | 100.2 |
7.7 | 10.8 | 0.334 | 0.125 | 60.4 | 20.4 | 99.7 | |
7.6 | 10.8 | 0.458 | 0.11 | 60.2 | 20.4 | 99.5 | |
7.7 | 10.8 | 0.365 | 0.121 | 60.1 | 20.4 | 99.5 | |
7.5 | 10.7 | 0.629 | 0.084 | 60.0 | 20.5 | 99.4 | |
7.9 | 10.9 | 0.454 | 0.119 | 59.9 | 20.5 | 99.7 | |
8.0 | 11.0 | 1.279 | 0.128 | 59.6 | 21.4 | 101.4 | |
7.8 | 10.9 | 1.246 | 0.1 | 59.5 | 21.3 | 100.8 | |
8.3 | 10.9 | 0.625 | 0.21 | 59.1 | 20.7 | 99.9 | |
9.3 | 11.0 | 1.228 | 0.176 | 58.1 | 21.5 | 101.2 | |
8.4 | 11.2 | 1.659 | 0.188 | 57.3 | 21.6 | 100.4 | |
7.2 | 10.8 | 0.318 | 0.092 | 60.0 | 20.1 | 98.4 | |
8.4 | 10.9 | 0.687 | 0.089 | 59.8 | 20.8 | 100.7 | |
7.9 | 10.9 | 0.247 | 0.094 | 59.7 | 20.2 | 99.0 | |
7.5 | 10.9 | 0.458 | 0.103 | 59.6 | 20.3 | 98.9 | |
7.5 | 11.0 | 0.622 | 0.146 | 59.4 | 20.5 | 99.0 | |
7.5 | 11.0 | 0.396 | 0.176 | 59.3 | 20.3 | 98.6 | |
7.3 | 11.0 | 0.577 | 0.154 | 58.9 | 20.3 | 98.3 | |
8.4 | 10.9 | 0.74 | 0.182 | 58.5 | 20.7 | 99.5 | |
7.6 | 11.0 | 0.733 | 0.149 | 58.3 | 20.4 | 98.3 | |
7.4 | 11.1 | 0.598 | 0.203 | 58.2 | 20.3 | 97.7 | |
8.7 | 10.9 | 0.784 | 0.227 | 58.2 | 20.8 | 99.6 | |
8.0 | 11.1 | 0.474 | 0.12 | 57.4 | 20.1 | 97.2 |
wt.% | Fe | Ca | Si | Al | Ta | O | Total |
---|---|---|---|---|---|---|---|
300 °C/h | 33.0 | 9.6 | 14.7 | 2.69 | 6.61 | 34.0 | 100.6 |
39.7 | 6.9 | 14.0 | 1.60 | 4.44 | 32.5 | 99.1 | |
23.1 | 13.8 | 18.4 | 2.48 | 3.67 | 36.2 | 97.6 | |
42.5 | 5.5 | 13.6 | 0.78 | 3.49 | 31.4 | 97.2 | |
22.7 | 14.1 | 18.6 | 2.39 | 3.35 | 36.2 | 97.3 | |
42.6 | 7.1 | 13.5 | 1.63 | 3.18 | 32.6 | 100.5 | |
24.2 | 12.9 | 18.9 | 2.18 | 2.84 | 36.2 | 97.1 | |
23.7 | 14.5 | 17.9 | 2.42 | 2.82 | 35.9 | 97.3 | |
22.9 | 14.2 | 18.5 | 2.43 | 2.48 | 36.1 | 96.6 | |
44.0 | 5.0 | 13.2 | 2.14 | 2.43 | 32.1 | 98.9 | |
23.8 | 14.6 | 17.8 | 2.39 | 2.41 | 35.7 | 96.7 | |
23.3 | 14.4 | 18.1 | 2.88 | 2.36 | 36.3 | 97.3 | |
24.2 | 12.8 | 19.0 | 2.24 | 2.22 | 36.3 | 96.7 | |
23.7 | 14.1 | 18.8 | 2.60 | 2.18 | 36.8 | 98.2 | |
23.3 | 14.4 | 18.4 | 2.50 | 2.15 | 36.2 | 97.0 | |
22.9 | 14.6 | 18.3 | 3.07 | 2.10 | 36.5 | 97.4 | |
22.3 | 13.9 | 18.6 | 4.07 | 2.10 | 37.3 | 98.1 | |
22.9 | 14.5 | 18.5 | 2.97 | 2.02 | 36.6 | 97.6 | |
23.3 | 14.3 | 18.4 | 2.81 | 1.99 | 36.4 | 97.2 | |
23.5 | 14.3 | 18.5 | 2.86 | 1.93 | 36.6 | 97.7 | |
22.6 | 14.5 | 18.8 | 3.07 | 1.90 | 36.9 | 97.9 | |
24.6 | 12.7 | 19.0 | 2.33 | 1.80 | 36.4 | 96.9 | |
22.6 | 14.2 | 18.6 | 3.87 | 1.75 | 37.3 | 98.3 | |
15.9 | 8.2 | 23.0 | 7.43 | 1.74 | 41.1 | 97.3 | |
15.1 | 8.2 | 23.2 | 7.22 | 1.66 | 40.9 | 96.3 | |
23.1 | 13.4 | 18.7 | 3.88 | 1.66 | 37.2 | 98.0 | |
24.5 | 13.1 | 19.0 | 3.19 | 1.42 | 37.2 | 98.5 | |
21.5 | 14.5 | 18.6 | 4.41 | 1.26 | 37.5 | 97.7 | |
21.4 | 14.5 | 18.7 | 4.54 | 1.25 | 37.7 | 98.1 | |
21.1 | 14.8 | 18.8 | 4.48 | 1.25 | 37.7 | 98.1 | |
21.5 | 14.6 | 18.5 | 4.35 | 1.24 | 37.3 | 97.5 | |
21.8 | 14.7 | 18.5 | 4.37 | 1.23 | 37.4 | 98.0 | |
26.0 | 11.6 | 19.4 | 2.11 | 1.13 | 36.4 | 96.7 | |
9.7 | 19.3 | 20.7 | 5.99 | 1.02 | 39.7 | 96.4 | |
10.0 | 19.2 | 20.9 | 5.79 | 1.02 | 39.8 | 96.7 | |
9.8 | 19.3 | 20.9 | 5.82 | 1.01 | 39.8 | 96.7 | |
10.0 | 19.2 | 20.8 | 5.93 | 1.01 | 39.8 | 96.7 | |
9.7 | 19.3 | 21.0 | 5.95 | 1.00 | 40.1 | 97.0 | |
26.1 | 11.9 | 19.6 | 2.11 | 1.00 | 36.7 | 97.4 | |
21.9 | 15.9 | 16.9 | 4.66 | 0.71 | 36.2 | 96.3 | |
26.3 | 11.6 | 19.8 | 2.00 | 0.62 | 36.8 | 97.1 | |
22.5 | 15.8 | 16.6 | 4.74 | 0.61 | 36.1 | 96.4 | |
31.0 | 7.7 | 20.0 | 1.92 | 0.38 | 36.7 | 97.7 | |
25.4 | 12.1 | 20.3 | 1.80 | 0.32 | 37.1 | 97.0 | |
4.3 | 13.4 | 20.8 | 15.23 | 0.09 | 44.0 | 97.8 | |
4.6 | 13.3 | 21.1 | 14.57 | 0.09 | 43.7 | 97.3 | |
1.9 | 13.8 | 19.7 | 17.25 | 0.08 | 43.9 | 96.6 | |
3.0 | 13.6 | 20.2 | 15.90 | 0.08 | 43.5 | 96.3 | |
2.0 | 13.7 | 19.9 | 17.23 | 0.08 | 44.2 | 97.1 | |
3.0 | 13.6 | 20.2 | 15.98 | 0.07 | 43.7 | 96.5 | |
2.0 | 13.8 | 19.8 | 17.24 | 0.07 | 44.1 | 97.0 | |
3.1 | 13.5 | 20.5 | 15.70 | 0.07 | 43.7 | 96.5 | |
1.9 | 13.8 | 19.7 | 17.08 | 0.07 | 43.8 | 96.4 | |
3.0 | 13.7 | 20.2 | 16.16 | 0.07 | 43.8 | 96.9 | |
2.0 | 13.7 | 19.7 | 17.07 | 0.07 | 43.8 | 96.4 | |
3.1 | 13.7 | 20.2 | 15.76 | 0.07 | 43.5 | 96.3 | |
200 °C/h | 16.6 | 14.1 | 17.4 | 7.55 | 4.05 | 37.9 | 97.6 |
17.3 | 14.9 | 16.6 | 7.70 | 3.85 | 37.7 | 98.1 | |
17.0 | 13.7 | 17.5 | 7.76 | 3.74 | 38.1 | 97.7 | |
17.1 | 13.6 | 17.4 | 7.81 | 3.61 | 38.0 | 97.5 | |
15.3 | 14.2 | 17.7 | 8.46 | 3.55 | 38.7 | 97.9 | |
15.4 | 14.2 | 17.8 | 8.27 | 3.46 | 38.6 | 97.7 | |
17.1 | 14.0 | 17.4 | 7.65 | 3.45 | 38.0 | 97.6 | |
15.2 | 14.0 | 18.0 | 8.27 | 3.43 | 38.7 | 97.6 | |
17.7 | 14.9 | 16.5 | 7.63 | 3.40 | 37.5 | 97.7 | |
17.2 | 13.9 | 17.2 | 7.60 | 3.36 | 37.7 | 97.0 | |
18.4 | 14.7 | 17.0 | 7.06 | 3.01 | 37.5 | 97.7 | |
18.6 | 14.7 | 17.2 | 7.20 | 2.96 | 38.0 | 98.6 | |
14.0 | 14.2 | 18.1 | 8.54 | 4.14 | 39.0 | 98.0 | |
13.8 | 14.4 | 18.0 | 8.22 | 5.94 | 38.9 | 99.2 | |
15.3 | 14.2 | 17.6 | 8.11 | 4.20 | 38.3 | 97.6 | |
15.7 | 13.3 | 18.3 | 8.10 | 4.24 | 38.9 | 98.5 | |
19.1 | 14.7 | 17.3 | 7.56 | 1.30 | 38.2 | 98.1 | |
19.2 | 14.6 | 17.6 | 6.93 | 1.29 | 38.0 | 97.5 | |
19.2 | 14.8 | 17.6 | 7.01 | 1.27 | 38.1 | 98.0 | |
18.8 | 14.7 | 17.9 | 7.09 | 1.25 | 38.3 | 98.1 | |
19.4 | 14.7 | 17.7 | 6.88 | 1.23 | 38.1 | 97.9 | |
20.8 | 14.7 | 17.4 | 7.06 | 1.17 | 38.2 | 99.2 | |
19.6 | 14.8 | 17.6 | 6.65 | 1.17 | 37.9 | 97.8 | |
20.2 | 14.6 | 17.7 | 6.27 | 1.11 | 37.7 | 97.5 | |
19.5 | 14.8 | 17.8 | 6.27 | 1.10 | 37.7 | 97.2 | |
19.3 | 14.8 | 17.8 | 6.94 | 1.09 | 38.3 | 98.3 | |
20.4 | 14.7 | 17.8 | 6.54 | 1.08 | 38.2 | 98.7 | |
19.6 | 14.8 | 17.6 | 7.17 | 1.06 | 38.3 | 98.4 | |
19.1 | 14.8 | 18.2 | 6.70 | 1.04 | 38.4 | 98.3 | |
19.7 | 14.7 | 17.6 | 6.42 | 1.01 | 37.6 | 97.1 | |
19.3 | 14.8 | 17.5 | 8.47 | 1.28 | 39.2 | 100.6 | |
17.6 | 15.0 | 17.9 | 8.11 | 1.35 | 39.0 | 98.9 | |
17.9 | 14.8 | 18.2 | 7.95 | 1.18 | 39.2 | 99.1 | |
19.8 | 14.2 | 17.9 | 7.87 | 0.96 | 39.0 | 99.8 | |
18.0 | 14.8 | 18.4 | 7.52 | 1.27 | 39.1 | 99.0 | |
22.2 | 15.2 | 18.9 | 3.55 | 0.59 | 37.3 | 97.7 | |
21.8 | 15.2 | 19.0 | 3.79 | 0.47 | 37.5 | 97.8 | |
21.8 | 15.2 | 19.0 | 3.67 | 0.40 | 37.5 | 97.6 | |
21.9 | 15.3 | 19.1 | 3.56 | 0.39 | 37.5 | 97.8 | |
22.6 | 15.2 | 19.6 | 3.13 | 0.31 | 37.8 | 98.6 | |
22.3 | 15.2 | 19.3 | 3.26 | 0.29 | 37.5 | 97.8 | |
22.3 | 15.2 | 19.3 | 3.30 | 0.24 | 37.6 | 98.0 | |
21.9 | 15.0 | 19.2 | 4.14 | 0.23 | 38.0 | 98.5 | |
22.1 | 15.2 | 19.1 | 3.55 | 0.23 | 37.5 | 97.7 | |
22.5 | 15.1 | 19.3 | 3.17 | 0.22 | 37.5 | 97.8 | |
22.5 | 15.2 | 19.5 | 3.11 | 0.21 | 37.7 | 98.2 | |
22.0 | 15.1 | 19.3 | 3.77 | 0.14 | 37.8 | 98.2 | |
21.0 | 15.4 | 19.9 | 4.07 | 0.23 | 38.6 | 99.2 | |
21.0 | 15.4 | 19.7 | 3.87 | 0.38 | 38.3 | 98.7 | |
21.5 | 15.3 | 20.1 | 3.43 | 0.32 | 38.4 | 99.1 | |
21.5 | 15.3 | 19.7 | 3.38 | 0.62 | 38.0 | 98.5 | |
21.7 | 15.3 | 20.1 | 3.33 | 0.20 | 38.4 | 99.1 | |
50 °C/h | 23.5 | 14.1 | 18.6 | 2.51 | 2.12 | 36.3 | 97.1 |
21.8 | 15.0 | 18.8 | 2.92 | 2.26 | 36.9 | 97.7 | |
21.8 | 15.0 | 19.4 | 2.72 | 1.83 | 37.2 | 98.0 | |
21.7 | 14.9 | 18.7 | 2.85 | 2.74 | 36.7 | 97.6 | |
21.6 | 14.9 | 18.8 | 2.99 | 2.77 | 36.9 | 98.0 | |
21.5 | 14.9 | 19.1 | 3.10 | 2.51 | 37.3 | 98.3 | |
21.0 | 14.7 | 19.1 | 2.62 | 2.74 | 36.7 | 96.9 | |
19.8 | 14.9 | 19.4 | 2.78 | 1.48 | 36.6 | 95.0 | |
19.0 | 15.0 | 17.4 | 6.65 | 2.31 | 37.7 | 98.0 | |
18.5 | 15.2 | 17.3 | 7.41 | 1.90 | 38.2 | 98.5 | |
18.5 | 15.2 | 17.1 | 7.41 | 1.87 | 38.0 | 98.1 | |
18.4 | 15.3 | 17.4 | 7.22 | 2.35 | 38.2 | 98.8 | |
18.4 | 15.1 | 16.9 | 7.54 | 2.46 | 38.0 | 98.4 | |
18.3 | 15.1 | 17.8 | 6.82 | 2.32 | 38.2 | 98.5 | |
18.2 | 15.2 | 17.0 | 8.06 | 1.69 | 38.3 | 98.5 | |
18.2 | 15.1 | 17.0 | 7.95 | 1.85 | 38.1 | 98.2 | |
17.9 | 15.4 | 17.5 | 7.36 | 2.00 | 38.3 | 98.5 | |
17.8 | 15.4 | 17.2 | 7.75 | 2.10 | 38.3 | 98.6 | |
18.0 | 15.1 | 17.2 | 7.28 | 2.99 | 38.0 | 98.6 | |
17.2 | 15.3 | 16.8 | 8.27 | 2.33 | 38.2 | 98.2 |
S50 | Al | Ca | FeII | FeIII | O | Si | Ta | Sum |
---|---|---|---|---|---|---|---|---|
Ol(Fay) | 0.03 | 10.36 | 41.43 | 0.00 | 31.92 | 13.83 | 0.04 | 97.6 |
Px(Hbergite) | 5.10 | 15.01 | 12.10 | 7.82 | 38.54 | 18.11 | 2.24 | 98.9 |
Sp(Herc) | 22.68 | 0.00 | 30.02 | 13.09 | 34.40 | 0.00 | 0.08 | 100.3 |
Fe(1-x)O | 0.20 | 0.15 | 56.71 | 18.26 | 24.51 | 0.00 | 0.04 | 99.9 |
Fe | 0.02 | 0.15 | 100.0 * | 0.00 | 0.00 | 0.03 | 0.00 | 100.2 |
Esseneite | 17.20 | 13.59 | 0.00 | 3.68 | 44.60 | 19.84 | 0.44 | 99.4 |
Mag | 0.96 | 0.15 | 38.76 | 33.14 | 26.54 | 0.00 | 0.25 | 99.8 |
Hem | 2.12 | 0.00 | 0.00 | 68.39 | 28.63 | 0.00 | 0.50 | 99.6 |
Ta-SilicoOx | 1.64 | 14.60 | 16.66 | 0.00 | 34.54 | 17.00 | 14.09 | 98.5 |
Ta-Ox | 0.00 | 10.89 | 7.99 | 0.00 | 20.83 | 0.81 | 59.51 | 100.0 |
S200 | Al | Ca | FeII | FeIII | O | Si | Ta | |
Px(Hbergite) | 3.93 | 15.15 | 21.53 | 0.00 | 37.85 | 19.23 | 0.54 | 98.2 |
Herc(Sp) | 3.69 | 0.12 | 25.40 | 40.77 | 27.90 | 0.16 | 0.17 | 98.2 |
Hem | 0.33 | 0.20 | 0.00 | 69.56 | 29.58 | 0.24 | 0.08 | 100.0 |
Fe(1−x)O | 0.29 | 0.14 | 49.48 | 24.14 | 25.70 | 0.19 | 0.06 | 100.0 |
Ol(Fay) | 0.05 | 12.23 | 37.91 | 0.00 | 32.32 | 14.22 | 0.01 | 96.7 |
Ta-Ox | 0.18 | 11.01 | 9.73 | 0.00 | 21.19 | 0.36 | 60.77 | 103.2 |
References
- Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE) (Recast) Text with EEA Relevance. 2012, Volume 197. Document 32012L0019. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:197:0038:0071:en:PDF (accessed on 29 January 2024).
- Ebin, B.; Isik, M.I. Chapter 5—Pyrometallurgical Processes for the Recovery of Metals from WEEE. In WEEE Recycling; Chagnes, A., Cote, G., Ekberg, C., Nilsson, M., Retegan, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 107–137. ISBN 978-0-12-803363-0. [Google Scholar]
- Large-Scale WEEE Recycling Integrated in an Ore-Based Cu-Extraction System. Journal of Sustainable Metallurgy. Available online: https://link.springer.com/article/10.1007/s40831-018-0157-5 (accessed on 26 September 2023).
- Zhang, L.; Xu, Z. A Review of Current Progress of Recycling Technologies for Metals from Waste Electrical and Electronic Equipment. J. Clean. Prod. 2016, 127, 19–36. [Google Scholar] [CrossRef]
- Alvear Flores, G.R.F.; Nikolic, S.; Mackey, P.J. ISASMELTTM for the Recycling of E-Scrap and Copper in the U.S. Case Study Example of a New Compact Recycling Plant. J. Oper. Manag. (JOM) 2014, 66, 823–832. [Google Scholar] [CrossRef]
- Cardona, N.; Coursol, P.; Vargas, J.; Parra, R. The Physical Chemistry of Copper Smelting Slags and Copper Losses at the Paipote SmelterPart 2—Characterisation of Industrial Slags. Can. Metall. Q. 2011, 50, 330–340. [Google Scholar] [CrossRef]
- Davenport, W.G.; King, M.; Schlesinger, M.; Biswas, A.K. Chemical Metallurgy of Copper Recycling. In Extractive Metallurgy of Copper; Elsevier: Amsterdam, The Netherlands, 2002; pp. 355–365. ISBN 978-0-08-044029-3. [Google Scholar]
- Habashi, F. (Ed.) Handbook of Extractive Metallurgy; Wiley-VCH: Weinheim, NY, USA, 1998; Volume II, ISBN 978-3-527-28792-5. [Google Scholar]
- Hagelüken, C. Recycling of Electronic Scrap at Umicore’s Integrated Metals Smelter and Refinery. World Metall.—Erzmetall 2006, 59, 152–161. [Google Scholar]
- Isri Scrap Specifications Circular. 2017, pp. 1–67. Available online: https://www.isrispecs.org/wp-content/uploads/2023/05/ISRI-Scrap-Specifications-Circular-updated-1.pdf (accessed on 29 January 2024).
- Latacz, D.; Diaz, F.; Birich, A.; Flerus, B.; Friedrich, B. WEEE Recycling at IME—RWTH Aachen: From Basic Metal Recovery to Resource Efficiency. Available online: https://www.semanticscholar.org/paper/WEEE-Recycling-at-IME-%E2%80%93-RWTH-Aachen%3A-From-Basic-to-Latacz-Diaz/47c02905d5e9a9071e4bdac0ae7365f1b93ab5b1 (accessed on 7 July 2022).
- Chen, M.; Avarmaa, K.; Taskinen, P.; Klemettinen, L.; Michallik, R.; O’Brien, H.; Jokilaakso, A. Handling Trace Elements in WEEE Recycling through Copper Smelting-an Experimental and Thermodynamic Study. Miner. Eng. 2021, 173, 107189. [Google Scholar] [CrossRef]
- Yamane, L.H.; de Moraes, V.T.; Espinosa, D.C.R.; Tenório, J.A.S. Recycling of WEEE: Characterization of Spent Printed Circuit Boards from Mobile Phones and Computers. Waste Manag. 2011, 31, 2553–2558. [Google Scholar] [CrossRef]
- Buchmann, M.; Borowski, N.; Leißner, T.; Heinig, T.; Reuter, M.A.; Friedrich, B.; Peuker, U.A. Evaluation of Recyclability of a WEEE Slag by Means of Integrative X-Ray Computer Tomography and SEM-Based Image Analysis. Minerals 2020, 10, 309. [Google Scholar] [CrossRef]
- Nicol, S.; Hogg, B.; Mendoza, O.; Nikolic, S. Extraction and Recovery of Critical Metals from Electronic Waste Using ISASMELTTM Technology. Processes 2023, 11, 1012. [Google Scholar] [CrossRef]
- Alvear, F.G.R.F.; Nikolic, S. ISASMELTTM for Recycling of Valuable Elements Contributing to a More Sustainable Society. In REWAS 2013: Enabling Materials Resource Sustainability; Kvithyld, A., Meskers, C., Kirchain, R., Krumdick, G., Mishra, B., Reuter, M., Wang, C., Schlesinger, M., Gaustad, G., Lados, D., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 100–109. ISBN 978-3-319-48763-2. [Google Scholar]
- Niu, X.; Li, Y. Treatment of Waste Printed Wire Boards in Electronic Waste for Safe Disposal. J. Hazard. Mater. 2007, 145, 410–416. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, L. Metallurgical Recovery of Metals from Electronic Waste: A Review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Ma, Y. Phase Transformations during the Oxidation of Fayalite in Iron-Rich Nickel Slag. Int. J. Mater. Res. 2020, 111, 290–296. [Google Scholar] [CrossRef]
- Mackwell, S.J. Oxidation Kinetics of Fayalite (Fe2SiO4). Phys. Chem. Miner. 1992, 19, 220–228. [Google Scholar] [CrossRef]
- Calderón-Vásquez, I.; Segovia, V.; Cardemil, J.M.; Barraza, R. Assessing the Use of Copper Slags as Thermal Energy Storage Material for Packed-Bed Systems. Energy 2021, 227, 120370. [Google Scholar] [CrossRef]
- Alkan, G.; Mechnich, P.; Lucas, H.; Knoblauch, N.; Sommerfeld, M.; Flucht, F.; Pernpeintner, J.; Sergeev, D.; Müller, M.; Friedrich, B. Assessment of Metallurgical Slags as Solar Heat Absorber Particles. Minerals 2022, 12, 121. [Google Scholar] [CrossRef]
- Albrecht, S.; Cymorek, C.; Andersson, K.; Reichert, K.; Wolf, R. Tantalum and Tantalum Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; ISBN 978-3-527-30673-2. [Google Scholar]
- Bakhsheshi-Rad, H.R.; Najafinezhad, A.; Hamzah, E.; Ismail, A.F.; Berto, F.; Chen, X. Clinoenstatite/Tantalum Coating for Enhancement of Biocompatibility and Corrosion Protection of Mg Alloy. J. Funct. Biomater. 2020, 11, 26. [Google Scholar] [CrossRef]
- Barume, B.; Naeher, U.; Ruppen, D.; Schütte, P. Conflict Minerals (3TG): Mining Production, Applications and Recycling. Curr. Opin. Green Sustain. Chem. 2016, 1, 8–12. [Google Scholar] [CrossRef]
- Cardarelli, F.; Taxil, P.; Savall, A. Tantalum Protective Thin Coating Techniques for the Chemical Process Industry: Molten Salts Electrocoating as a New Alternative. Int. J. Refract. Met. Hard Mater. 1996, 14, 365–381. [Google Scholar] [CrossRef]
- Cardonne, S.M.; Kumar, P.; Michaluk, C.A.; Schwartz, H.D. Tantalum and Its Alloys. Int. J. Refract. Met. Hard Mater. 1995, 13, 187–194. [Google Scholar] [CrossRef]
- Lindagato, P.; Li, Y.; Yang, G. Save the Giants: Demand beyond Production Capacity of Tantalum Raw Materials. Min. Econ. 2023, 36, 535–541. [Google Scholar] [CrossRef]
- Zednicek, T. Tantalum Capacitors in 5G Infrastructure. What are critical metals? Tantalum-Niobium Int. Study Cent. 2023, 184, 35. [Google Scholar]
- Schwich, L.; Küpers, M.; Finsterbusch, M.; Schreiber, A.; Fattakhova-Rohlfing, D.; Guillon, O.; Friedrich, B. Recycling Strategies for Ceramic All-Solid-State Batteries—Part I: Study on Possible Treatments in Contrast to Li-Ion Battery Recycling. Metals 2020, 10, 1523. [Google Scholar] [CrossRef]
- Chen, L.; Lin, X.; Dang, W.; Huang, H.; Liu, G.; Yang, Z. Tantalum Oxide Nanosheets/Polypropylene Composite Separator Constructing Lithium-Ion Channels for Stable Lithium Metal Batteries. Adv. Compos. Hybrid Mater. 2022, 6, 12. [Google Scholar] [CrossRef]
- Fujita, T.; Ono, H.; Dodbiba, G.; Yamaguchi, K. Evaluation of a Recycling Process for Printed Circuit Board by Physical Separation and Heat Treatment. Waste Manag. 2014, 34, 1264–1273. [Google Scholar] [CrossRef]
- Riedewald, F.; Povey, I.; Barton, K.; Lewis, L.; Santos, S.; O’Mahoney, M.; Sousa-Gallagher, M. Tantalum Capacitor Separation from Waste Printed Circuit Boards with Molten Salt or Metal. Chem. Ing. Tech. 2022, 95, 944–949. [Google Scholar] [CrossRef]
- Niu, B.; Chen, Z.; Xu, Z. Method for Recycling Tantalum from Waste Tantalum Capacitors by Chloride Metallurgy. ACS Sustain. Chem. Eng. 2017, 5, 1376–1381. [Google Scholar] [CrossRef]
- Niu, B.; Chen, Z.; Xu, Z. Recovery of Tantalum from Waste Tantalum Capacitors by Supercritical Water Treatment. ACS Sustain. Chem. Eng. 2017, 5, 4421–4428. [Google Scholar] [CrossRef]
- Wajima, T. Decomposition of Mould Resin in Spent Capacitors by NaOH for the Recovery of Tantalum. Int. J. Environ. Sustain. Dev. 2017, 8, 285–289. [Google Scholar] [CrossRef]
- Agrawal, M.; Singh, K.K.; Singh, R. Hydrometallurgical Recovery of Manganese and Nickel and Isolation of Tantalum from Obsolete Tantalum Capacitor. J. Environ. Chem. Eng. 2022, 10, 108887. [Google Scholar] [CrossRef]
- Matsuoka, R.; Mineta, K.; Okabe, T.H. Recycling Process for Tantalum and Some Other Metal Scraps. 2004. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=25220b5dcc7f278125d6c5fb9e13bbdb5331609f (accessed on 29 January 2024).
- Spitczok von Brisinski, L.; Goldmann, D.; Endres, F. Recovery of Metals from Tantalum Capacitors with Ionic Liquids. Chem. Ing. Tech. 2014, 86, 196–199. [Google Scholar] [CrossRef]
- Micheau, C.; Arrachart, G.; Turgis, R.; Lejeune, M.; Draye, M.; Michel, S.; Legeai, S.; Pellet-Rostaing, S. Ionic Liquids as Extraction Media in a Two-Step Eco-Friendly Process for Selective Tantalum Recovery. ACS Sustain. Chem. Eng. 2020, 8, 1954–1963. [Google Scholar] [CrossRef]
- Chen, W.-S.; Ho, H.-J.; Lin, K.-Y. Hydrometallurgical Process for Tantalum Recovery from Epoxy-Coated Solid Electrolyte Tantalum Capacitors. Materials 2019, 12, 1220. [Google Scholar] [CrossRef]
- Swain, B.; Lee, J.; Woo Gu, B.; Lee, C.-G.; Yoon, J.-H. Sustainable Valorization of Semiconductor Industry Tantalum Scrap Using Non-Hazardous HF Substitute Lixiviant. Waste Manag. 2022, 144, 294–302. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.M.; Anes, I.A.; Coleti, J.L.; Espinosa, D.C.R.; de Carvalho, M.S.; Tenório, J.A.S. Niobium and Tantalum Recovery from the Primary Source and from Tin Slag, an Industrial Challenge: A Review. Can. J. Chem. Eng. 2023, 101, 1743–1761. [Google Scholar] [CrossRef]
- Allain, E.; Kanari, N.; Diot, F.; Yvon, J. Development of a Process for the Concentration of the Strategic Tantalum and Niobium Oxides from Tin Slags. Miner. Eng. 2019, 134, 97–103. [Google Scholar] [CrossRef]
- Xie, K.; Wei, X.; Ye, L.; Wan, M.; Li, S.; Wu, J. Recovery and Preparation of Potassium Fluorotantalate from High-Tantalum-Bearing Waste Slag by Pressure Alkaline Decomposition. Metals 2022, 12, 648. [Google Scholar] [CrossRef]
- Lee, Y.; Yoo, B.; Nersisyan, H.H.; Lee, J.-H. Temperature and Concentration Dependencies of LiF-NaF-K2TaF7 Phase Equilibria and Effects on Ta Electrodeposition Layer. J. Electrochem. Soc. 2018, 165, D432–D438. [Google Scholar] [CrossRef]
- Gaballah, I.; Allain, E. Recycling of Strategic Metals from Industrial Slag by a Hydro-and Pyrometallurgical Process. Resour. Conserv. Recycl. 1994, 10, 75–85. [Google Scholar] [CrossRef]
- Brocchi, E.A.; Moura, F.J. Chlorination Methods Applied to Recover Refractory Metals from Tin Slags. Miner. Eng. 2008, 21, 150–156. [Google Scholar] [CrossRef]
- Generowicz, N.; Kulczycka, J. Recovery of Tantalum from Different Resources. Archit. Civ. Eng. Environ. 2020, 13, 79–84. [Google Scholar] [CrossRef]
- Magdalena, R.; Valero, A.; Calvo, G.; Alguacil, F.J.; López, F.A. Simulation to Recover Niobium and Tantalum from the Tin Slags of the Old Penouta Mine: A Case Study. Minerals 2021, 11, 1123. [Google Scholar] [CrossRef]
- Nieberl, M.; Hornung, A.; Sajdak, M.; Majewski, A.J.; Ouadi, M. Application and Recycling of Tantalum from Waste Electric and Electronic Equipment–A Review. Resour. Conserv. Recycl. 2023, 190, 106866. [Google Scholar] [CrossRef]
- Mackay, D.A.R.; Simandl, G.J. Geology, Market and Supply Chain of Niobium and Tantalum—A Review. Min. Depos. 2014, 49, 1025–1047. [Google Scholar] [CrossRef]
- Gaballah, I.; Allain, E.; Djona, M. Extraction of Tantalum and Niobium from Tin Slags by Chlorination and Carbochlorination. Met. Mater. Trans. B 1997, 28, 359–369. [Google Scholar] [CrossRef]
- Tian, E.; Xie, L.; Wang, R.; Duan, X.; Huang, F.; Che, X.; Chen, X.; Wang, L. Mineralogical Constraints on Nb-Ta Fractionation in Early Cretaceous A-Type Granites from the Suzhou Pluton, SE China. Lithos 2021, 402–403, 106286. [Google Scholar] [CrossRef]
- Stepanov, A.; Mavrogenes, J.A.; Meffre, S.; Davidson, P. The Key Role of Mica during Igneous Concentration of Tantalum. Contrib. Miner. Pet. 2014, 167, 1009. [Google Scholar] [CrossRef]
- Moore, R.O.; Griffin, W.L.; Gurney, J.J.; Ryan, C.G.; Cousens, D.R.; Sie, S.H.; Suter, G.F. Trace Element Geochemistry of Ilmenite Megacrysts from the Monastery Kimberlite, South Africa. Lithos 1992, 29, 1–18. [Google Scholar] [CrossRef]
- Adelmann, C.; Delabie, A.; Schepers, B.; Rodriguez, L.N.J.; Franquet, A.; Conard, T.; Opsomer, K.; Vaesen, I.; Moussa, A.; Pourtois, G.; et al. Atomic Layer Deposition of Tantalum Oxide and Tantalum Silicate from Chloride Precursors. Chem. Vap. Depos. 2012, 18, 225–238. [Google Scholar] [CrossRef]
- Reeve, D.A.; Bright, N.F.H. Phase Relations in the System CaO-Ta2O5-SiO2. J. Am. Ceram. Soc. 1969, 52, 405–409. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Okrusch, M.; Matthes, S. Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. In Mineralogie; Springer Spektrum: Berlin, Germany, 2014; ISBN 978-3-642-34660-6. [Google Scholar]
- Guevarra, J.; van Smaalen, S.; Daniels, P.; Rotiroti, N.; Lichtenberg, F. Perovskite-Related Ca(Nb,Ti)O3.33. Z. Für Krist.—Cryst. Mater. 2005, 220, 19–24. [Google Scholar] [CrossRef]
- Kamba, S.; Petzelt, J.; Buixaderas, E.; Haubrich, D.; Vaněk, P.; Kužel, P.; Jawahar, I.N.; Sebastian, M.T.; Mohanan, P. High Frequency Dielectric Properties of A5B4O15 Microwave Ceramics. J. Appl. Phys. 2001, 89, 3900–3906. [Google Scholar] [CrossRef]
- Ubic, R.; Merry, J.C.; Leach, A.C. Electron Microscopy of Lead and Calcium Pyrochlores. J. Eur. Ceram. Soc. 2004, 24, 1725–1728. [Google Scholar] [CrossRef]
- Feng, D.; Navrotsky, A. Thermochemistry of Rare Earth Perovskites. MRS Adv. 2016, 1, 2695–2700. [Google Scholar] [CrossRef]
- Bartelmy, D. Webmineral Mineralogy Database. Available online: https://www.webmineral.com/ (accessed on 29 January 2024).
- Gupta, S. Introduction to Ferroelectrics and Related Materials. In Ferroelectric Materials for Energy Harvesting and Storage; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–41. ISBN 978-0-08-102802-5. [Google Scholar]
- Schirmer, T.; Qiu, H.; Goldmann, D.; Stallmeister, C.; Friedrich, B. Influence of P and Ti on Phase Formation at Solidification of Synthetic Slag Containing Li, Zr, La, and Ta. Minerals 2022, 12, 310. [Google Scholar] [CrossRef]
- Peters, E.; Müller-Buschbaum, H. Ein Titan-Tantaloxid Mit TiII: Ti0,33 Ta0,67 O2 (TiTa2O6)/A Titanium Tantalum Oxide of TiII: Ti0,33 Ta0,67O2 (TiTa2O6). Z. Für Naturforschung B 1995, 50, 1167–1170. [Google Scholar] [CrossRef]
- Okrusch, M.; Matthes, S. Mineralogie Eine Einführung in Die Spezielle Mineralogie, Petrologie und Lagerstättenkunde; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-78200-1. [Google Scholar]
- Bodinier, J.-I.; Merlet, C.; Bedini, R.M.; Simien, F.; Remaidi, M.; Garrido, C.J. Distribution of Niobium, Tantalum, and Other Highly Incompatible Trace Elements in the Lithospheric Mantle: The Spinel Paradox. Geochim. Cosmochim. Acta 1996, 60, 545–550. [Google Scholar] [CrossRef]
- Chen, J. Advances in High-Pressure Technology for Geophysical Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2005; ISBN 978-0-444-51979-5. [Google Scholar]
- O’Neill, H. Quartz-Fayalite-Iron and Quartz-Fayalite-Magnetite Equilibria and the Free Energy of Formation of Fayalite (Fe2SiO4) and Magnetite (Fe3O4). Am. Mineral. 1987, 72, 67–75. [Google Scholar]
- Chen, S.Y.; Chu, M.S. A New Process for the Recovery of Iron, Vanadium, and Titanium from Vanadium Titanomagnetite. J. South. Afr. Inst. Min. Metall. 2014, 114, 481–488. [Google Scholar]
- Schoenthal, W.; Liu, X.; Cox, T.; Mesa, J.L.; Maicas, M.; Diaz-Michelena, M.; Laughlin, D.E.; McHenry, M.E. Synthesis and Magnetic Properties of Single Phase Titanomagnetites. J. Appl. Phys. 2014, 115, 17A934. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; et al. FactSage Thermochemical Software and Databases, 2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Seidler, G.T.; Mortensen, D.R.; Remesnik, A.J.; Pacold, J.I.; Ball, N.A.; Barry, N.; Styczinski, M.; Hoidn, O.R. A Laboratory-Based Hard X-ray Monochromator for High-Resolution X-ray Emission Spectroscopy and x-Ray Absorption near Edge Structure Measurements. Rev. Sci. Instrum. 2014, 85, 113906. [Google Scholar] [CrossRef]
- Seddon-Ferretti, M.E.; Mottram, L.M.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. HERMES—A GUI-Based Software Tool for Pre-Processing of X-Ray Absorption Spectroscopy Data from Laboratory Rowland Circle Spectrometers. J. Synchrotron Rad. 2022, 29, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Bearden, J.A.; Burr, A.F. Reevaluation of X-Ray Atomic Energy Levels. Rev. Mod. Phys. 1967, 39, 125–142. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541. [Google Scholar] [CrossRef]
- Smith, D.K.; Jenkins, R. The Powder Diffraction File: Past, Present, and Future. J. Res. Natl. Inst. Stand. Technol. 1996, 101, 259. [Google Scholar] [CrossRef]
- Vaitkus, A.; Merkys, A.; Gražulis, S. Validation of the Crystallography Open Database Using the Crystallographic Information Framework. J. Appl. Crystallogr. 2021, 54, 661–672. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Jercinovic, M.J.; Williams, M.L.; Allaz, J.; Donovan, J.J. Trace Analysis in EPMA. IOP Conf. Ser. Mater. Sci. Eng. 2012, 32, 012012. [Google Scholar] [CrossRef]
- Merlet, C. Quantitative Electron Probe Microanalysis: New Accurate Φ (Ρz) Description. In Electron Microbeam Analysis; Boekestein, A., Pavićević, M.K., Eds.; Springer Vienna: Vienna, Austria, 1992; Volume 12, pp. 107–115. ISBN 978-3-211-82359-0. [Google Scholar]
- Sasabe, M.; Jibiki, M. Permeability of Oxygen Through Molten Slag Containing Iron Oxide. Can. Metall. Q. 1983, 22, 29–36. [Google Scholar] [CrossRef]
- Sasabe, M. Atsushi Asamura Transport Phenomenon of Oxygen through Molten Slags. In Second International Symposium on Metallurgical Slags and Fluxes: Proceedings of the Second International Symposium on Metallurgical Slags and Fluxes; Fine, H.A., Gaskell, D.R., Metallurgical Society of AIME, Eds.; The Society: Warrendale, PA, USA, 1984; pp. 651–668. ISBN 978-0-89520-483-7. [Google Scholar]
- Sasabe, M.; Goto, K.S. Permeability, Diffusivity, and Solubility of Oxygen Gas in Liquid Slag. Met. Trans. B 1974, 5, 2225–2233. [Google Scholar] [CrossRef]
- Jacob, K.T.; Kale, G.M.; Iyengar, G.N.K. Chemical Potentials of Oxygen for Fayalite-Quartz-Lron and Fayalite-Quartz-Magnetite Equilibria. Metall. Trans. B 1989, 20, 679–685. [Google Scholar] [CrossRef]
- Alhajri, N.S.; Yoshida, H.; Anjum, D.H.; Garcia-Esparza, A.T.; Kubota, J.; Domen, K.; Takanabe, K. Synthesis of Tantalum Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution. J. Mater. Chem. A 2013, 1, 12606. [Google Scholar] [CrossRef]
- Martin, R.F.; Wülser, P.-A. Niobium and Tantalum in Minerals: Siderophile, Chalcophile or Lithophile, and Polyvalent. J. Geochem. Explor. 2014, 147, 16–25. [Google Scholar] [CrossRef]
- Evans, J. X-ray Absorption Spectroscopy for the Chemical and Materials Sciences, 1st ed.; Wiley: Hoboken, NJ, USA, 2018; ISBN 978-1-119-99091-8. [Google Scholar]
- Tougerti, A.; Cristol, S.; Berrier, E.; Briois, V.; La Fontaine, C.; Villain, F.; Joly, Y. XANES Study of Rhenium Oxide Compounds at the L1 and L3 Absorption Edges. Phys. Rev. B 2012, 85, 125136. [Google Scholar] [CrossRef]
- Fittschen, U.; Guilherme, A.; Böttger, S.; Rosenberg, D.; Menzel, M.; Jansen, W.; Busker, M.; Gotlib, Z.P.; Radtke, M.; Riesemeier, H.; et al. A Setup for Synchrotron-Radiation-Induced Total Reflection X-ray Fluorescence and X-ray Absorption near-Edge Structure Recently Commissioned at BESSY II BAMline. J. Synchrotron Rad. 2016, 23, 820–824. [Google Scholar] [CrossRef]
- Cartier, C.; Hammouda, T.; Boyet, M.; Mathon, O.; Testemale, D.; Moine, B.N. Evidence for Nb2+ and Ta3+ in Silicate Melts under Highly Reducing Conditions: A XANES Study. Am. Mineral. 2015, 100, 2152–2158. [Google Scholar] [CrossRef]
- Asakura, H.; Shishido, T.; Yamazoe, S.; Teramura, K.; Tanaka, T. Structural Analysis of Group V, VI, and VII Metal Compounds by XAFS. J. Phys. Chem. C 2011, 115, 23653–23663. [Google Scholar] [CrossRef]
- Farges, F.; Linnen, R.L.; Brown, G.E. Redox and Speciation of Tin in Hydrous Silicate Glasses: A Comparison with Nb, Ta, Mo and W. Can. Mineral. 2006, 44, 795–810. [Google Scholar] [CrossRef]
- Burnham, A.D.; Berry, A.J.; Wood, B.J.; Cibin, G. The Oxidation States of Niobium and Tantalum in Mantle Melts. Chem. Geol. 2012, 330–331, 228–232. [Google Scholar] [CrossRef]
- Yamazoe, S.; Hitomi, Y.; Shishido, T.; Tanaka, T. XAFS Study of Tungsten L1- and L3-Edges: Structural Analysis of WO3 Species Loaded on TiO2 as a Catalyst for Photo-Oxidation of NH3. J. Phys. Chem. C 2008, 112, 6869–6879. [Google Scholar] [CrossRef]
- Marcus, M.A.; Westphal, A.J.; Fakra, S.C. Classification of Fe-Bearing Species from K -Edge XANES Data Using Two-Parameter Correlation Plots. Erratum. J. Synchrotron Rad. 2009, 16, 439. [Google Scholar] [CrossRef]
- Prietzel, J.; Thieme, J.; Eusterhues, K.; Eichert, D. Iron Speciation in Soils and Soil Aggregates by Synchrotron-based X-ray Microspectroscopy (XANES, μ-XANES). Eur. J Soil Sci. 2007, 58, 1027–1041. [Google Scholar] [CrossRef]
- Davis, B.L. Semiquantitative XRD Analysis with the Aid of Reference Intensity Ratio Estimates. Powder Diffr. 1998, 13, 185–187. [Google Scholar] [CrossRef]
wt.% | Fe2O3 | Fe | SiO2 | CaO | Al2O3 | Ta |
---|---|---|---|---|---|---|
40.43 | 14.14 | 24.80 | 14.88 | 4.96 | 0.80 |
Sample | Cooling Rate/°C/h | Fraction of FeII in Total FeII + FeIII System/% |
---|---|---|
S50 | 50 | 100–91.3 |
S200 | 200 | 96.6–89.6 |
S300 | 300 | 49.9–52.0 |
wt.% | 300 °C/h | 150 °C/h | 50 °C/h | Method |
---|---|---|---|---|
Al2O3 | 7.2 | 5.9 | 8.4 | XRF |
CaO | 14.9 | 16.8 | 11.9 | XRF |
SiO2 | 25.7 | 25.3 | 23.0 | XRF |
FeO | 50.9 | 50.9 | 54.6 | XRF |
MnO | 0.2 | 0.2 | 0.3 | XRF |
P2O5 | 0.1 | 0.1 | 0.1 | XRF |
Cr2O3 | 0.1 | 0.0 | 0.1 | XRF |
NiO | 0.0 | 0.0 | 0.2 | XRF |
Na2O | 0.0 | 0.1 | 0.0 | XRF |
Ta | 0.50 | 0.42 | 0.66 | ICP-OES |
wt.% | Pyroxen ABC2O6 | ABO3 | Ca1-xFex+y Ta0.8−2/5yO3 | FeTa0.8O3 | Fe1+xTa2−2/5xO6 | Fe(Fe2−5/3y)TayO4 | |
---|---|---|---|---|---|---|---|
Fe | 1.9 | 44.0 | 16.7 | 7.9 | 19.8 | 14.0 | 51.8 |
Ca | 5.0 | 19.3 | 14.7 | 10.9 | 0.34 | 0.4 | 0.33 |
Si | 13.2 | 23.2 | 17.3 | 0.7 | 0.62 | 0.3 | 0.49 |
Al | 0.78 | 17.3 | 2.0 | 0.1 | 0.12 | 0.1 | 1.14 |
Ta | 0.07 | 6.6 | 13.4 | 59.2 | 58.2 | 66.9 | 22.7 |
O | 31.4 | 44.2 | 35.1 | 20.6 | 19.5 | 19.3 | 21.6 |
Total | n.a. | n.a. | 99.1 | 99.4 | 98.5 | 100.9 | 98.1 |
Data type | Min.–Max. | Ave. | Ave. | Ave. | Ave. | Ave. | |
N | 128 | 10 | 23 | single spot | 4 | 9 | |
RD Al | n.a. | n.a. | 2.0 | n.a. | n.a. | n.a. | n.a. |
RD Si | n.a. | n.a. | 17.3 | n.a. | n.a. | n.a. | n.a. |
RD Ca | n.a. | n.a. | 14.7 | 1.00 | n.a. | n.a. | n.a. |
RD Fe | n.a. | n.a. | 16.7 | 6.5 | n.a. | 7.2 | 6.1 |
RD Ta | n.a. | n.a. | 13.4 | 1.6 | n.a. | 1.8 | 19.9 |
Occurrence | 50 °C | 50, 200 °C | 300 °C | 300 °C | 300 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirmer, T.; Hiller, J.; Weiss, J.; Munchen, D.; Lucas, H.; Fittschen, U.E.A.; Friedrich, B. Behavior of Tantalum in a Fe-Dominated Synthetic Fayalitic Slag System—Phase Analysis and Incorporation. Minerals 2024, 14, 262. https://doi.org/10.3390/min14030262
Schirmer T, Hiller J, Weiss J, Munchen D, Lucas H, Fittschen UEA, Friedrich B. Behavior of Tantalum in a Fe-Dominated Synthetic Fayalitic Slag System—Phase Analysis and Incorporation. Minerals. 2024; 14(3):262. https://doi.org/10.3390/min14030262
Chicago/Turabian StyleSchirmer, Thomas, Jessica Hiller, Joao Weiss, Daniel Munchen, Hugo Lucas, Ursula E. A. Fittschen, and Bernd Friedrich. 2024. "Behavior of Tantalum in a Fe-Dominated Synthetic Fayalitic Slag System—Phase Analysis and Incorporation" Minerals 14, no. 3: 262. https://doi.org/10.3390/min14030262
APA StyleSchirmer, T., Hiller, J., Weiss, J., Munchen, D., Lucas, H., Fittschen, U. E. A., & Friedrich, B. (2024). Behavior of Tantalum in a Fe-Dominated Synthetic Fayalitic Slag System—Phase Analysis and Incorporation. Minerals, 14(3), 262. https://doi.org/10.3390/min14030262