Application of Minerals for the Characterization of Geothermal Reservoirs and Cap Rock in Intracontinental Extensional Basins and Volcanic Islands in the Context of Subduction
Abstract
:1. Introduction
2. Geological Settings of the Chosen Sites
2.1. Extensional Basins in Continental Domains: Examples of the Upper Rhine Graben (France) and Death Valley (USA)
2.1.1. Upper Rhine Graben (URG)
2.1.2. Death Valley with a Focus on the Noble Hills
2.2. Volcanic Islands: Two Examples in the Guadeloupe Archipelago (Bouillante Geothermal Power Plant and Its Surface Analog in Terre de Haut, Les Saintes)
The Guadeloupe Archipelago
- Bouillante
- 2.
- Les Saintes, Terre-de-Haut island
3. Clay Minerals
3.1. Clay Cap Rock and Cap Rock: Electrical Resistivity, Gravimetry, and Magnetotelluric and Mineralogical Exploration
3.2. Geothermal Reservoirs
3.2.1. Types of Hydrothermal Alteration and Methods of Characterization
- Propylitic alteration
- 2.
- Argillic alteration
3.2.2. Tosudite, a Specific Lithium-Rich Clay Mineral
3.2.3. Chlorite Geothermometry
3.2.4. Use of Illite (and Muscovite)
- Determination of temperature conditions using the Kübler Index
- 2.
- Dating of hydrothermal or metamorphic events
3.2.5. Deciphering Meteoric and Hydrothermal Alteration Based on Clay Minerals
4. Carbonates
5. Quartz
6. Discussion
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Navelot, V.; Géraud, Y.; Favier, A.; Diraison, M.; Corsini, M.; Lardeaux, J.-M.; Verati, C.; Mercier de Lépinay, J.; Legendre, L.; Beauchamps, G. Petrophysical Properties of Volcanic Rocks and Impacts of Hydrothermal Alteration in the Guadeloupe Archipelago (West Indies). J. Volcanol. Geotherm. Res. 2018, 360, 1–21. [Google Scholar] [CrossRef]
- Favier, A.; Lardeaux, J.-M.; Corsini, M.; Verati, C.; Navelot, V.; Géraud, Y.; Diraison, M.; Ventalon, S.; Voitus, E. Characterization of an Exhumed High-Temperature Hydrothermal System and Its Application for Deep Geothermal Exploration: An Example from Terre-de-Haut Island (Guadeloupe Archipelago, Lesser Antilles Volcanic Arc). J. Volcanol. Geotherm. Res. 2021, 418, 107256. [Google Scholar] [CrossRef]
- Verati, C.; Mazabraud, Y.; Lardeaux, J.-M.; Corsini, M.; Schneider, D.; Voitus, E.; Zami, F. Tectonic Evolution of Les Saintes Archipelago (Guadeloupe, French West Indies): Relation with the Lesser Antilles Arc System. Bull. Société Géologique Fr. 2016, 187, 3–10. [Google Scholar] [CrossRef]
- Zucchi, M.; Tursi, F.; Brogi, A.; Liotta, D.; Spiess, R.; Caggianelli, A.; Ventruti, G.; Langone, A. Syn-Tectonic Contact Aureole and Metasomatic Reaction Zones in Carbonate and Pelitic Host Rocks (Elba Island, Italy). Tectonophysics 2023, 853, 229782. [Google Scholar] [CrossRef]
- Genter, A.; Traineau, H.; Dezayes, C.; Elsass, P.; Ledesert, B.; Meunier, A.; Villemin, T. Fracture Analysis and Reservoir Characterization of the Granitic Basement in HDR Soultz Project (France). Geotherm. Sci. Technol. 1995, 4, 189. [Google Scholar]
- Hébert, R.L.; Ledésert, B.; Bartier, D.; Dezayes, C.; Genter, A.; Grall, C. The Enhanced Geothermal System of Soultz-Sous-Forêts: A Study of the Relationships between Fracture Zones and Calcite Content. J. Volcanol. Geotherm. Res. 2010, 196, 126–133. [Google Scholar] [CrossRef]
- Klee, J.; Chabani, A.; Ledésert, B.A.; Potel, S.; Hébert, R.L.; Trullenque, G. Fluid-Rock Interactions in a Paleo-Geothermal Reservoir (Noble Hills Granite, California, USA). Part 2: The Influence of Fracturing on Granite Alteration Processes and Fluid Circulation at Low to Moderate Regional Strain. Geosciences 2021, 11, 433. [Google Scholar] [CrossRef]
- Chabani, A.; Trullenque, G.; Ledésert, B.A.; Klee, J. Multiscale Characterization of Fracture Patterns: A Case Study of the Noble Hills Range (Death Valley, CA, USA), Application to Geothermal Reservoirs. Geosciences 2021, 11, 280. [Google Scholar] [CrossRef]
- Dezayes, C.; Villemin, T.; Pêcher, A. Microfracture Pattern Compared to Core-Scale Fractures in the Borehole of Soultz-Sous-Forêts Granite, Rhine Graben, France. J. Struct. Geol. 2000, 22, 723–733. [Google Scholar] [CrossRef]
- Ledésert, B.; Hebert, R.; Genter, A.; Bartier, D.; Clauer, N.; Grall, C. Fractures, Hydrothermal Alterations and Permeability in the Soultz Enhanced Geothermal System. Comptes Rendus Geosci. 2010, 342, 607–615. [Google Scholar] [CrossRef]
- Ledésert, B.; Dubois, J.; Genter, A.; Meunier, A. Fractal Analysis of Fractures Applied to Soultz-Sous-Forets Hot Dry Rock Geothermal Program. J. Volcanol. Geotherm. Res. 1993, 57, 1–17. [Google Scholar] [CrossRef]
- Vidal, J.; Genter, A. Overview of Naturally Permeable Fractured Reservoirs in the Central and Southern Upper Rhine Graben: Insights from Geothermal Wells. Geothermics 2018, 74, 57–73. [Google Scholar] [CrossRef]
- Sardini, P.; Ledésert, B.; Touchard, G. Quantification of Microscopic Porous Networks By Image Analysis and Measurements of Permeability in the Soultz-Sous-Forêts Granite (Alsace, France). In Fluid Flow and Transport in Rocks: Mechanisms and Effects; Jamtveit, B., Yardley, B.W.D., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 171–189. ISBN 978-94-009-1533-6. [Google Scholar]
- Beauchamps, G.; Ledésert, B.; Hébert, R.; Navelot, V.; Favier, A. The Characterisation of an Exhumed High-Temperature Paleo-Geothermal System on Terre-de-Haut Island (the Les Saintes Archipelago, Guadeloupe) in Terms of Clay Minerals and Petrophysics. Geotherm. Energy 2019, 7, 1–18. [Google Scholar] [CrossRef]
- Beauchamps, G.; Bourdelle, F.; Dubois, M.; Hebert, R.L.; Ledésert, B.A. First Characterization of the Cooling of the Paleo-Geothermal System of Terre-de-Haut (Les Saintes Archipelago, Guadeloupe): Application of Fluid Inclusion and Chlorite Thermometry. J. Volcanol. Geotherm. Res. 2021, 419, 107370. [Google Scholar] [CrossRef]
- Libbey, R.B.; Williams-Jones, A.E. Applications of Downhole Lithogeochemistry to Geothermal Exploration. GRC Trans. 2015, 39, 451–463. [Google Scholar]
- Maffucci, R.; Corrado, S.; Aldega, L.; Bigi, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C. Cap Rock Efficiency of Geothermal Systems in Fold-and-Thrust Belts: Evidence from Paleo-Thermal and Structural Analyses in Rosario de La Frontera Geothermal Area (NW Argentina). J. Volcanol. Geotherm. Res. 2016, 328, 84–95. [Google Scholar] [CrossRef]
- Corrado, S.; Aldega, L.; Celano, A.S.; De Benedetti, A.A.; Giordano, G. Cap Rock Efficiency and Fluid Circulation of Natural Hydrothermal Systems by Means of XRD on Clay Minerals (Sutri, Northern Latium, Italy). Geothermics 2014, 50, 180–188. [Google Scholar] [CrossRef]
- Weaver, J.; Eggertsson, G.H.; Utley, J.E.; Wallace, P.A.; Lamur, A.; Kendrick, J.E.; Tuffen, H.; Markússon, S.H.; Lavallée, Y. Thermal Liability of Hyaloclastite in the Krafla Geothermal Reservoir, Iceland: The Impact of Phyllosilicates on Permeability and Rock Strength. Geofluids 2020, 2020, 1–20. [Google Scholar] [CrossRef]
- Lévy, L.; Gibert, B.; Sigmundsson, F.; Flóvenz, Ó.; Hersir, G.; Briole, P.; Pezard, P. The Role of Smectites in the Electrical Conductivity of Active Hydrothermal Systems: Electrical Properties of Core Samples from Krafla Volcano, Iceland. Geophys. J. Int. 2018, 215, 1558–1582. [Google Scholar] [CrossRef]
- Lévy, L.; Maurya, P.K.; Byrdina, S.; Vandemeulebrouck, J.; Sigmundsson, F.; Árnason, K.; Ricci, T.; Deldicque, D.; Roger, M.; Gibert, B. Electrical Resistivity Tomography and Time-Domain Induced Polarization Field Investigations of Geothermal Areas at Krafla, Iceland: Comparison to Borehole and Laboratory Frequency-Domain Electrical Observations. Geophys. J. Int. 2019, 218, 1469–1489. [Google Scholar] [CrossRef]
- Carapezza, M.L.; Ranaldi, M.; Gattuso, A.; Pagliuca, N.M.; Tarchini, L. The Sealing Capacity of the Cap Rock above the Torre Alfina Geothermal Reservoir (Central Italy) Revealed by Soil CO2 Flux Investigations. J. Volcanol. Geotherm. Res. 2015, 291, 25–34. [Google Scholar] [CrossRef]
- Zucchi, M. Faults Controlling Geothermal Fluid Flow in Low Permeability Rock Volumes: An Example from the Exhumed Geothermal System of Eastern Elba Island (Northern Tyrrhenian Sea, Italy). Geothermics 2020, 85, 101765. [Google Scholar] [CrossRef]
- Dubois, M.; Ayt Ougougdal, M.; Meere, P.; Royer, J.-J.; Boiron, M.-C.; Cathelineau, M. Temperature of Paleo- to Modern Self-Sealing within a Continental Rift Basin: The Fluid Inclusion Data (Soultz-Sous-Forêts, Rhine Graben, France). Eur. J. Mineral. 1996, 8, 1065–1080. [Google Scholar] [CrossRef]
- Savary, V.; Dubois, M.; Ledésert, B.; Yardley, B.W.D.; Royer, J.-J. History of Fluid Circulation in an Alteration Zone of the Soultz-Sous-Forêts Granite (Alsace, France). In Proceedings of the XIVth European Current Research on Fluid Inclusions, Nancy, France, 1–4 July 1997; p. 292. [Google Scholar]
- Dubois, M.; Ledésert, B.; Potdevin, J.-L.; Vançon, S. Détermination Des Conditions de Précipitation Des Carbonates Dans Une Zone d’altération Du Granite de Soultz (Soubassement Du Fossé Rhénan, France): L’enregistrement Des Inclusions Fluides. Comptes Rendus De L’académie Sci. Ser. IIA-Earth Planet. Sci. 2000, 331, 303–309. [Google Scholar] [CrossRef]
- Ledésert, B.; Berger, G.; Meunier, A.; Genter, A.; Bouchet, A. Diagenetic-Type Reactions Related to Hydrothermal Alteration in the Soultz-Sous-Forets Granite, France. Eur. J. Mineral. 1999, 11, 731–741. [Google Scholar] [CrossRef]
- Bottrell, S.H.; Yardley, B.W.D.; Buckley, F. A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull. Minéralogie 1988, 111, 279–290. [Google Scholar] [CrossRef]
- Banks, D.A.; Yardley, B.W.D. Crush-Leach Analysis of Fluid Inclusions in Small Natural and Synthetic Samples. Geochim. Cosmochim. Acta 1992, 56, 245–248. [Google Scholar] [CrossRef]
- Hébert, R.; Ledésert, B.; Genter, A.; Bartier, D.; Dezayes, C. Mineral Precipitation in Geothermal Reservoir: The Study Case of Calcite in the Soultz-Sous-Forêts Enhanced Geothermal System. In Proceedings of the 36rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 31 January–2 February 2011. [Google Scholar]
- Bourdelle, F.; Parra, T.; Chopin, C.; Beyssac, O. A New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions. Contrib. Miner. Pet. 2013, 165, 723–735. [Google Scholar] [CrossRef]
- Inoue, A.; Kurokawa, K.; Hatta, T. Application of Chlorite Geothermometry to Hydrothermal Alteration in Toyoha Geothermal System, Southwestern Hokkaido, Japan. Resour. Geol. 2010, 60, 52–70. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Sanderson, D.J.; Leiss, B. Use of Analogue Exposures of Fractured Rock for Enhanced Geothermal Systems. Geosciences 2022, 12, 318. [Google Scholar] [CrossRef]
- Ziegler, P.A. European Cenozoic Rift System. Tectonophysics 1992, 208, 91–111. [Google Scholar] [CrossRef]
- Dèzes, P.; Schmid, S.M.; Ziegler, P.A. Evolution of the European Cenozoic Rift System: Interaction of the Alpine and Pyrenean Orogens with Their Foreland Lithosphere. Tectonophysics 2004, 389, 1–33. [Google Scholar] [CrossRef]
- Baillieux, P.; Schill, E.; Edel, J.-B.; Mauri, G. Localization of Temperature Anomalies in the Upper Rhine Graben: Insights from Geophysics and Neotectonic Activity. Int. Geol. Rev. 2013, 55, 1744–1762. [Google Scholar] [CrossRef]
- Benderitter, Y.; Elsass, P. Structural Control of Deep Fluid Circulation at the Soultz HDR Site, France: A Review. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 3, 104A. [Google Scholar]
- Pribnow, D.; Clauser, C. Heat and fluid flow at the soultz hot dry rock system in the rhine graben. In Proceedings of the World Geothermal Congress, Tokyo, Japan, 28 May–10 June 2000. [Google Scholar]
- Pribnow, D.; Schellschmidt, R. Thermal Tracking of Upper Crustal Fluid Flow in the Rhine Graben. Geophys. Res. Lett. 2000, 27, 1957–1960. [Google Scholar] [CrossRef]
- Baria, R.; Michelet, S.; Baumgaertner, J.; Dyer, B.; Nicholls, J.; Teza, D.; Hettkamp, T.; Soma, N.; Asanuma, H.; Kueperkoch, L. A 5000 m Deep Reservoir Development at the European HDR Site. In Proceedings of the Thirtieth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 31 January–2 February 2005. [Google Scholar]
- Baumgaertner, J.; Hettkamp, T.; Teza, D.; Koelbel, T.; Mergner, H.; Schlagermann, P.; Lerch, C.; Pfalzwerke geofuture GmbH, L. Operational experiences with the geothermal power plants Landau, Insheim and Bruchsal; Betriebserfahrungen mit den Geothermiekraftwerken Landau, Insheim und Bruchsal. bbr. Leitungsbau Brunnenbau Geotherm. 2013, 64, 48–57. [Google Scholar]
- Vidal, J.; Genter, A.; Chopin, F. Permeable Fracture Zones in the Hard Rocks of the Geothermal Reservoir at Rittershoffen, France: Permeable Fracture Zones, Rittershoffen. J. Geophys. Res. Solid Earth 2017, 122, 4864–4887. [Google Scholar] [CrossRef]
- Gerard, A.; Kappelmeyer, O. The Soultz-Sous-Forets Project. Geothermics 1987, 16, 393–399. [Google Scholar] [CrossRef]
- Evans, K.F.; Genter, A.; Sausse, J. Permeability Creation and Damage Due to Massive Fluid Injections into Granite at 3.5 Km at Soultz: 1. Borehole Observations: Permeability creation in granite. J. Geophys. Res. 2005, 110, B04203. [Google Scholar] [CrossRef]
- Kushnir, A.R.L.; Heap, M.J.; Baud, P. Assessing the Role of Fractures on the Permeability of the Permo-Triassic Sandstones at the Soultz-Sous-Forêts (France) Geothermal Site. Geothermics 2018, 74, 181–189. [Google Scholar] [CrossRef]
- Huenges, E. (Ed.) Geothermal Energy Systems: Exploration, Development, and Utilization, 1st ed.; Wiley: Hoboken, NJ, USA, 2010; ISBN 978-3-527-40831-3. [Google Scholar]
- Ledésert, B.; Hébert, R.L.; Grall, C.; Genter, A.; Dezayes, C.; Bartier, D.; Gérard, A. Calcimetry as a Useful Tool for a Better Knowledge of Flow Pathways in the Soultz-Sous-Forêts Enhanced Geothermal System. J. Volcanol. Geotherm. Res. 2009, 181, 106–114. [Google Scholar] [CrossRef]
- Meller, C.; Kohl, T. The Significance of Hydrothermal Alteration Zones for the Mechanical Behavior of a Geothermal Reservoir. Geotherm. Energy 2014, 2, 12. [Google Scholar] [CrossRef]
- Meller, C.; Ledésert, B. Is There a Link between Mineralogy, Petrophysics, and the Hydraulic and Seismic Behaviors of the Soultz-Sous-Forêts Granite during Stimulation? A Review and Reinterpretation of Petro-Hydromechanical Data toward a Better Understanding of Induced Seismicity and Fluid Flow. J. Geophys. Res. Solid Earth 2017, 122, 9755–9774. [Google Scholar]
- Baillieux, P.; Schill, E.; Abdelfettah, Y.; Dezayes, C. Possible Natural Fluid Pathways from Gravity Pseudo-Tomography in the Geothermal Fields of Northern Alsace (Upper Rhine Graben). Geotherm. Energy 2014, 2, 16. [Google Scholar] [CrossRef]
- Ledésert, B.A.; Hébert, R.L. How Can Deep Geothermal Projects Provide Information on the Temperature Distribution in the Upper Rhine Graben? The Example of the Soultz-Sous-Forêts-Enhanced Geothermal System. Geosciences 2020, 10, 459. [Google Scholar] [CrossRef]
- Norton, I. Two-Stage Formation of Death Valley. Geosphere 2011, 7, 171–182. [Google Scholar] [CrossRef]
- Dokka, R.K.; Travis, C.J. Role of the Eastern California Shear Zone in Accommodating Pacific-North American Plate Motion. Geophys. Res. Lett. 1990, 17, 1323–1326. [Google Scholar] [CrossRef]
- Stewart, J.H.; Ernst, W.G. Tectonics of the Walker Lane Belt, Western Great Basin: Mesozoic and Cenozoic Deformation in a Zone of Shear. Metamorph. Crustal Evol. West. USA 1988, 7, 683–713. [Google Scholar]
- Lifton, Z.M.; Newman, A.V.; Frankel, K.L.; Johnson, C.W.; Dixon, T.H. Insights into Distributed Plate Rates across the Walker Lane from GPS Geodesy: Walker Lane GPS. Geophys. Res. Lett. 2013, 40, 4620–4624. [Google Scholar] [CrossRef]
- Miller, M.M.; Johnson, D.J.; Dixon, T.H.; Dokka, R.K. Refined Kinematics of the Eastern California Shear Zone from GPS Observations, 1993-1998. J. Geophys. Res. 2001, 106, 2245–2263. [Google Scholar] [CrossRef]
- Hill, M.L.; Troxel, B.W. Tectonics of death valley region, california. Geol. Soc. Am. Bull. 1966, 77, 435. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Stewart, J.H. “Pull-Apart” origin of the central segment of death valley, california. Geol. Soc. Am. Bull. 1966, 77, 439. [Google Scholar] [CrossRef]
- Pavlis, T.L.; Trullenque, G. Evidence for 40–41 Km of Dextral Slip on the Southern Death Valley Fault: Implications for the Eastern California Shear Zone and Extensional Tectonics. Geology 2021, 49, 767–772. [Google Scholar] [CrossRef]
- Rämö, T.O.; Calzia, J.P.; Kosunen, P.J. Geochemistry of Mesozoic Plutons, Southern Death Valley Region, California: Insights into the Origin of Cordilleran Interior Magmatism. Contrib. Miner. Pet. 2002, 143, 416–437. [Google Scholar] [CrossRef]
- Troxel, B.W.; Butler, P.R. Rate of Cenozoic Slip on Normal Faults, South-Central Death Valley, California; Department of Geology, University of California: Los Angeles, CA, USA, 1979. [Google Scholar]
- Chabani, A.; Trullenque, G.; Klee, J.; Ledésert, B.A. Fracture Spacing Variability and the Distribution of Fracture Patterns in Granitic Geothermal Reservoir: A Case Study in the Noble Hills Range (Death Valley, CA, USA). Geosciences 2021, 11, 520. [Google Scholar] [CrossRef]
- Klee, J.; Potel, S.; Ledésert, B.A.; Hébert, R.L.; Chabani, A.; Barrier, P.; Trullenque, G. Fluid-Rock Interactions in a Paleo-Geothermal Reservoir (Noble Hills Granite, California, USA). Part 1: Granite Pervasive Alteration Processes Away from Fracture Zones. Geosciences 2021, 11, 325. [Google Scholar] [CrossRef]
- Bouysse, P.; Guennoc, P. Donnees sur la structure de l’arc insulaire des Petites Antilles, entre Ste-Lucie et Anguilla. Mar. Geol. 1983, 53, 131–166. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Powell, M. Magma Genesis in the Lesser Antilles Island Arc. Earth Planet. Sci. Lett. 1980, 51, 297–308. [Google Scholar] [CrossRef]
- DeMets, C.; Jansma, P.E.; Mattioli, G.S.; Dixon, T.H.; Farina, F.; Bilham, R.; Calais, E.; Mann, P. GPS Geodetic Constraints on Caribbean-North America Plate Motion. Geophys. Res. Lett. 2000, 27, 437–440. [Google Scholar] [CrossRef]
- Symithe, S.; Calais, E.; De Chabalier, J.B.; Robertson, R.; Higgins, M. Current Block Motions and Strain Accumulation on Active Faults in the Caribbean: Current caribbean kinematics. J. Geophys. Res. Solid Earth 2015, 120, 3748–3774. [Google Scholar] [CrossRef]
- Sanjuan, B.; Traineau, H. Development of the Bouillante Geothermal Field (Guadeloupe, French West Indies). IGA News 2008, 73, 5–9. [Google Scholar]
- Bremner, P.R.; Schultze, L.E.; Ming, D.W.; Mumpton, F.A. Ability of Clinoptilolite-Rich Tuffs to Remove Metal Cations Commonly Found in Acidic Drainage. Nat. Zeolites 1995, 93, 397–403. [Google Scholar]
- Bouchot, V.; Traineau, H.; Guillou-Frottier, L.; Thinon, I.; Baltassat, J.-M.; Fabriol, H.; Bourgeois, B.; Lasne, E. Assessment of the Bouillante Geothermal Field (Guadeloupe, French West Indies): Toward a Conceptual Model of the High Temperature Geothermal System. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. [Google Scholar]
- Thinon, I.; Guennoc, P.; Bitri, A.; Truffert, C. Study of the Bouillante Bay (West Basse-Terre Island Shelf): Contribution of Geophysical Surveys to the Understanding of the Structural Context of Guadeloupe (French West Indies - Lesser Antilles). Bull. Société Géologique Fr. 2010, 181, 51–65. [Google Scholar] [CrossRef]
- Patrier, P.; Bruzac, S.; Pays, R.; Beaufort, D.; Bouchot, V.; Verati, C.; Gadalia, A. Occurrence of K-Feldspar-Bearing Hydrothermal Breccias in the Bouillante Geothermal Field (Basse Terre – Guadeloupe). Bull. Société Géologique Fr. 2013, 184, 119–128. [Google Scholar] [CrossRef]
- Samper, A.; Quidelleur, X.; Lahitte, P.; Mollex, D. Timing of Effusive Volcanism and Collapse Events within an Oceanic Arc Island: Basse-Terre, Guadeloupe Archipelago (Lesser Antilles Arc). Earth Planet. Sci. Lett. 2007, 258, 175–191. [Google Scholar] [CrossRef]
- Verati, C.; Patrier-Mas, P.; Lardeaux, J.M.; Bouchot, V. Timing of Geothermal Activity in an Active Island-Arc Volcanic Setting: First 40Ar/39Ar Dating from Bouillante Geothermal Field (Guadeloupe, French West Indies). Geol. Soc. Lond. Spec. Publ. 2014, 378, 285–295. [Google Scholar] [CrossRef]
- Zami, F.; Quidelleur, X.; Ricci, J.; Lebrun, J.-F.; Samper, A. Initial Sub-Aerial Volcanic Activity along the Central Lesser Antilles Inner Arc: New K–Ar Ages from Les Saintes Volcanoes. J. Volcanol. Geotherm. Res. 2014, 287, 12–21. [Google Scholar] [CrossRef]
- Strangway, D.W.; Swift, C.M.; Holmer, R.C. The Application of Audio-frequency Magneto-tellurics (AMT) to mineral exploration. Geophysics 1973, 38, 1159–1175. [Google Scholar] [CrossRef]
- Lee, T.J.; Song, Y.; Uchida, T. Three-Dimensional Magnetotelluric Surveys for Geothermal Development in Pohang, Korea. Explor. Geophys. 2007, 38, 89–97. [Google Scholar] [CrossRef]
- Lee, T.J.; Han, N.; Song, Y. Magnetotelluric Survey Applied to Geothermal Exploration: An Example at Seokmo Island, Korea. Explor. Geophys. 2010, 41, 61–68. [Google Scholar] [CrossRef]
- Amatyakul, P.; Rung-Arunwan, T.; Siripunvaraporn, W. A Pilot Magnetotelluric Survey for Geothermal Exploration in Mae Chan Region, Northern Thailand. Geothermics 2015, 55, 31–38. [Google Scholar] [CrossRef]
- Patro, P.K. Magnetotelluric Studies for Hydrocarbon and Geothermal Resources: Examples from the Asian Region. Surv. Geophys. 2017, 38, 1005–1041. [Google Scholar] [CrossRef]
- Gailler, L.-S.; Bouchot, V.; Martelet, G.; Thinon, I.; Coppo, N.; Baltassat, J.-M.; Bourgeois, B. Contribution of Multi-Method Geophysics to the Understanding of a High-Temperature Geothermal Province: The Bouillante Area (Guadeloupe, Lesser Antilles). J. Volcanol. Geotherm. Res. 2014, 275, 34–50. [Google Scholar] [CrossRef]
- Patrier, P.; Beaufort, D.; Mas, A.; Traineau, H. Surficial Clay Assemblage Associated with the Hydrothermal Activity of Bouillante (Guadeloupe, French West Indies). J. Volcanol. Geotherm. Res. 2003, 126, 143–156. [Google Scholar] [CrossRef]
- Mas, A.; Guisseau, D.; Patrier Mas, P.; Beaufort, D.; Genter, A.; Sanjuan, B.; Girard, J.P. Clay Minerals Related to the Hydrothermal Activity of the Bouillante Geothermal Field (Guadeloupe). J. Volcanol. Geotherm. Res. 2006, 158, 380–400. [Google Scholar] [CrossRef]
- Glaas, C.; Vidal, J.; Genter, A. Structural Characterization of Naturally Fractured Geothermal Reservoirs in the Central Upper Rhine Graben. J. Struct. Geol. 2021, 148, 104370. [Google Scholar] [CrossRef]
- Ledésert, B.; Joffre, J.; Amblès, A.; Sardini, P.; Genter, A.; Meunier, A. Organic Matter in the Soultz HDR Granitic Thermal Exchanger (France): Natural Tracer of Fluid Circulations between the Basement and Its Sedimentary Cover. J. Volcanol. Geotherm. Res. 1996, 70, 235–253. [Google Scholar] [CrossRef]
- Berger, G.; Velde, B. Chemical Parameters Controlling the Propylitic and Argillic Alteration Process. Eur. J. Mineral. 1992, 1439–1456. [Google Scholar] [CrossRef]
- Sanjuan, B.; Millot, R.; Dezayes, C.; Brach, M. Main Characteristics of the Deep Geothermal Brine (5km) at Soultz-Sous-Forêts (France) Determined Using Geochemical and Tracer Test Data. Comptes Rendus Geosci. 2010, 342, 546–559. [Google Scholar] [CrossRef]
- Mouchot, J.; Genter, A.; Cuenot, N.; Scheiber, J.; Seibel, O.; Bosia, C.; Ravier, G. First Year of Operation from EGS Geothermal Plants in Alsace, France: Scaling Issues. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 12–14 February 2018. [Google Scholar]
- Sanjuan, B.; Millot, R.; Innocent, C.; Dezayes, C.; Scheiber, J.; Brach, M. Major Geochemical Characteristics of Geothermal Brines from the Upper Rhine Graben Granitic Basement with Constraints on Temperature and Circulation. Chem. Geol. 2016, 428, 27–47. [Google Scholar] [CrossRef]
- BRGM—Bureau de Recherches Géologiques et Minières. Tracer Testing of the EGS Site at Soultz-Sous-Forêts (Alsace, France) between 2005 and 2013. Available online: https://brgm.hal.science/hal-01074104/ (accessed on 26 August 2023).
- Fritz, B.; Jacquot, E.; Jacquemont, B.; Baldeyrou-Bailly, A.; Rosener, M.; Vidal, O. Geochemical Modelling of Fluid–Rock Interactions in the Context of the Soultz-Sous-Forêts Geothermal System. Comptes Rendus Geosci. 2010, 342, 653–667. [Google Scholar] [CrossRef]
- Genter, A.; Traineau, H. Analysis of Macroscopic Fractures in Granite in the HDR Geothermal Well EPS-1, Soultz-Sous-Forêts, France. J. Volcanol. Geotherm. Res. 1996, 72, 121–141. [Google Scholar] [CrossRef]
- Bartier, D.; Ledésert, B.; Clauer, N.; Meunier, A.; Liewig, N.; Morvan, G.; Addad, A. Hydrothermal Alteration of the Soultz-Sous-Forêts Granite (Hot Fractured Rock Geothermal Exchanger) into a Tosudite and Illite Assemblage. Eur. J. Mineral. 2008, 20, 131–142. [Google Scholar] [CrossRef]
- Merceron, T.; Inoue, A.; Bouchet, A.; Meunier, A. Lithium-Bearing Donbassite and Tosudite from Echassières, Massif Central, France. Clays Clay Miner. 1988, 36, 39–46. [Google Scholar] [CrossRef]
- Creach, M.; Meunier, A.; Beaufort, D. Tosudite Crystallization in the Kaolinized Granitic Cupola of Montebras, Creuse, France. Clay Miner. 1986, 21, 225–230. [Google Scholar] [CrossRef]
- Ichikawa, A.; Shimoda, S. Tosudite from the Hokuno Mine, Hokuno, Gifu Prefecture, Japan. Clays Clay Miner. 1976, 24, 142–148. [Google Scholar] [CrossRef]
- Shimoda, S. New Data for Tosudite. Clays Clay Miner. 1969, 17, 179–184. [Google Scholar] [CrossRef]
- Cruz, M.D.R.; Andreo, B. Tosudite in Very Low-Grade Metamorphic Graywackes from the Malaga Area (Betic Cordilleras, Spain). Eur. J. Mineral. 1997, 1391–1400. [Google Scholar] [CrossRef]
- Fries, D.; Lebouil, S.; Maurer, V.; Martin, C.; Baujard, C.; Ravier, G.; Boguais, R.; Amari, S. Lithium Extraction through Pilot Scale Tests under Real Geothermal Conditions of the Upper Rhine Graben. In Proceedings of the European Geothermal Congress, Berlin, Germany, 17–21 October 2022. [Google Scholar]
- Toba, A.-L.; Nguyen, R.T.; Cole, C.; Neupane, G.; Paranthaman, M.P. U.S. Lithium Resources from Geothermal and Extraction Feasibility. Resour. Conserv. Recycl. 2021, 169, 105514. [Google Scholar] [CrossRef]
- Lanari, P.; Wagner, T.; Vidal, O. A Thermodynamic Model for Di-Trioctahedral Chlorite from Experimental and Natural Data in the System MgO–FeO–Al2O3–SiO2–H2O: Applications to P–T Sections and Geothermometry. Contrib. Miner. Pet. 2014, 167, 968. [Google Scholar] [CrossRef]
- Drits, V. XRD Measurement of Mean Crystallite Thickness of Illite and Illite/Smectite: Reappraisal of the Kubler Index and the Scherrer Equation. Clays Clay Miner. 1997, 45, 461–475. [Google Scholar] [CrossRef]
- Clauer, N.; Liewig, N.; Ledesert, B.; Zwingmann, H. Thermal History of Triassic Sandstones from the Vosges Mountains-Rhine Graben Rifting Area, NE France, Based on K-Ar Illite Dating. Clay Min. 2008, 43, 363–379. [Google Scholar] [CrossRef]
- Favier, A.; Verati, C.; Lardeaux, J.-M.; Münch, P.; Renac, C.; Corsini, M.; Orange, F. 40Ar/39Ar Dating of High Temperature Geothermal Systems: First Attempt on Hydrothermally Altered Pyroxenes from the Saintes Archipelago (Lesser Antilles Arc, Guadeloupe). Chem. Geol. 2021, 581, 120401. [Google Scholar] [CrossRef]
- Guisseau, D.; Patrier Mas, P.; Beaufort, D.; Girard, J.P.; Inoue, A.; Sanjuan, B.; Petit, S.; Lens, A.; Genter, A. Significance of the Depth-Related Transition Montmorillonite-Beidellite in the Bouillante Geothermal Field (Guadeloupe, Lesser Antilles). Am. Mineral. 2007, 92, 1800–1813. [Google Scholar] [CrossRef]
- Hooijkaas, G.R.; Genter, A.; Dezayes, C. Deep-Seated Geology of the Granite Intrusions at the Soultz EGS Site Based on Data from 5km-Deep Boreholes. Geothermics 2006, 35, 484–506. [Google Scholar] [CrossRef]
- Duringer, P.; Aichholzer, C.; Orciani, S.; Genter, A. The Complete Lithostratigraphic Section of the Geothermal Wells in Rittershoffen (Upper Rhine Graben, Eastern France): A Key for Future Geothermal Wells. BSGF Earth Sci. Bull. 2019, 190, 13. [Google Scholar] [CrossRef]
- White, A.F.; Schulz, M.S.; Lowenstern, J.B.; Vivit, D.V.; Bullen, T.D. The Ubiquitous Nature of Accessory Calcite in Granitoid Rocks: Implications for Weathering, Solute Evolution, and Petrogenesis. Geochim. Cosmochim. Acta 2005, 69, 1455–1471. [Google Scholar] [CrossRef]
- Dorbath, L.; Cuenot, N.; Genter, A.; Frogneux, M. Seismic Response of the Fractured and Faulted Granite to Massive Water Injection at 5 Km Depth at Soultz-Sous-Forêts (France). Geophys. J. Int. 2009, 177, 653–675. [Google Scholar] [CrossRef]
- Glaas, C.; Patrier, P.; Vidal, J.; Beaufort, D.; Girard, J.-F.; Genter, A. Hydrothermal Alteration in the New Deep Geothermal Well GIL-1 (Strasbourg Area, France). In Proceedings of the World Geothermal Congress 2020, Reykjavik, Iceland, 24–27 October 2020. [Google Scholar]
- Pauwels, H.; Fouillac, C.; Fouillac, A.-M. Chemistry and Isotopes of Deep Geothermal Saline Fluids in the Upper Rhine Graben: Origin of Compounds and Water-Rock Interactions. Geochim. Cosmochim. Acta 1993, 57, 2737–2749. [Google Scholar] [CrossRef]
- Cathelineau, M.; Boiron, M.-C. Downward Penetration and Mixing of Sedimentary Brines and Dilute Hot Waters at 5km Depth in the Granite Basement at Soultz-Sous-Forêts (Rhine Graben, France). Comptes Rendus Geosci. 2010, 342, 560–565. [Google Scholar] [CrossRef]
- Vidal, J.; Genter, A.; Schmittbuhl, J. Pre- and Post-Stimulation Characterization of Geothermal Well GRT-1, Rittershoffen, France: Insights from Acoustic Image Logs of Hard Fractured Rock. Geophys. J. Int. 2016, 206, 845–860. [Google Scholar] [CrossRef]
- Smith, M.P.; Savary, V.; Yardley, B.W.D.; Valley, J.W.; Royer, J.J.; Dubois, M. The Evolution of the Deep Flow Regime at Soultz-Sous-Forêts, Rhine Graben, Eastern France: Evidence from a Composite Quartz Vein. J. Geophys. Res. 1998, 103, 27223–27237. [Google Scholar] [CrossRef]
- Dezayes, C.; Genter, A.; Valley, B. Structure of the Low Permeable Naturally Fractured Geothermal Reservoir at Soultz. Comptes Rendus Geosci. 2010, 342, 517–530. [Google Scholar] [CrossRef]
- Glaas, C.; Vidal, J.; Patrier, P.; Girard, J.-F.; Beaufort, D.; Petit, S.; Genter, A. How Do Secondary Minerals in Granite Help Distinguish Paleo- from Present-Day Permeable Fracture Zones? Joint Interpretation of SWIR Spectroscopy and Geophysical Logs in the Geothermal Wells of Northern Alsace. Geofluids 2019, 2019, 8231816. [Google Scholar] [CrossRef]
- Kling, T.; Schwarz, J.-O.; Wendler, F.; Enzmann, F.; Blum, P. Fracture Flow Due to Hydrothermally Induced Quartz Growth. Adv. Water Resour. 2017, 107, 93–107. [Google Scholar] [CrossRef]
- Bourdelle, F. Low-Temperature Chlorite Geothermometry and Related Recent Analytical Advances: A Review. Minerals 2021, 11, 130. [Google Scholar] [CrossRef]
- Taillefer, A.; Guillou-Frottier, L.; Soliva, R.; Magri, F.; Lopez, S.; Courrioux, G.; Millot, R.; Ladouche, B.; Le Goff, E. Topographic and Faults Control of Hydrothermal Circulation Along Dormant Faults in an Orogen. Geochem. Geophys. Geosyst. 2018, 19, 4972–4995. [Google Scholar] [CrossRef]
- Rowland, J.V.; Sibson, R.H. Structural Controls on Hydrothermal Flow in a Segmented Rift System, Taupo Volcanic Zone, New Zealand. Geofluids 2004, 4, 259–283. [Google Scholar] [CrossRef]
- Raies, I.; Kohler, E.; Fleury, M.; Pedel, N.; Ledésert, B. Formation Damage Induced by Clay Colloids Deposition in Triassic Clastic Geothermal Fields: Insights from an Experimental Approach. Appl. Clay Sci. 2023, 234, 106868. [Google Scholar] [CrossRef]
- Du, X.; Ye, X.; Zhang, X. Clogging of Saturated Porous Media by Silt-Sized Suspended Solids under Varying Physical Conditions during Managed Aquifer Recharge. Hydrol. Process. 2018, 32, 2254–2262. [Google Scholar] [CrossRef]
- Raies, I.; Kohler, E.; Fleury, M.; Pedel, N.; Ledésert, B. Clay-Induced Permeability Decline in Sandstone Reservoirs: Insights from a Coupled NMR-SEM Experimental Approach. Geothermics 2023, 114, 102784. [Google Scholar] [CrossRef]
- Adebayo, A.R.; Bageri, B.S. A Simple NMR Methodology for Evaluating Filter Cake Properties and Drilling Fluid-Induced Formation Damage. J. Pet. Explor. Prod. Technol. 2020, 10, 1643–1655. [Google Scholar] [CrossRef]
- Opuwari, M.; Ubong, M.O.; Jamjam, S.; Magoba, M. The Impact of Detrital Minerals on Reservoir Flow Zones in the Northeastern Bredasdorp Basin, South Africa, Using Core Data. Minerals 2022, 12, 1009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledésert, B.A. Application of Minerals for the Characterization of Geothermal Reservoirs and Cap Rock in Intracontinental Extensional Basins and Volcanic Islands in the Context of Subduction. Minerals 2024, 14, 263. https://doi.org/10.3390/min14030263
Ledésert BA. Application of Minerals for the Characterization of Geothermal Reservoirs and Cap Rock in Intracontinental Extensional Basins and Volcanic Islands in the Context of Subduction. Minerals. 2024; 14(3):263. https://doi.org/10.3390/min14030263
Chicago/Turabian StyleLedésert, Béatrice A. 2024. "Application of Minerals for the Characterization of Geothermal Reservoirs and Cap Rock in Intracontinental Extensional Basins and Volcanic Islands in the Context of Subduction" Minerals 14, no. 3: 263. https://doi.org/10.3390/min14030263
APA StyleLedésert, B. A. (2024). Application of Minerals for the Characterization of Geothermal Reservoirs and Cap Rock in Intracontinental Extensional Basins and Volcanic Islands in the Context of Subduction. Minerals, 14(3), 263. https://doi.org/10.3390/min14030263