A Highly Resolved Speleothem δ13C Record from Central China and Its Manifestation on Multiple Time Scales during the Last Glacial
Abstract
:1. Introduction
2. Cave Setting and Study Sample
3. Methods
4. Results
4.1. Age Model and Growth Rate
4.2. The δ13C and δ18O Records
4.3. 238U, δ234Uinitial, and 232Th
5. Discussion
5.1. Interpretation of Stalagmite δ13C at DDH Cave
5.2. The Phase Relationship between DDH-B15 δ13C and δ18O on Multiple Timescales
5.3. Variation in Local Hydroclimate and Its Driving Forces
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, X.; Li, W.; Xu, X.; Zhao, X. Spatial-Temporal Evolution, Trade-Offs and Synergies of Ecosystem Services in the Qinba Mountains. Sustainability 2023, 15, 10352. [Google Scholar] [CrossRef]
- Xie, S.; Hu, C.; Gu, Y.; Huang, X.; Zhu, Z.; Huang, J. Paleohydrological Variation since 13ka BP in Middle Yangtze Region. Earth Sci. 2015, 40, 198–205. [Google Scholar]
- Yuan, D.; Cheng, H.; Edwards, R.L.; Dykoski, C.A.; Kelly, M.J.; Zhang, M.; Qing, J.; Lin, Y.; Wang, Y.; Wu, J.; et al. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 2004, 304, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Ai, S.; Wang, X.; Wang, Y.; Kong, X.; Yuan, D.; Zhang, M.; Lin, Y.; Qin, J.; Ran, J. Oxygen isotope records of stalagmites from southern China. Quat. Sci. 2005, 25, 157–163. [Google Scholar]
- Zhou, H.; Zhao, J.-x.; Feng, Y.; Chen, Q.; Mi, X.; Shen, C.-C.; He, H.; Yang, L.; Liu, S.; Chen, L.; et al. Heinrich event 4 and Dansgaard/Oeschger events 5-10 recorded by high-resolution speleothem oxygen isotope data from central China. Quat. Res. 2014, 82, 394–404. [Google Scholar] [CrossRef]
- Hu, C.; Henderson, G.M.; Huang, J.; Xie, S.; Sun, Y.; Johnson, K.R. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 2008, 266, 221–232. [Google Scholar] [CrossRef]
- Xie, S.C.; Evershed, R.P.; Huang, X.Y.; Zhu, Z.M.; Pancost, R.D.; Meyers, P.A.; Gong, L.F.; Hu, C.Y.; Huang, J.H.; Zhang, S.H.; et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China. Geology 2013, 41, 827–830. [Google Scholar] [CrossRef]
- Chen, C.-J.; Huang, R.; Yuan, D.-X.; Zhang, J.; Cheng, H.; Ning, Y.-F.; Yu, T.-L.; Shen, C.-C.; Edwards, R.L.; Long, X.-Y.; et al. Karst hydrological changes during the Late-Holocene in Southwestern China. Quat. Sci. Rev. 2021, 258, 106865. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, P.; Zhang, L.; Li, X.; Gao, T.; Wang, H.; Zhang, H.; Li, H.; Cheng, H.; Edwards, R.L. Highly resolved δ13C and trace element ratios of precisely dated stalagmite from northwestern China: Hydroclimate reconstruction during the last two millennia. Quat. Sci. Rev. 2022, 291, 107473. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, H.; Qin, S.; An, Z. Climatic and Anthropogenic Impacts on delta C-13 Variations in a Stalagmite from Central China. Terr. Atmos. Ocean. Sci. 2013, 24, 333–343. [Google Scholar] [CrossRef]
- Voarintsoa, N.R.G.; Therre, S. Using the triple proxy δ13C–radiocarbon–major and trace elements to understand stalagmite stable carbon composition in Madagascar. Chem. Geol. 2022, 608, 121044. [Google Scholar] [CrossRef]
- Lechleitner, F.A.; Day, C.C.; Kost, O.; Wilhelm, M.; Haghipour, N.; Henderson, G.M.; Stoll, H.M. Stalagmite carbon isotopes suggest deglacial increase in soil respiration in western Europe driven by temperature change. Clim. Past 2021, 17, 1903–1918. [Google Scholar] [CrossRef]
- Mattey, D.P.; Atkinson, T.C.; Barker, J.A.; Fisher, R.; Latin, J.P.; Durrell, R.; Ainsworth, M. Carbon dioxide, ground air and carbon cycling in Gibraltar karst. Geochim. Et Cosmochim. Acta 2016, 184, 88–113. [Google Scholar] [CrossRef]
- Breecker, D.O.; Payne, A.E.; Quade, J.; Banner, J.L.; Ball, C.E.; Meyer, K.W.; Cowan, B.D. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation. Geochim. Et Cosmochim. Acta 2012, 96, 230–246. [Google Scholar] [CrossRef]
- Novello, V.F.; William da Cruz, F.; Vuille, M.; Pereira Silveira Campos, J.L.; Stríkis, N.M.; Apaéstegui, J.; Moquet, J.S.; Azevedo, V.; Ampuero, A.; Utida, G.; et al. Investigating δ13C values in stalagmites from tropical South America for the last two millennia. Quat. Sci. Rev. 2021, 255, 106822. [Google Scholar] [CrossRef]
- Frisia, S.; Fairchild, I.J.; Fohlmeister, J.; Miorandi, R.; Spoetl, C.; Borsato, A. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochim. Et Cosmochim. Acta 2011, 75, 380–400. [Google Scholar] [CrossRef]
- Genty, D.; Baker, A.; Massault, M.; Proctor, C.; Gilmour, M.; Pons-Branchu, E.; Hamelin, B. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for C-13 variations in speleothems. Geochim. Et Cosmochim. Acta 2001, 65, 3443–3457. [Google Scholar] [CrossRef]
- Genty, D.; Blamart, D.; Ouahdi, R.; Gilmour, M.; Baker, A.; Jouzel, J.; Van-Exter, S. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 2003, 421, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Riechelman, D.F.C.; Fohlmeister, J.; Kluge, T.; Jochum, K.P.; Richter, D.K.; Deininger, M.; Friedrich, R.; Frank, N.; Scholz, D. Evaluating the potential of tree-ring methodology for cross-dating of three annually laminated stalagmites from Zoolithencave (SE Germany). Quat. Geochronol. 2019, 52, 37–50. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Y.; Wang, Q.; Wu, J.; Shao, Q.; Zhang, Z.; Yang, S.; Kong, X.; Edwards, R.L. East Asian summer monsoon climates and cave hydrological cycles over Dansgaard-Oeschger events 14 to 11 revealed by a new stalagmite record from Hulu Cave. Quat. Res. 2019, 92, 725–737. [Google Scholar] [CrossRef]
- Cosford, J.; Qing, H.; Mattey, D.; Eglington, B.; Zhang, M. Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 280, 235–244. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Shao, Q.; Liang, Y.; Zhang, Z.; Kong, X. Millennial-scale Asian monsoon variability during the late Marine Isotope Stage 6 from Hulu Cave, China. Quat. Res. 2018, 90, 394–405. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Cheng, H.; Edwards, R.L.; Kong, X.; Li, T.Y. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China. Quat. Res. 2016, 85, 333–346. [Google Scholar] [CrossRef]
- Fleitmann, D. Timing and climatic expression of Dansgaard-Oeschger events in stalagmites from Sofular Cave, Turkey. Quat. Int. 2012, 279–280, 147. [Google Scholar] [CrossRef]
- Chen, Q.; Cheng, X.; Cai, Y.; Luo, Q.; Zhang, J.; Tang, L.; Hu, Y.; Ren, J.; Wang, P.; Wang, Y.; et al. Asian Summer Monsoon Changes Inferred From a Stalagmite δ18O Record in Central China During the Last Glacial Period. Front. Earth Sci. 2022, 10, 863829. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, X.; Su, J. Analysis on Climatic Characteristics of Ningqiang County in Recent 51 Years. J. Shaanxi Meteorol. 2010, 3, 18–21. [Google Scholar]
- Edwards, R.L.; Chen, J.H.; Wasserburg, G.J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 1987, 81, 175–192. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Shen, C.-C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Wang, Y.; Kong, X.; Spoetl, C.; et al. Improvements in Th-230 dating, Th-230 and U-234 half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 2013, 371, 82–91. [Google Scholar] [CrossRef]
- Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; Essling, A.M. Precision Measurement of Half-Lives and Specific Activities of U-235 and U-238. Phys. Rev. C 1971, 4, 1889–1906. [Google Scholar] [CrossRef]
- Hendy, C.H.J.G.E.C.A. The isotopic geochemistry of speleothems; 1, The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochim. Et Cosmochim. Acta 1971, 35, 801–824. [Google Scholar] [CrossRef]
- Meyer, K.W.; Feng, W.; Breecker, D.O.; Banner, J.L.; Guilfoyle, A. Interpretation of speleothem calcite δ 13 C variations: Evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas. Geochim. Et Cosmochim. Acta 2014, 142, 281–298. [Google Scholar] [CrossRef]
- Dorale, J.A.; Gonzalez, L.A.; Reagan, M.K.; Pickett, D.A.; Murrell, M.T.; Baker, R.G. A High-Resolution Record of Holocene Climate Change in Speleothem Calcite from Cold Water Cave, Northeast Iowa. Science 1992, 258, 1626–1630. [Google Scholar] [CrossRef] [PubMed]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Song, M.; Dodson, J.; Lu, F.; Shi, G.; Yan, H. A continuous paleorecord of vegetation and environmental change from Erxianyan Wetland over the past 60,000 years in central China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 613, 111399. [Google Scholar] [CrossRef]
- Baldini, J.U.L.; McDermott, F.; Baker, A.; Baldini, L.M.; Mattey, D.P.; Railsback, L.B. Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England. Earth Planet. Sci. Lett. 2005, 240, 486–494. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Smith, C.L.; Baker, A.; Fuller, L.; Spotl, C.; Mattey, D.; McDermott, F. Modification and preservation of environmental signals in speleothems. Earth-Sci. Rev. 2006, 75, 105–153. [Google Scholar] [CrossRef]
- Lechleitner, F.A.; Baldini, J.U.L.; Breitenbach, S.F.M.; Fohlmeister, J.; McIntyre, C.; Goswami, B.; Jamieson, R.A.; van der Voort, T.S.; Prufer, K.; Marwan, N.; et al. Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite. Geochim. Et Cosmochim. Acta 2016, 194, 233–252. [Google Scholar] [CrossRef]
- Demeny, A.; Kern, Z.; Czuppon, G.; Nemeth, A.; Leel-Ossy, S.; Siklosy, Z.; Lin, K.; Hu, H.-M.; Shen, C.-C.; Vennemann, T.W.; et al. Stable isotope compositions of speleothems from the last interglacial—Spatial patterns of climate fluctuations in Europe. Quat. Sci. Rev. 2017, 161, 68–80. [Google Scholar] [CrossRef]
- Markowska, M.; Fohlmeister, J.; Treble, P.C.; Baker, A.; Hua, Q. Modelling the 14C bomb-pulse in young speleothems using a soil carbon continuum model. Geochim. Et Cosmochim. Acta 2019, 261, 342–367. [Google Scholar] [CrossRef]
- Mattey, D.; Lowry, D.; Duffet, J.; Fisher, R.; Hodge, E.; Frisia, S. A 53 year seasonally resolved oxygen and carbon isotope record from a modem Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth Planet. Sci. Lett. 2008, 269, 80–95. [Google Scholar] [CrossRef]
- Spotl, C.; Fairchild, I.J.; Tooth, A.F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochim. Et Cosmochim. Acta 2005, 69, 2451–2468. [Google Scholar] [CrossRef]
- Baker, A.; Ito, E.; Smart, P.L.; Mcewan, R.F. Elevated and variable values of 13C in speleothems in a British cave system. Chem. Geol. 1997, 136, 263–270. [Google Scholar] [CrossRef]
- Duan, W.; Tan, M.; Ma, Z.; Cheng, H. The palaeoenvironmental significance of δ13C of stalagmite BW-1 from Beijing, China during Younger Dryas intervals inferred from the grey level profile. Boreas 2014, 43, 243–250. [Google Scholar] [CrossRef]
- Yang, S.; Chen, S.; Wang, Y.; Shao, Q.; Tan, L.; Zhang, Z.; Zhao, K.; Wang, Z.; Liang, Y.; Zhai, X.; et al. Millennial-scale changes in the Asian monsoon during the MIS12 period as recorded by a Chinese stalagmite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 626, 111698. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, M.; Cheng, H.; Wu, X.; Edwards, R.L. Centennial-scale monsoon climate fluctuations from a stalagmite record during the mid-Holocene Epoch in Fulu cave of Huaping, Yunnan, China. Environ. Earth Sci. 2015, 74, 929–935. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Singh, A.K.; Joshi, L.M.; Dhaila, B.S. Precipitation variability in the Indian Central Himalaya during last ca. 4000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies. Quat. Int. 2015, 371, 244–253. [Google Scholar] [CrossRef]
- Springer, G.S.; Rowe, H.D.; Hardt, B.; Edwards, R.L.; Cheng, H. Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Fleitmann, D.; Haldon, J.; Bradley, R.S.; Burns sj Cheng, H.; Edwards, R.L.; Raible, C.C.; Jacobson, M.; Matter, A. Droughts and societal change: The environmental context for the emergence of Islam in late Antique Arabia. Science 2022, 376, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Arnone, J.A., III; Verburg, P.S.J.; Johnson, D.W.; Larsen, J.D.; Jasoni, R.L.; Lucchesi, A.J.; Batts, C.M.; von Nagy, C.; Coulombe, W.G.; Schorran, D.E.; et al. Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year. Nature 2008, 455, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Gruenzweig, J.M.; Hemming, D.; Maseyk, K.; Lin, T.; Rotenberg, E.; Raz-Yaseef, N.; Falloon, P.D.; Yakir, D. Water limitation to soil CO2 efflux in a pine forest at the semiarid “timberline”. J. Geophys. Res.-Biogeosciences 2009, 114. [Google Scholar] [CrossRef]
- Fohlmeister, J.; Voarintsoa, N.R.G.; Lechleitner, F.A.; Boyd, M.; Brandtstaetter, S.; Jacobson, M.J.; Oster, J.L. Main controls on the stable carbon isotope composition of speleothems. Geochim. Et Cosmochim. Acta 2020, 279, 67–87. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Liu, D.; Kong, X.; Fang, Y. Correlation between oxygen and carbon isotopes of speleothems from Tian’e Cave, central China: Insights into the phase relationship between Asian summer and winter monsoons. J. Asian Earth Sci. 2019, 180, 103884. [Google Scholar] [CrossRef]
- Porter, S.; Zhisheng, A. Correlation between Climate Events in the North-Atlantic and China during Last Glaciation. Nature 1995, 375, 305–308. [Google Scholar] [CrossRef]
- Wu, Y.; Li, T.-Y.; Yu, T.-L.; Shen, C.-C.; Chen, C.-J.; Zhang, J.; Li, J.-Y.; Wang, T.; Huang, R.; Xiao, S.-Y. Variation of the Asian summer monsoon since the last glacial-interglacial recorded in a stalagmite from southwest China. Quat. Sci. Rev. 2020, 234, 106261. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Wang, Y.; Wang, Y.; Cheng, H.; Kong, X.; Duan, F. A detailed East Asian monsoon history surrounding the ‘Mystery Interval’ derived from three Chinese speleothem records. Quat. Res. 2017, 82, 154–163. [Google Scholar] [CrossRef]
- Zhang, H.; Griffiths, M.L.; Chiang, J.C.H.; Kong, W.; Wu, S.; Atwood, A.; Huang, J.; Cheng, H.; Ning, Y.; Xie, S. East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science 2018, 362, 580. [Google Scholar] [CrossRef] [PubMed]
- Berger, A. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. J. Atmos. Sci. 1978, 35, 2362–2367. [Google Scholar] [CrossRef]
- McManus, J.F.; Francois, R.; Gherardi, J.M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.G.; McManus, J.F.; Curry, W.B.; Roberts, N.L.; Piotrowski, A.M.; Keigwin, L.D. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 2016, 353, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Yang, Z.; Liang, Y.; Yang, S.; Shao, Q.; Zhang, W.; Huang, W. Century-scale climatic oscillations during the Last Glacial Maximum revealed by stalagmite isotopic records from Longfugong Cave, China. Environ. Earth Sci. 2020, 79, 517. [Google Scholar] [CrossRef]
- Suess, H.E. The Radiocarbon Record in Tree Rings of the Last 8000 Years. Radiocarbon 1980, 22, 200–209. [Google Scholar] [CrossRef]
- Zhu, C.; Ma, C.M.; YUS, Y.; Tang, L.Y.; Zhang, W.Q.; Lu, X.F. A detailed pollen record of vegetation and climate changes in Central China during the past 16 000 years. Boreas 2010, 39, 69–76. [Google Scholar] [CrossRef]
- Xiao, J.; Shang, Z.; Shu, Q.; Yin, J.; Wu, X. The vegetation feature and palaeoenvironment significance in the mountainous interior of southern China from the Last Glacial Maximum. Sci. China Earth Sci. 2017, 61, 71–81. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; He, Y.; Kong, X.; An, Z.; Wu, J.; Kelly, M.J.; Dykoski, C.A.; Li, X. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Jiang, H.; Seidenkrantz, M.-S.; Muscheler, R.; Zhang, X.; Knudsen, M.F.; Olsen, J.; Knudsen, K.L.; Zhang, W. Solar forcing as an important trigger for West Greenland sea-ice variability over the last millennium. Quat. Sci. Rev. 2016, 131, 148–156. [Google Scholar] [CrossRef]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on north Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cheng, H.; Yang, Y.; Liu, W.; Zhang, H.; Li, X.; Li, H.; Ait-Brahim, Y.; Perez-Mejias, C.; Qu, X. Role of the Summer Monsoon Variability in the Collapse of the Ming Dynasty: Evidences from Speleothem Records. Geophys. Res. Lett. 2021, 48, e2021GL093071. [Google Scholar] [CrossRef]
- Cheng, H.; Spoetl, C.; Breitenbach, S.F.M.; Sinha, A.; Wassenburg, J.A.; Jochum, K.P.; Scholz, D.; Li, X.; Yi, L.; Peng, Y.; et al. Climate variations of Central Asia on orbital to millennial timescales. Sci. Rep. 2016, 6, 36975. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, S.; Wang, Y.; Zhao, K.; Liang, Y.; Li, X.; Zhang, J.; Yang, S.; Zhang, Z.; Chen, G.; et al. Climatic implication of stalagmite δ13C in the middle reaches of the Yangtze River since the Last Glacial Maximum and coupling with δ18O. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 608, 111290. [Google Scholar] [CrossRef]
- He, Y.; Zhao, C.; Zheng, Z.; Liu, Z.; Wang, N.; Li, J.; Cheddadi, R. Peatland evolution and associated environmental changes in central China over the past 40,000 years. Quat. Res. 2017, 84, 255–261. [Google Scholar] [CrossRef]
- Finkel, R.C.; Nishiizumi, K. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3-40 ka. J. Geophys. Res. Ocean. 1997, 102, 26699–26706. [Google Scholar] [CrossRef]
- Deplazes, G.; Lueckge, A.; Peterson, L.C.; Timmermann, A.; Hamann, Y.; Hughen, K.A.; Roehl, U.; Laj, C.; Cane, M.A.; Sigman, D.M.; et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 2013, 6, 213–217. [Google Scholar] [CrossRef]
- Emile-Geay, J.; Cane, M.; Seager, R.; Kaplan, A.; Almasi, P. El Nino as a mediator of the solar influence on climate. Paleoceanography 2007, 22. [Google Scholar] [CrossRef]
- Duan, F.; Zhang, Z.; Wang, Y.; Chen, J.; Liao, Z.; Chen, S.; Shao, Q.; Zhao, K. Hydrological variations in central China over the past millennium and their links to the tropical Pacific and North Atlantic oceans. Clim. Past 2020, 16, 475–485. [Google Scholar] [CrossRef]
- Chiang, J.C.H.; Bitz, C.M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim. Dyn. 2005, 25, 477–496. [Google Scholar] [CrossRef]
- Tan, L.; Shen, C.-C.; Lowemark, L.; Chawchai, S.; Edwards, R.L.; Cai, Y.; Breitenbach, S.F.M.; Cheng, H.J.; Chou, Y.-C.; Duerrast, H.; et al. Rainfall variations in central Indo-Pacific over the past 2,700 y. Proc. Natl. Acad. Sci. USA 2019, 116, 17201–17206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, H.; Spoetl, C.; Cai, Y.; Sinha, A.; Tan, L.; Yi, L.; Yan, H.; Kathayat, G.; Ning, Y.; et al. A 200-year annually laminated stalagmite record of precipitation seasonality in southeastern China and its linkages to ENSO and PDO. Sci. Rep. 2018, 8, 12344. [Google Scholar] [CrossRef] [PubMed]
Sample | Depth | 238U | 232Th | 230Th/232Th | δ234U * | 230Th/238U | 230Th Age (yr) | 230Th Age (yr) | δ234Uinitial ** | 230Th Age (yr BP) *** | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number | mm | (ppb) | (ppt) | (Atomic × 10−6) | (Measured) | (Activity) | (Uncorrected) | (Corrected) | (Corrected) | (Corrected) | |||||||||
DDH-B15 | 30 | 956.2 | ±3.6 | 516 | ±11 | 24425 | ±545 | 4436.4 | ±10.8 | 0.7999 | ±0.0038 | 16997 | ±94 | 16995 | ±94 | 4654 | ±11 | 16922 | ±94 |
DDH-B15-70 | 70 | 898.4 | ±3.3 | 157 | ±5 | 90503 | ±3030 | 4200.3 | ±11.9 | 0.9563 | ±0.0043 | 21579 | ±118 | 21578 | ±118 | 4464 | ±13 | 21505 | ±118 |
DDH-B15-80 | 80 | 990.8 | ±4.4 | 537 | ±12 | 32583 | ±727 | 4357.9 | ±12.4 | 1.0703 | ±0.0054 | 23594 | ±142 | 23591 | ±142 | 4658 | ±13 | 23518 | ±142 |
DDH-B15-83 | 83 | 985.2 | ±4.9 | 220 | ±7 | 83260 | ±2509 | 4414.1 | ±15.6 | 1.1286 | ±0.0064 | 24713 | ±171 | 24712 | ±171 | 4733 | ±17 | 24639 | ±171 |
DDH-B15-115 | 115 | 858.5 | ±3.5 | 117 | ±4 | 156823 | ±5552 | 4162.2 | ±12.1 | 1.2937 | ±0.0062 | 30273 | ±180 | 30272 | ±180 | 4533 | ±13 | 30199 | ±180 |
DDH-B15-130 | 130 | 1036.4 | ±4.4 | 139 | ±5 | 162628 | ±6046 | 4088.0 | ±11.2 | 1.3188 | ±0.0069 | 31436 | ±199 | 31435 | ±199 | 4467 | ±12 | 31362 | ±199 |
DDH-B15-145 | 145 | 875.4 | ±2.0 | 216 | ±6 | 88101 | ±2600 | 3952.9 | ±6.2 | 1.3209 | ±0.0038 | 32462 | ±114 | 32461 | ±114 | 4332 | ±7 | 32388 | ±114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Cheng, X.; Deng, L.; He, K.; Zhang, W.; Xue, G.; Zhang, Z.; Ma, L.; Wang, G.; Cheng, H.; et al. A Highly Resolved Speleothem δ13C Record from Central China and Its Manifestation on Multiple Time Scales during the Last Glacial. Minerals 2024, 14, 450. https://doi.org/10.3390/min14050450
Chen Q, Cheng X, Deng L, He K, Zhang W, Xue G, Zhang Z, Ma L, Wang G, Cheng H, et al. A Highly Resolved Speleothem δ13C Record from Central China and Its Manifestation on Multiple Time Scales during the Last Glacial. Minerals. 2024; 14(5):450. https://doi.org/10.3390/min14050450
Chicago/Turabian StyleChen, Qingmin, Xing Cheng, Li Deng, Kaikai He, Wenshuo Zhang, Gang Xue, Zeke Zhang, Le Ma, Gaohong Wang, Hai Cheng, and et al. 2024. "A Highly Resolved Speleothem δ13C Record from Central China and Its Manifestation on Multiple Time Scales during the Last Glacial" Minerals 14, no. 5: 450. https://doi.org/10.3390/min14050450
APA StyleChen, Q., Cheng, X., Deng, L., He, K., Zhang, W., Xue, G., Zhang, Z., Ma, L., Wang, G., Cheng, H., & Edwards, R. L. (2024). A Highly Resolved Speleothem δ13C Record from Central China and Its Manifestation on Multiple Time Scales during the Last Glacial. Minerals, 14(5), 450. https://doi.org/10.3390/min14050450