The Measurement Reliability of δ13C of Dissolved Organic Carbon: A Validation for Speleothem Samples
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Fidelity of δ13CDOC
3.2. The δ13CDOC Values and Different Experimental Conditions
4. Discussion
4.1. The Possibilities of Contamination
4.2. The Implications of This Method for Speleothem δ13CDOC Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Cerling, T.E.; Harris, J.M.; MacFadden, B.J.; Leakey, M.G.; Quade, J.; Eisenmann, V.; Ehleringer, J.R. Global vegetation change through the Miocene/Pliocene boundary. Nature 1997, 389, 153–158. [Google Scholar] [CrossRef]
- Boutton, T.W. Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. In Mass Spec-Trometry of Soils; Boutton, T.W., Yamasaki, S., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 47–82. [Google Scholar]
- Cheng, H.; Edwards, R.L.; Sinha, A.; Spotl, C.; Yi, L.; Chen, S.; Kelly, M.; Kathayat, G.; Wang, X.; Li, X.; et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 2016, 534, 640–646. [Google Scholar] [CrossRef]
- Xue, G.; Cai, Y.; Ma, L.; Cheng, X.; Cheng, H.; Edwards, R.L.; Li, D.; Tan, L. A new speleothem record of the penultimate deglacial: Insights into spatial variability and centennial-scale instabilities of East Asian monsoon. Quat. Sci. Rev. 2019, 210, 113–124. [Google Scholar] [CrossRef]
- Bajo, P.; Drysdale, R.N.; Woodhead, J.D.; Hellstrom, J.C.; Hodell, D.; Ferretti, P.; Voelker, A.H.L.; Zanchetta, G.; Rodrigues, T.; Wolff, E.; et al. Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science 2020, 367, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Blyth, A.J.; Hartland, A.; Baker, A. Organic proxies in speleothems a new developments, advantages and limitations. Quat. Sci. Rev. 2016, 149, 1–17. [Google Scholar] [CrossRef]
- Blyth, A.J.; Smith, C.I.; Drysdale, R.N. A new perspective on the δ13C signal preserved in speleothems using LC-IRMS analysis of bulk organic matter and compound specific stable isotope analysis. Quat. Sci. Rev. 2013, 75, 143–149. [Google Scholar] [CrossRef]
- Lechleitner, F.A.; Lang, S.Q.; Haghipour, N.; McIntyre, C.; Baldini, J.U.; Prufer, K.M.; Eglinton, T.I. Towards Organic Carbon Isotope Records from Stalagmites: Coupled δ13C and 14C Analysis Using Wet Chemical Oxidation. Radiocarbon 2019, 61, 749–764. [Google Scholar] [CrossRef]
- Wang, C.; Bendle, J.A.; Greene, S.E.; Griffiths, M.L.; Huang, J.; Moossen, H.; Zhang, H.; Ashley, K.; Xie, S. Speleothem biomarker evidence for a negative terrestrial lfeedback on climate during Holocene warm periods. Earth Planet Sci. Lett. 2019, 525, 115754. [Google Scholar] [CrossRef]
- Xue, G.; Cai, Y.; Cheng, P.; Lechleitner, F.A.; Zhang, H.; Zheng, Y.; Wei, Y.; Huang, S.; Yang, L.; Cheng, X.; et al. The climate control of soil organic carbon dynamics inferred from speleothem radiocarbon ages. Geophys. Res. Lett. 2023, 50, e2022GL101875. [Google Scholar] [CrossRef]
- Neff, J.C.; Asner, G.P. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model. Ecosystems 2001, 4, 29–48. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Wan, Z.; Zuo, Y.; He, L.; Li, D.; Yuan, F.; Wang, N.; Liu, J.; Song, Y.; et al. Soil dissolved organic carbon in terrestrial ecosystems: Global budget, spatial distribution and controls. Glob. Ecol. Biogeogr. 2020, 29, 2159–2175. [Google Scholar] [CrossRef]
- Lang, S.Q.; Bernasconi, S.M.; Früh-Green, G.L. Stable isotope analysis of organic carbon in small (µg C) samples and dissolved organic matter using a GasBench preparation device. Rapid Commun. Mass Spectrom. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- Xue, G.; Cai, Y.J.; Cheng, P.; Ma, L.; Cheng, X. Progress and challenge of organic carbon isotope composition research in stalagmite. J. Earth Environ. 2019, 10, 105–115, (Chinese edition with English abstract). [Google Scholar]
- Pylypiw, H.M.; Grether, M.T. Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods. J. Chromatogr. 2000, A883, 299–304. [Google Scholar] [CrossRef] [PubMed]
- An, X.C.; Hu, Y.X.; Wang, N.; Zhou, X.Y.; Liu, Z.Y. Continuous juice concentration by integrating forward osmosis with membrane distillation using potassium sorbate preservative as a draw solute. J. Membr. Sci. 2019, 573, 192–199. [Google Scholar] [CrossRef]
Sample Code | δ13CDOC (‰) | Gas Pressure | Yield | Mass of Carbon (μg) | Remarks |
---|---|---|---|---|---|
1 | −26.4 | 3.7 | 118.1 | 41.4 | no acid, and the reaction time is 72 h (20 March 2019) |
2 | −26.6 | 5.2 | 164.5 | 58.5 | |
3 | −26.5 | 4.6 | 146.3 | 51.2 | |
4 | −26.7 | 15.3 | 143.7 | 171.6 | with acid, and the reaction time is 0 h (13 June 2020) |
5 | −26.7 | 10.8 | 94.6 | 122.0 | |
6 | −26.7 | 3.3 | 104.9 | 37.1 | |
7 | −26.6 | 9.9 | 173.6 | 111.5 | |
8 | −26.7 | 8.7 | 198 | 97.7 | |
9 | −26.5 | 12.5 | 171.1 | 140.3 | with acid, and the reaction time is 48 h (13 June 2020) |
10 | −26.6 | 8.7 | 120.2 | 97.4 | |
11 | −26.5 | 11.1 | 107.3 | 124.7 | |
12 | −26.6 | 0.5 | 13.7 | 5.1 | |
13 | −26.5 | 6.1 | 195.4 | 68.9 | with acid, and the reaction time is 0 h (21 June 2020) |
14 | −26.6 | 8.4 | 266.2 | 94.1 | |
15 | −26.5 | 6.0 | 190.5 | 67.2 | with acid, and the reaction time is 48 h (21 June 2020) |
16 | −26.6 | 6.5 | 205.5 | 73.0 | |
17 | −26.8 | 5.8 | 185 | 65.3 | |
18 | −26.7 | 7.6 | 243.5 | 86.0 | no acid, and the reaction time is 48 h (21 June 2020) |
19 | −26.6 | 5.7 | 180.2 | 63.7 | |
20 | −26.7 | 5.4 | 169 | 60.2 | |
Average | −26.6 | ||||
SD (1σ) | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, G.; Cai, Y.; Cheng, P.; Ma, L.; Cheng, X.; Huang, S.; Lu, Y. The Measurement Reliability of δ13C of Dissolved Organic Carbon: A Validation for Speleothem Samples. Minerals 2024, 14, 454. https://doi.org/10.3390/min14050454
Xue G, Cai Y, Cheng P, Ma L, Cheng X, Huang S, Lu Y. The Measurement Reliability of δ13C of Dissolved Organic Carbon: A Validation for Speleothem Samples. Minerals. 2024; 14(5):454. https://doi.org/10.3390/min14050454
Chicago/Turabian StyleXue, Gang, Yanjun Cai, Peng Cheng, Le Ma, Xing Cheng, Shouyi Huang, and Yanbin Lu. 2024. "The Measurement Reliability of δ13C of Dissolved Organic Carbon: A Validation for Speleothem Samples" Minerals 14, no. 5: 454. https://doi.org/10.3390/min14050454
APA StyleXue, G., Cai, Y., Cheng, P., Ma, L., Cheng, X., Huang, S., & Lu, Y. (2024). The Measurement Reliability of δ13C of Dissolved Organic Carbon: A Validation for Speleothem Samples. Minerals, 14(5), 454. https://doi.org/10.3390/min14050454