Igneous Diversity of the Early Martian Crust
Abstract
:1. Introduction
2. Igneous Diversity in Martian Datasets
2.1. Martian Meteorites
2.2. Rover Analyses
2.3. Remote Sensing Observations
3. Discussion
3.1. Formation of Alkali and Sub-Alkali Evolved Rocks in Gale Crater
3.2. Composition of the Ancient Martian Crust
3.3. Perspectives on Future Missions
3.3.1. Locations to Explore the Early Martian Crust
3.3.2. Characterization of the Petrology of the Martian Crust
Model | Predicted Properties | ||
---|---|---|---|
Structure | Petrology | ||
Primary evolved crust | Partial magma ocean | Heterogenous crust at a global scale with evolved and mafic components | Mafic rocks and evolved rocks with high Mg#; REE pattern relatively flat |
Crystallization of enriched component within global magma ocean | Igneous rocks rich in incompatible elements, i.e., K, P, and incompatible REE similar to lunar KREEP | ||
Secondary evolved crust | Re-melting of a hydrated basaltic crust through hot melts extracted from a mantle plume, and fractional crystallization | Large- to global-scale evolved crust | Sub-alkaline calc–alkaline intermediate and felsic rocks with water-bearing minerals such as mica, amphibole, and OH-apatite. Possibly granitic/dioritic intrusions. |
Re-melting of an anhydrous basaltic crust through hot melts extracted from a mantle plume, and fractional crystallization | Alkaline intermediate and felsic rocks without hydrated minerals. Possibly monzonitic or alkali–granitic rocks. Possible LCP cumulates if fractional crystallization occurs. | ||
Re-melting of hydrated basaltic crust through tectonic processes (initiation of proto-plate tectonics) and fractional crystallization | - Regional patterns of intermediate to felsic domes surrounded by mafic terrains or vice versa - Potential patterns of paleomagnetism indicative of crustal spreading/subduction centers (requires Mars to have had alternating polarity) - Extension and compression faults associated with regional petrographic dome pattern or paleomagnetic patterns | Sub-alkaline evolved components including calc–alkaline rocks, granites, and granodiorites | |
Re-melting of anhydrous basaltic crust through tectonic processes (initiation of proto-plate tectonics) and fractional crystallization | Alkaline intermediate and felsic rocks. Possibly monzonitic or alkali–granitic rocks. Possible LCP cumulates if fractional crystallization occurs. | ||
Fractionation of impact melt | Depth profile showing a layered crust with phenocrystal texture | Mafic olivine and LCP cumulates/intrusions at the bottom and feldspar-rich rocks of evolved compositions at the top, similar to terrestrial impacts like the Sudbury crater (e.g., [102]) | |
Mafic crust with localized evolved bodies | Mafic crust with local crystallization and/or partial melting processes | Plains of mafic rocks including at depth, with localized intrusions of intermediate and felsic rocks within a large depth profile and spatial range | Mafic composition and mineralogy (e.g., olivine, pyroxene, and plagioclase) at the surface and depth with non-continuous localized intermediate and felsic composition and mineralogy (e.g., feldspar-rich rocks, and quartz) |
3.3.3. Deciphering the Formation of an Evolved Martian Crust
Objectives | Analyses | Possible Instrumentation | Platform |
---|---|---|---|
Constraining the elemental composition of the crust | Major, minor, and trace element analyses, including rare earth element | - Laser-Induced Breakdown Spectroscopy (LIBS) for major and trace elements (Rb, Sr, Ba, Cr, Ni, La, Ce, Eu, Gd, Dy, Nd, Pr, Sm, Y) - X-ray Fluorescence (XRF) - Alpha Particle X-ray Spectrometer (APXS) | Rover, lander, helicopter |
Constraining the petrology of the crust | High-resolution images | Color images of ~15 µm/pixel imaging: MAHLI resolution | Rover, lander, helicopter |
Chemical measurement of single minerals | LIBS at micron scale to analyze the composition of single phenocrysts | Rover, lander, helicopter | |
Mineralogy | - Bulk X-ray Diffraction (XRD) Raman VSWIR at m to mm resolution TIR at m to mm resolution | Rover or lander, helicopter, orbiter | |
Constraining the physical properties of the crust and possible onset of tectonics | Regional imaging | Color images with mm to cm resolution | Helicopter or orbiter |
Regional paleomagnetism | Low-altitude magnetic measurements [117] | Helicopter or orbiter | |
Regional mineralogy | Meter- to centimeter-scale VSWIR and TIR spectral datasets | Helicopter or orbiter | |
Regional structure | Seismometers, gravimeter | Lander, helicopter |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sautter, V.; Toplis, M.J.; Beck, P.; Mangold, N.; Wiens, R.; Pinet, P.; Cousin, A.; Maurice, S.; LeDeit, L.; Hewins, R.; et al. Magmatic Complexity on Early Mars as Seen through a Combination of Orbital, in-Situ and Meteorite Data. Lithos 2016, 254–255, 36–52. [Google Scholar] [CrossRef]
- Changela, H.G.; Chatzitheodoridis, E.; Antunes, A.; Beaty, D.; Bouw, K.; Bridges, J.C.; Capova, K.A.; Cockell, C.S.; Conley, C.A.; Dadachova, E.; et al. Mars: New Insights and Unresolved Questions. Int. J. Astrobiol. 2021, 20, 394–426. [Google Scholar] [CrossRef]
- Udry, A.; Howarth, G.H.; Herd, C.D.K.; Day, J.M.D.; Lapen, T.J.; Filiberto, J. What Martian Meteorites Reveal about the Interior and Surface of Mars. J. Geophys. Res. Planets 2020, 125, e2020JE006523. [Google Scholar] [CrossRef]
- Collinet, M.; Plesa, A.-C.; Ruedas, T.; Schwinger, S.; Breuer, D. The Temperature and Composition of the Mantle Sources of Martian Basalts. Geophys. Res. Lett. 2023, 50, e2023GL103537. [Google Scholar] [CrossRef]
- Gyollai, I.; Chatzitheodoridis, E.; Kereszturi, Á.; Szabó, M. Multiple Generation Magmatic and Hydrothermal Processes in a Martian Subvolcanic Environment Based on the Analysis of Yamato-000593 Nakhlite Meteorite. Meteorit. Planet. Sci. 2023, 58, 218–240. [Google Scholar] [CrossRef]
- Aucamp, T.; Howarth, G.H.; Peel, C.J.; Costin, G.; Day, J.M.D.; le Roux, P.; Scott, J.M.; Greshake, A.; Bartoschewitz, R. Petrogenesis of the Dar al Gani (DaG) 1.1 Ma Ejection-Paired Olivine-Phyric Shergottites and Implications for 470 Ma Martian Volcanism. Meteorit. Planet. Sci. 2023, 58, 1654–1676. [Google Scholar] [CrossRef]
- Jennings, E.S.; Coull, P. Olivine Microstructure and Thermometry in Olivine-Phyric Shergottites Sayh al Uhaymir 005 and Dar al Gani 476. Meteorit. Planet. Sci. 2024, 59, 55–67. [Google Scholar] [CrossRef]
- Bouvier, L.C.; Costa, M.M.; Connelly, J.N.; Jensen, N.K.; Wielandt, D.; Storey, M.; Nemchin, A.A.; Whitehouse, M.J.; Snape, J.F.; Bellucci, J.J.; et al. Evidence for Extremely Rapid Magma Ocean Crystallization and Crust Formation on Mars. Nature 2018, 558, 586. [Google Scholar] [CrossRef] [PubMed]
- Humayun, M.; Nemchin, A.; Zanda, B.; Hewins, R.H.; Grange, M.; Kennedy, A.; Lorand, J.-P.; Göpel, C.; Fieni, C.; Pont, S.; et al. Origin and Age of the Earliest Martian Crust from Meteorite NWA 7533. Nature 2013, 503, 513–516. [Google Scholar] [CrossRef]
- Hewins, R.H.; Zanda, B.; Humayun, M.; Nemchin, A.; Lorand, J.-P.; Pont, S.; Deldicque, D.; Bellucci, J.J.; Beck, P.; Leroux, H.; et al. Regolith Breccia Northwest Africa 7533: Mineralogy and Petrology with Implications for Early Mars. Meteorit. Planet. Sci. 2017, 52, 89–124. [Google Scholar] [CrossRef]
- Santos, A.R.; Agee, C.B.; McCubbin, F.M.; Shearer, C.K.; Burger, P.V.; Tartèse, R.; Anand, M. Petrology of Igneous Clasts in Northwest Africa 7034: Implications for the Petrologic Diversity of the Martian Crust. Geochim. Cosmochim. Acta 2015, 157, 56–85. [Google Scholar] [CrossRef]
- Wittmann, A.; Korotev, R.L.; Jolliff, B.L.; Irving, A.J.; Moser, D.E.; Barker, I.; Rumble, D. Petrography and Composition of Martian Regolith Breccia Meteorite Northwest Africa 7475. Meteorit. Planet. Sci. 2015, 50, 326–352. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.J.; Wiens, R.C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; et al. In Situ Evidence for Continental Crust on Early Mars. Nat. Geosci. 2015, 8, 605–609. [Google Scholar] [CrossRef]
- Cousin, A.; Sautter, V.; Payré, V.; Forni, O.; Mangold, N.; Gasnault, O.; Le Deit, L.; Johnson, J.; Maurice, S.; Salvatore, M.; et al. Classification of Igneous Rocks Analyzed by ChemCam at Gale Crater, Mars. Icarus 2017, 288, 265–283. [Google Scholar] [CrossRef]
- Sautter, V.; Payré, V. Alkali Magmatism on Mars: An Unexpected Diversity. Comptes Rendus Géosci. 2021, 353, 61–90. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.L.; Smith, M.D.; Hamilton, V.E.; Clark, R.N. Identification of a Basaltic Component on the Martian Surface from Thermal Emission Spectrometer Data. J. Geophys. Res. Planets 2000, 105, 9609–9621. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Edwards, C.S. Mineralogy of the Martian Surface. Annu. Rev. Earth Planet. Sci. 2014, 42, 291–315. [Google Scholar] [CrossRef]
- Rogers, A.D.; Farrand, W.H. Spectral Evidence for Alkaline Rocks and Compositional Diversity among Feldspathic Light-Toned Terrains on Mars. Icarus 2022, 376, 114883. [Google Scholar] [CrossRef]
- Wray, J.J.; Hansen, S.T.; Dufek, J.; Swayze, G.A.; Murchie, S.L.; Seelos, F.P.; Skok, J.R.; Irwin, R.P.; Ghiorso, M.S. Prolonged Magmatic Activity on Mars Inferred from the Detection of Felsic Rocks. Nat. Geosci. 2013, 6, 1013–1017. [Google Scholar] [CrossRef]
- Payré, V.; Salvatore, M.R.; Edwards, C.S. An Evolved Early Crust Exposed on Mars Revealed Through Spectroscopy. Geophys. Res. Lett. 2022, 49, e2022GL099639. [Google Scholar] [CrossRef]
- McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F.; Herkenhoff, K.; Gellert, R.; Stockstill, K.R.; Tornabene, L.L.; Squyres, S.W.; Crisp, J.A.; et al. Alkaline Volcanic Rocks from the Columbia Hills, Gusev Crater, Mars. J. Geophys. Res. 2006, 111, E09S91. [Google Scholar] [CrossRef]
- McSween, H.Y.; Wyatt, M.B.; Gellert, R.; Bell, J.F.; Morris, R.V.; Herkenhoff, K.E.; Crumpler, L.S.; Milam, K.A.; Stockstill, K.R.; Tornabene, L.L.; et al. Characterization and Petrologic Interpretation of Olivine-Rich Basalts at Gusev Crater, Mars. J. Geophys. Res. Planets 2006, 111, E02S10. [Google Scholar] [CrossRef]
- Udry, A.; Ostwald, A.; Sautter, V.; Cousin, A.; Beyssac, O.; Forni, O.; Dromart, G.; Benzerara, K.; Nachon, M.; Horgan, B.; et al. A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link with Séítah, Mars. J. Geophys. Res. Planets 2022, 128, e2022JE007440. [Google Scholar] [CrossRef]
- Wiens, R.C.; Udry, A.; Beyssac, O.; Quantin-Nataf, C.; Mangold, N.; Cousin, A.; Mandon, L.; Bosak, T.; Forni, O.; McLennan, S.M.; et al. Compositionally and Density Stratified Igneous Terrain in Jezero Crater, Mars. Sci. Adv. 2022, 8, eabo3399. [Google Scholar] [CrossRef] [PubMed]
- McSween, H.Y.; Taylor, G.J.; Wyatt, M.B. Elemental Composition of the Martian Crust. Science 2009, 324, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, M.S.; Christensen, P.R. Mineral Abundance Determination: Quantitative Deconvolution of Thermal Emission Spectra. J. Geophys. Res. Solid Earth 1998, 103, 577–596. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. ISBN 978-0-08-043751-4. [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Udry, A.; Gazel, E.; McSween, H.Y. Formation of Evolved Rocks at Gale Crater by Crystal Fractionation and Implications for Mars Crustal Composition. J. Geophys. Res. Planets 2018, 123, 1525–1540. [Google Scholar] [CrossRef]
- Payré, V.; Siebach, K.L.; Dasgupta, R.; Udry, A.; Rampe, E.B.; Morrison, S.M. Constraining Ancient Magmatic Evolution on Mars Using Crystal Chemistry of Detrital Igneous Minerals in the Sedimentary Bradbury Group, Gale Crater, Mars. J. Geophys. Res. Planets 2020, 125, e2020JE006467. [Google Scholar] [CrossRef]
- Ostwald, A.; Udry, A.; Payré, V.; Gazel, E.; Wu, P. The Role of Assimilation and Fractional Crystallization in the Evolution of the Mars Crust. Earth Planet. Sci. Lett. 2022, 585, 117514. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Zuber, M.T. Thickness of the Martian Crust: Improved Constraints from Geoid-to-Topography Ratios. J. Geophys. Res. Planets 2004, 109, E01009. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Broquet, A.; McLennan, S.M.; Rivoldini, A.; Golombek, M.; Antonangeli, D.; Beghein, C.; Giardini, D.; Gudkova, T.; Gyalay, S.; et al. InSight Constraints on the Global Character of the Martian Crust. J. Geophys. Res. Planets 2022, 127, e2022JE007298. [Google Scholar] [CrossRef]
- Deng, S.; Levander, A. Autocorrelation Reflectivity of Mars. Geophys. Res. Lett. 2020, 47, e2020GL089630. [Google Scholar] [CrossRef]
- Bouley, S.; Keane, J.T.; Baratoux, D.; Langlais, B.; Matsuyama, I.; Costard, F.; Hewins, R.; Payré, V.; Sautter, V.; Séjourné, A.; et al. A Thick Crustal Block Revealed by Reconstructions of Early Mars Highlands. Nat. Geosci. 2020, 13, 105–109. [Google Scholar] [CrossRef]
- Lagain, A.; Bouley, S.; Zanda, B.; Miljković, K.; Rajšić, A.; Baratoux, D.; Payré, V.; Doucet, L.S.; Timms, N.E.; Hewins, R.; et al. Early Crustal Processes Revealed by the Ejection Site of the Oldest Martian Meteorite. Nat. Commun. 2022, 13, 3782. [Google Scholar] [CrossRef]
- Lapen, T.J.; Righter, M.; Brandon, A.D.; Debaille, V.; Beard, B.L.; Shafer, J.T.; Peslier, A.H. A Younger Age for ALH84001 and Its Geochemical Link to Shergottite Sources in Mars. Science 2010, 328, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Mittlefehldt, D.W. ALH84001, a Cumulate Orthopyroxenite Member of the Martian Meteorite Clan. Meteoritics 1994, 29, 214–221. [Google Scholar] [CrossRef]
- Treiman, A.H. A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age. Meteoritics 1995, 30, 294–302. [Google Scholar] [CrossRef]
- Kring, D.A.; Gleason, J.D. Magmatic Temperatures and Compositions on Early Mars as Inferred from the Orthopyroxene-Silica Assemblage in Allan Hills 84001. Meteorit. Planet. Sci. Suppl. 1997, 32, A74. [Google Scholar]
- McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Vali, H.; Romanek, C.S.; Clemett, S.J.; Chillier, X.D.F.; Maechling, C.R.; Zare, R.N. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science 1996, 273, 924–930. [Google Scholar] [CrossRef]
- Treiman, A.H. Meteorite Allan Hills (ALH) 84001: Implications for Mars’ Inhabitation and Habitability. First Billion Years Habitability 2019, 2134, 1032. [Google Scholar]
- Kruijer, T.S.; Kleine, T.; Borg, L.E.; Brennecka, G.A.; Irving, A.J.; Bischoff, A.; Agee, C.B. The Early Differentiation of Mars Inferred from Hf–W Chronometry. Earth Planet. Sci. Lett. 2017, 474, 345–354. [Google Scholar] [CrossRef]
- Cannon, K.M.; Mustard, J.F.; Agee, C.B. Evidence for a Widespread Basaltic Breccia Component in the Martian Low-Albedo Regions from the Reflectance Spectrum of Northwest Africa 7034. Icarus 2015, 252, 150–153. [Google Scholar] [CrossRef]
- Agee, C.B.; Wilson, N.V.; McCubbin, F.M.; Ziegler, K.; Polyak, V.J.; Sharp, Z.D.; Asmerom, Y.; Nunn, M.H.; Shaheen, R.; Thiemens, M.H.; et al. Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science 2013, 339, 780–785. [Google Scholar] [CrossRef] [PubMed]
- McCubbin, F.M.; Boyce, J.W.; Novak-Szabo, T.; Santos, A.; Tartese, R.; Muttik, N.; Domokos, G.; Vazquez, J.A.; Keller, L.P.; Moser, D.E.; et al. Geologic History of Martian Regolith Breccia Northwest Africa 7034: Evidence for Hydrothermal Activity and Lithologic Diversity in the Martian Crust. J. Geophys. Res. E Planets 2016, 121, 21202149. [Google Scholar] [CrossRef]
- MacArthur, J.L.; Bridges, J.C.; Hicks, L.J.; Burgess, R.; Joy, K.H.; Branney, M.J.; Hansford, G.M.; Baker, S.H.; Schwenzer, S.P.; Gurman, S.J.; et al. Mineralogical Constraints on the Thermal History of Martian Regolith Breccia Northwest Africa 8114. Geochim. Cosmochim. Acta 2019, 246, 267–298. [Google Scholar] [CrossRef]
- Leroux, H.; Jacob, D.; Marinova, M.; Hewins, R.H.; Zanda, B.; Pont, S.; Lorand, J.-P.; Humayun, M. Exsolution and Shock Microstructures of Igneous Pyroxene Clasts in the Northwest Africa 7533 Martian Meteorite. Meteorit. Planet. Sci. 2016, 51, 932–945. [Google Scholar] [CrossRef]
- Udry, A.; Lunning, N.G.; McSween, H.Y.; Bodnar, R.J. Petrogenesis of a Vitrophyre in the Martian Meteorite Breccia NWA 7034. Geochim. Cosmochim. Acta 2014, 141, 281–293. [Google Scholar] [CrossRef]
- Baratoux, D.; Samuel, H.; Michaut, C.; Toplis, M.J.; Monnereau, M.; Wieczorek, M.; Garcia, R.; Kurita, K. Petrological Constraints on the Density of the Martian Crust. J. Geophys. Res. Planets 2014, 119, 1707–1727. [Google Scholar] [CrossRef]
- Filiberto, J.; Gross, J.; Trela, J.; Ferré, E.C. Gabbroic Shergottite Northwest Africa 6963: An Intrusive Sample of Mars. Am. Mineral. 2014, 99, 601–606. [Google Scholar] [CrossRef]
- Lindner, M.; Hezel, D.C.; Gerdes, A.; Marschall, H.R.; Brenker, F.E. Young Magmatism and Si-Rich Melts on Mars as Documented in the Enriched Gabbroic Shergottite NWA 6963. Meteorit. Planet. Sci. 2022, 57, 2017–2041. [Google Scholar] [CrossRef]
- Goderis, S.; Brandon, A.D.; Mayer, B.; Humayun, M. Ancient Impactor Components Preserved and Reworked in Martian Regolith Breccia Northwest Africa 7034. Geochim. Cosmochim. Acta 2016, 191, 203–215. [Google Scholar] [CrossRef]
- Costa, M.M.; Jensen, N.K.; Bouvier, L.C.; Connelly, J.N.; Mikouchi, T.; Horstwood, M.S.A.; Suuronen, J.-P.; Moynier, F.; Deng, Z.; Agranier, A.; et al. The Internal Structure and Geodynamics of Mars Inferred from a 4.2-Gyr Zircon Record. PNAS 2020, 117, 30973–30979. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Lin, Y.; Zhang, J.; Hao, J.; Xing, W.; Zhang, T.; Yang, W.; Changela, H. Ancient Geologic Events on Mars Revealed by Zircons and Apatites from the Martian Regolith Breccia NWA 7034. Meteorit. Planet. Sci. 2019, 54, 850–879. [Google Scholar] [CrossRef]
- Nyquist, L.E.; Shih, C.-Y.; McCubbin, F.M.; Santos, A.R.; Shearer, C.K.; Peng, Z.X.; Burger, P.V.; Agee, C.B. Rb-Sr and Sm-Nd Isotopic and REE Studies of Igneous Components in the Bulk Matrix Domain of Martian Breccia Northwest Africa 7034. Meteorit. Planet. Sci. 2016, 51, 483–498. [Google Scholar] [CrossRef]
- Armytage, R.M.G.; Debaille, V.; Brandon, A.D.; Agee, C.B. A Complex History of Silicate Differentiation of Mars from Nd and Hf Isotopes in Crustal Breccia NWA 7034. Earth Planet. Sci. Lett. 2018, 502, 274–283. [Google Scholar] [CrossRef]
- Amelin, Y.; Krot, A.N.; Hutcheon, I.D.; Ulyanov, A.A. Lead Isotopic Ages of Chondrules and Calcium-Aluminum-Rich Inclusions. Science 2002, 297, 1678–1683. [Google Scholar] [CrossRef] [PubMed]
- Cassata, W.S.; Cohen, B.E.; Mark, D.F.; Trappitsch, R.; Crow, C.A.; Wimpenny, J.; Lee, M.R.; Smith, C.L. Chronology of Martian Breccia NWA 7034 and the Formation of the Martian Crustal Dichotomy. Sci. Adv. 2018, 4, eaap8306. [Google Scholar] [CrossRef] [PubMed]
- Lapen, T.J.; Righter, M.; Andreasen, R.; Irving, A.J.; Satkoski, A.M.; Beard, B.L.; Nishiizumi, K.; Jull, A.J.T.; Caffee, M.W. Two Billion Years of Magmatism Recorded from a Single Mars Meteorite Ejection Site. Sci. Adv. 2017, 3, e1600922. [Google Scholar] [CrossRef]
- Lagain, A.; Benedix, G.K.; Servis, K.; Baratoux, D.; Doucet, L.S.; Rajšic, A.; Devillepoix, H.A.R.; Bland, P.A.; Towner, M.C.; Sansom, E.K.; et al. The Tharsis Mantle Source of Depleted Shergottites Revealed by 90 Million Impact Craters. Nat. Commun. 2021, 12, 6352. [Google Scholar] [CrossRef]
- McCoy, T.J.; Sims, M.; Schmidt, M.E.; Edwards, L.; Tornabene, L.L.; Crumpler, L.S.; Cohen, B.A.; Soderblom, L.A.; Blaney, D.L.; Squyres, S.W.; et al. Structure, Stratigraphy, and Origin of Husband Hill, Columbia Hills, Gusev Crater, Mars. J. Geophys. Res. Planets 2008, 113, E06S03. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Squyres, S.W.; Anderson, R.C.; Bell, J.F.; Blaney, D.; Brückner, J.; Cabrol, N.A.; Calvin, W.M.; Carr, M.H.; Christensen, P.R.; et al. Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing Site to Backstay Rock in the Columbia Hills. J. Geophys. Res. 2006, 111, E02S01. [Google Scholar] [CrossRef]
- Le Deit, L.; Hauber, E.; Fueten, F.; Pondrelli, M.; Rossi, A.P.; Jaumann, R. Sequence of Infilling Events in Gale Crater, Mars: Results from Morphology, Stratigraphy, and Mineralogy. J. Geophys. Res. Planets 2013, 118, 2439–2473. [Google Scholar] [CrossRef]
- Farley, K.A.; Malespin, C.; Mahaffy, P.; Grotzinger, J.P.; Vasconcelos, P.M.; Milliken, R.E.; Malin, M.; Edgett, K.S.; Pavlov, A.A.; Hurowitz, J.A.; et al. In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science 2014, 343, 1247166. [Google Scholar] [CrossRef] [PubMed]
- Bowden, D.L.; Bridges, J.C.; Cousin, A.; Rapin, W.; Semprich, J.; Gasnault, O.; Forni, O.; Gasda, P.; Das, D.; Payré, V.; et al. Askival: An Altered Feldspathic Cumulate Sample in Gale Crater. Meteorit. Planet. Sci. 2023, 58, 41–62. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Buz, J. Mineralogy and Fluvial History of the Watersheds of Gale, Knobel, and Sharp Craters: A Regional Context for the Mars Science Laboratory Curiosity’s Exploration. Geophys. Res. Lett. 2015, 42, 264–273. [Google Scholar] [CrossRef]
- Buz, J.; Ehlmann, B.L.; Pan, L.; Grotzinger, J.P. Mineralogy and Stratigraphy of the Gale Crater Rim, Wall, and Floor Units. J. Geophys. Res. Planets 2017, 122, 1090–1118. [Google Scholar] [CrossRef]
- Filiberto, J. Geochemistry of Martian Basalts with Constraints on Magma Genesis. Chem. Geol. 2017, 466, 1–14. [Google Scholar] [CrossRef]
- Rudnick, R.L. Making Continental Crust. Nature 1995, 378, 571–578. [Google Scholar] [CrossRef]
- Mustard, J.F.; Poulet, F.; Gendrin, A.; Bibring, J.-P.; Langevin, Y.; Gondet, B.; Mangold, N.; Bellucci, G.; Altieri, F. Olivine and Pyroxene Diversity in the Crust of Mars. Science 2005, 307, 1594–1597. [Google Scholar] [CrossRef]
- Poulet, F.; Mangold, N.; Platevoet, B.; Bardintzeff, J.-M.; Sautter, V.; Mustard, J.F.; Bibring, J.-P.; Pinet, P.; Langevin, Y.; Gondet, B.; et al. Quantitative Compositional Analysis of Martian Mafic Regions Using the MEx/OMEGA Reflectance Data: 2. Petrological Implications. Icarus 2009, 201, 84–101. [Google Scholar] [CrossRef]
- Flahaut, J.; Quantin, C.; Clenet, H.; Allemand, P.; Mustard, J.F.; Thomas, P. Pristine Noachian Crust and Key Geologic Transitions in the Lower Walls of Valles Marineris: Insights into Early Igneous Processes on Mars. Icarus 2012, 221, 420–435. [Google Scholar] [CrossRef]
- Brustel, C.; Flahaut, J.; Hauber, E.; Fueten, F.; Quantin, C.; Stesky, R.; Davies, G.R. Valles Marineris Tectonic and Volcanic History Inferred from Dikes in Eastern Coprates Chasma. J. Geophys. Res. Planets 2017, 122, 1353–1371. [Google Scholar] [CrossRef]
- Brustel, C.P.A. Early Magmatic Processes on Mars. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2021. [Google Scholar]
- Baratoux, D.; Toplis, M.J.; Monnereau, M.; Sautter, V. The Petrological Expression of Early Mars Volcanism. J. Geophys. Res. Planets 2013, 118, 59–64. [Google Scholar] [CrossRef]
- Tanaka, K.L.; Robbins, S.J.; Fortezzo, C.M.; Skinner, J.A.; Hare, T.M. The Digital Global Geologic Map of Mars: Chronostratigraphic Ages, Topographic and Crater Morphologic Characteristics, and Updated Resurfacing History. Planet. Space Sci. 2014, 95, 11–24. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F. Ancient Plutonic Processes on Mars Inferred from the Detection of Possible Anorthositic Terrains. Nat. Geosci. 2013, 6, 1008–1012. [Google Scholar] [CrossRef]
- Phillips, M.S.; Viviano, C.E.; Moersch, J.E.; Rogers, A.D.; McSween, H.Y.; Seelos, F.P. Extensive and Ancient Feldspathic Crust Detected across North Hellas Rim, Mars: Possible Implications for Primary Crust Formation. Geology 2022, 50, 1182–1186. [Google Scholar] [CrossRef]
- Flahaut, J.; Payet, V.; Fueten, F.; Guitreau, M.; Barthez, M.; Ito, G.; Allemand, P. New Detections of Feldspar-Bearing Volcanic Rocks in the Walls of Valles Marineris, Mars. Geophys. Res. Lett. 2023, 50, e2022GL100772. [Google Scholar] [CrossRef]
- Barthez, M.; Flahaut, J.; Guitreau, M.; Ito, G.; Pik, R. Understanding VNIR Plagioclase Signatures on Mars Through Petrographic, Geochemical, and Spectral Characterization of Terrestrial Feldspar-Bearing Igneous Rocks. J. Geophys. Res. Planets 2023, 128, e2022JE007680. [Google Scholar] [CrossRef]
- Smith, M.R.; Bandfield, J.L.; Cloutis, E.A.; Rice, M.S. Hydrated Silica on Mars: Combined Analysis with near-Infrared and Thermal-Infrared Spectroscopy. Icarus 2013, 223, 633–648. [Google Scholar] [CrossRef]
- Amador, E.S.; Bandfield, J.L. Elevated Bulk-Silica Exposures and Evidence for Multiple Aqueous Alteration Episodes in Nili Fossae, Mars. Icarus 2016, 276, 39–51. [Google Scholar] [CrossRef]
- Rogers, A.D.; Nekvasil, H. Feldspathic Rocks on Mars: Compositional Constraints from Infrared Spectroscopy and Possible Formation Mechanisms: Feldspathic Rocks on Mars: Constraints. Geophys. Res. Lett. 2015, 42, 2619–2626. [Google Scholar] [CrossRef]
- Cheek, L.C.; Pieters, C.M. Reflectance Spectroscopy of Plagioclase-Dominated Mineral Mixtures: Implications for Characterizing Lunar Anorthosites Remotely†. Am. Mineral. 2014, 99, 1871–1892. [Google Scholar] [CrossRef]
- Collinet, M.; Médard, E.; Charlier, B.; Vander Auwera, J.; Grove, T.L. Melting of the Primitive Martian Mantle at 0.5–2.2 GPa and the Origin of Basalts and Alkaline Rocks on Mars. Earth Planet. Sci. Lett. 2015, 427, 83–94. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Campbell, J.L.; Gellert, R.; Perrett, G.M.; Treiman, A.H.; Blaney, D.L.; Olilla, A.; Calef, F.J.; Edgar, L.; Elliott, B.E.; et al. Geochemical Diversity in First Rocks Examined by the Curiosity Rover in Gale Crater: Evidence for and Significance of an Alkali and Volatile-Rich Igneous Source. J. Geophys. Res. Planets 2014, 119, 64–81. [Google Scholar] [CrossRef]
- Dreibus, G.; Wanke, H. Mars, a Volatile-Rich Planet. Meteoritics 1985, 20, 367–381. [Google Scholar]
- Reimink, J.R.; Chacko, T.; Stern, R.A.; Heaman, L.M. Earth’s Earliest Evolved Crust Generated in an Iceland-like Setting. Nat. Geosci. 2014, 7, 529–533. [Google Scholar] [CrossRef]
- Nicholson, H.; Condomines, M.; Fitton, J.G.; Fallick, A.E.; Grönvold, K.; Rogers, G. Geochemical and Isotopic Evidence for Crustal Assimilation Beneath Krafla, Iceland. J. Petrol. 1991, 32, 1005–1020. [Google Scholar] [CrossRef]
- Michalski, J.R.; Deanne Rogers, A.; Edwards, C.S.; Cowart, A.; Xiao, L. Diverse Volcanism and Crustal Recycling on Early Mars. Nat. Astron. 2024, 8, 456–462. [Google Scholar] [CrossRef]
- Udry, A.; Balta, J.B.; McSween, H.Y. Exploring Fractionation Models for Martian Magmas: Fractionation of Martian Primary Magmas. J. Geophys. Res. Planets 2014, 119, 1–18. [Google Scholar] [CrossRef]
- Payré, V.; Dasgupta, R. Effects of Phosphorus on Partial Melting of the Martian Mantle and Compositions of the Martian Crust. Geochim. Cosmochim. Acta 2022, 327, 229–246. [Google Scholar] [CrossRef]
- Ding, S.; Dasgupta, R.; Tsuno, K. The Solidus and Melt Productivity of Nominally Anhydrous Martian Mantle Constrained by New High Pressure-Temperature Experiments—Implications for Crustal Production and Mantle Source Evolution. J. Geophys. Res. Planets 2020, 125, e2019JE006078. [Google Scholar] [CrossRef]
- McCubbin, F.M.; Boyce, J.W.; Srinivasan, P.; Santos, A.R.; Elardo, S.M.; Filiberto, J.; Steele, A.; Shearer, C.K. Heterogeneous Distribution of H2O in the Martian Interior: Implications for the Abundance of H2O in Depleted and Enriched Mantle Sources. Meteorit. Planet. Sci. 2016, 51, 2036–2060. [Google Scholar] [CrossRef]
- McCubbin, F.M.; Hauri, E.H.; Elardo, S.M.; Kaaden, K.E.V.; Wang, J.; Shearer, C.K. Hydrous Melting of the Martian Mantle Produced Both Depleted and Enriched Shergottites. Geology 2012, 40, 683–686. [Google Scholar] [CrossRef]
- Seales, J.; Payre, V. Compositional Variations of Martian Primary Magmas Due to the Water Loss from the Martian Mantle. In Proceedings of the 52nd Lunar and Planetary Science Conference, Virtual, 15–19 March 2021; p. 2393. [Google Scholar]
- Sandu, C.; Kiefer, W.S. Degassing History of Mars and the Lifespan of Its Magnetic Dynamo. Geophys. Res. Lett. 2012, 39, L03201. [Google Scholar] [CrossRef]
- Knapmeyer-Endrun, B.; Bissig, F.; Compaire, N.; Joshi, R.; Garcia, R.; Khan, A.; Kim, D.; Lekic, V.; Margerine, L.; Panning, M.; et al. Seismic Constraints on the Crustal Structure of Mars from InSight Receiver Functions. In Proceedings of the 51st Lunar and Planetary Science Conference (2020), The Woodlands, TX, USA, 16–20 March 2020; Volume 51, p. 1914. [Google Scholar]
- Manske, L.; Marchi, S.; Plesa, A.-C.; Wünnemann, K. Impact Melting upon Basin Formation on Early Mars. Icarus 2021, 357, 114128. [Google Scholar] [CrossRef]
- Elkins-Tanton, L.T.; Zaranek, S.E.; Parmentier, E.M.; Hess, P.C. Early Magnetic Field and Magmatic Activity on Mars from Magma Ocean Cumulate Overturn. Earth Planet. Sci. Lett. 2005, 236, 1–12. [Google Scholar] [CrossRef]
- Therriault, A.M.; Fowler, A.D.; Grieve, R.A.F. The Sudbury Igneous Complex: A Differentiated Impact Melt Sheet*. Econ. Geol. 2002, 97, 1521–1540. [Google Scholar] [CrossRef]
- McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J.A.; Gulick, V.C.; Herkenhoff, K.E.; Keszthelyi, L.; et al. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 2007, 112, E05S02. [Google Scholar] [CrossRef]
- Murchie, S.; Arvidson, R.E.; Bishop, J.L.; Calvin, W.M.; Carter, J.; Christian, J.; Clark, R.N.; Dundas, C.M.; Ehlmann, B.L.; Fox, V.K.; et al. Maximizing the Science and Resource Mapping Potential of Orbital VSWIR Spectral Measurements of Mars. Bull. AAS 2021, 53. [Google Scholar] [CrossRef]
- Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Imamura, T.; Arai, T.; Senshu, H.; Ogawa, Y.; Demura, H.; Kitazato, K.; et al. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2. Space Sci. Rev. 2017, 208, 255–286. [Google Scholar] [CrossRef]
- Christensen, P.R.; Hamilton, V.E.; Mehall, G.L.; Pelham, D.; O’Donnell, W.; Anwar, S.; Bowles, H.; Chase, S.; Fahlgren, J.; Farkas, Z.; et al. The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument. Space Sci. Rev. 2018, 214, 87. [Google Scholar] [CrossRef]
- Bapst, J.; Parker, T.J.; Balaram, J.; Tzanetos, T.; Matthies, L.H.; Edwards, C.D.; Freeman, A.; Withrow-Maser, S.; Johnson, W.; Amador-French, E.; et al. Mars Science Helicopter: Compelling Science Enabled by an Aerial Platform. Bull. AAS 2021, 53, 361. [Google Scholar] [CrossRef]
- Rapin, W.; Maurice, S.; Ollila, A.; Wiens, R.C.; Dubois, B.; Nelson, T.; Le Men, C.; Parot, Y.; Clegg, S.; Newell, R.; et al. μLIBS: A Micro-Scale Elemenal Analyser for Lightweight In Situ Exploration. LPSC 2023, 2806, 1942. [Google Scholar]
- Green, R.O.; Mouroulis, P.; Sullivan, P.; Bender, H.; Calvin, W.; Ehlmann, B.L.; Fraeman, A.A.; Thompson, D.R.; Vinckier, Q. Low-Cost, High Signal-to-Noise Ratio, and High Fidelity Imaging Spectrometers for Mars. In Proceedings of the Low-Cost Science Mission Concepts for Mars Exploration, Pasadena, CA, USA, 29–31 March 2022. [Google Scholar]
- Debaille, V.; Yin, Q.-Z.; Brandon, A.D.; Jacobsen, B. Martian Mantle Mineralogy Investigated by the 176Lu–176Hf and 147Sm–143Nd Systematics of Shergottites. Earth Planet. Sci. Lett. 2008, 269, 186–199. [Google Scholar] [CrossRef]
- Bonnet Gibet, V.; Michaut, C.; Bodin, T.; Wieczorek, M.; Dubuffet, F. Differentiation of the Martian Highlands during Its Formation. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023; p. EGU-2786. [Google Scholar] [CrossRef]
- Barrat, J.-A.; Chaussidon, M.; Yamaguchi, A.; Beck, P.; Villeneuve, J.; Byrne, D.J.; Broadley, M.W.; Marty, B. A 4,565-My-Old Andesite from an Extinct Chondritic Protoplanet. PNAS 2021, 118, e2026129118. [Google Scholar] [CrossRef] [PubMed]
- Collinet, M.; Grove, T.L. Widespread Production of Silica- and Alkali-Rich Melts at the Onset of Planetesimal Melting. Geochim. Cosmochim. Acta 2020, 277, 334–357. [Google Scholar] [CrossRef]
- Barnes, J.J.; McCubbin, F.M.; Santos, A.R.; Day, J.M.D.; Boyce, J.W.; Schwenzer, S.P.; Ott, U.; Franchi, I.A.; Messenger, S.; Anand, M.; et al. Multiple Early-Formed Water Reservoirs in the Interior of Mars. Nat. Geosci. 2020, 13, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.R.; Rogers, A.D.; Edwards, C.S.; Cowart, A.; Xiao, L. Diverse Volcanism and Volcanotectonics Associated with the Eridania Basin on Mars. LPSC 2023, 2806, 1139. [Google Scholar]
- Koeppel, A.H.D.; Black, B.A.; Marchi, S. Differentiation in Impact Melt Sheets as a Mechanism to Produce Evolved Magmas on Mars. Icarus 2020, 335, 113422. [Google Scholar] [CrossRef]
- Mittelholz, A.; Heagy, L.; Johnson, C.L.; Bapst, J.; Espley, J.; Fraeman, A.A.; Langlais, B.; Lillis, R.; Rapin, W. Exploring Martian Magnetic Fields with a Helicopter. Planet. Sci. J. 2023, 4, 155. [Google Scholar] [CrossRef]
- Smithies, R.H.; Lu, Y.; Johnson, T.E.; Kirkland, C.L.; Cassidy, K.F.; Champion, D.C.; Mole, D.R.; Zibra, I.; Gessner, K.; Sapkota, J.; et al. No Evidence for High-Pressure Melting of Earth’s Crust in the Archean. Nat. Commun. 2019, 10, 5559. [Google Scholar] [CrossRef] [PubMed]
- Domagal-Goldman, S.D.; Wright, K.E.; Domagal-Goldman, S.D.; Wright, K.E.; Adamala, K.; Arina de la Rubia, L.; Bond, J.; Dartnell, L.R.; Goldman, A.D.; Lynch, K.; et al. The Astrobiology Primer v2.0. Astrobiology 2016, 16, 561–653. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payré, V.; Udry, A.; Fraeman, A.A. Igneous Diversity of the Early Martian Crust. Minerals 2024, 14, 452. https://doi.org/10.3390/min14050452
Payré V, Udry A, Fraeman AA. Igneous Diversity of the Early Martian Crust. Minerals. 2024; 14(5):452. https://doi.org/10.3390/min14050452
Chicago/Turabian StylePayré, Valerie, Arya Udry, and Abigail A. Fraeman. 2024. "Igneous Diversity of the Early Martian Crust" Minerals 14, no. 5: 452. https://doi.org/10.3390/min14050452
APA StylePayré, V., Udry, A., & Fraeman, A. A. (2024). Igneous Diversity of the Early Martian Crust. Minerals, 14(5), 452. https://doi.org/10.3390/min14050452