Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analyses
4. Results
4.1. Statistical Characteristics
4.2. Spatial Distribution of Elements
4.3. Factor Analysis
4.4. Association Rule Algorithm
5. Discussion
5.1. Control Mechanisms of Element Spatial Distributions
5.2. Exploration Vectors
5.3. Prospecting Indicators
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cline, J.S.; Hofstra, A.H.; Muntean, J.L.; Tosdal, R.M.; Hickey, K.A. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2005; pp. 451–484. [Google Scholar]
- Hofstra, A.H.; John, D.A.; Theodore, T.G. A special issue devoted to gold deposits in northern Nevada: Part 2. Carlin-type deposits. Econ. Geo. 2003, 98, 1063–1067. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Yang, C.; Li, J.; Zheng, L.; Chen, F.E.; Tan, Q.; Xie, Z.; Song, W.; Xu, L.; et al. Discriminant index and significance of structural alteration body of Carlin-type gold deposits in Yunnan-Guizhou-Guangxi and its surrounding areas, China. Gold Sci. Technol. 2022, 30, 532–539, (In Chinese with English abstract). [Google Scholar]
- Hu, R.; Fu, S.; Huang, Y.; Zhou, M.; Fu, S.; Zhao, C.; Wang, Y.; Bi, X.; Xiao, J. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Su, W.; Dong, W.; Zhang, X.; Shen, N.; Hu, R.; Hofstra, A.H.; Cheng, L.; Xia, Y.; Yang, K. Carlin-type gold deposits in the Dian-Qian-Gui “golden triangle” of Southwest China. In Diversity of Carlin-Style Gold Deposits, Reviews in Economic Geology; Muntean, J.L., Ed.; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2018; Volume 20, pp. 157–185. [Google Scholar]
- Zeng, G.; Hu, X.; Luo, D.; Liu, J.; Yao, S.; Jin, Y. Structural Control of the Getang Carlin-Type Gold Deposit in Southwest China. J. Earth Sci. 2024, 35, 536–552. [Google Scholar] [CrossRef]
- Jin, X.; Yang, C.; Liu, J.; Yang, W. Source and Evolution of the Ore-Forming Fluids of Carlin-Type Gold Deposit in the Youjiang Basin, South China: Evidences from Solute Data of Fluid Inclusion Extracts. J. Earth Sci. 2021, 32, 185–194. [Google Scholar] [CrossRef]
- Feng, J.Z. Geochemical atlas of Guizhou Province; Geological Publishing House: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Tan, Q.; Xia, Y.; Xie, Z.; Wang, Z.; Li, S.; Wei, D.; Yan, J.; Zhao, Y. Tectono-geochemistry and concealed ores prospecting in the Shuiyindong gold deposit of southwestern Guizhou. Acta Geosci. Sin. 2020, 41, 886–898, (In Chinese with English abstract). [Google Scholar]
- Song, W.; Liu, J.; Wu, P.; Li, J.; Wang, Z.; Yang, C.; Tan, Q.; Wang, D. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province. Geophys. Geochem. Explor. 2022, 46, 1338–1348, (In Chinese with English abstract). [Google Scholar]
- Li, S.; Liu, J.; Xia, Y.; Xie, Z.; Tan, Q.; Wang, Z.; Zhou, G.; Yang, C.; Meng, M.; Tan, L.; et al. Tectono-geochemistry weak mineralization information extraction method and its application in the Carlin-type gold accumulation area of southwestern Guizhou. Gold Science and Technology 2021, 29, 53–63, (In Chinese with English abstract). [Google Scholar]
- Tan, Q.; Xia, Y.; Wang, X.; Xie, Z.; Wei, D. Carbon-oxygen isotopes and rare earth elements as an exploration vector for Carlin-type gold deposits: A case study of the Shuiyindong gold deposit, Guizhou Province, SW China. J. Asian Earth Sci. 2017, 148, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, Z.; Zhou, J.; Ji, G.; Xu, X.; Liu, G.; Lu, J. Broadband magnetotelluric(BMT)detecting blind gold deposits with interfacetype: A case of deep prospecting in the Getang area, southwestern Guizhou. Geol. China 2023, 50, 359–375, (In Chinese with English abstract). [Google Scholar]
- Zhang, W.; Ji, G.; Liao, G.; Zhang, Q.; Gao, H.; Xiong, W.; Xia, S.; Yang, J.; Li, H. Prospecting model and exploration evaluation method offault controlled gold deposits in southwest Guizhou:a case study of Yata gold deposit. Acta Geol. Sin. 2021, 95, 3961–3978, (In Chinese with English abstract). [Google Scholar]
- Yang, B.; Jiajun, W.; Yannan, H.; Jianzhong, L.; Liansu, Q.; Wang, Z.; Hu, T. Electrical structural features of strata bound Carlin-type gold deposit in southwest Guizhou: Audio magnetotelluric sounding of Shuiyindong section. Guizhou Geol. 2016, 33, 1–8, (In Chinese with English abstract). [Google Scholar]
- Ye, T.; Lv, Z.; Pang, Z.; Zhang, D.; Liu, S.; Wang, Q.; Liu, J.; Cheng, Z.; Li, C.; Xiao, K.; et al. Theory and Method of Prospecting Prediction in Exploration Area; Geological Publishing House: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Zhao, P.; Chi, S.; Li, Z.; Cao, X.; Wei, J. Theories and Methods for Mineral Exploration; China University of Geosciences Press: Wuhan, China, 2006. (In Chinese) [Google Scholar]
- Zuo, R.; Xiong, Y. Geodata science and geochemical mapping. J. Geochem. Explor. 2020, 209, 106431. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Zuo, R. Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Nat. Resour. Res. 2017, 26, 457–464. [Google Scholar] [CrossRef]
- Mao, X.; Tang, M.; Deng, H.; Chen, J.; Liu, Z.; Wang, J. Using association rules analysis to determine favorable mineralization sites in the Jiaojia gold belt, Jiaodong Peninsula, East China. Front. Earth Sci. 2023, 11, 1174017. [Google Scholar] [CrossRef]
- Chen, M.; Luo, X.; Zhu, Y.; Li, Y.; Zhao, W.; Wu, J. An apriori-based learning scheme towards intelligent mining of association rules for geological big data. Intell. Autom. Soft Co. 2020, 26, 973–987. [Google Scholar] [CrossRef]
- Ouchchen, M.; Boutaleb, S.; Abia, E.H.; El Azzab, D.; Miftah, A.; Dadi, B.; Echogdali, F.Z.; Mamouch, Y.; Pradhan, B.; Santosh, M.; et al. Exploration targeting of copper deposits using staged factor analysis, geochemical mineralization prospectivity index, and fractal model (Western Anti-Atlas, Morocco). Ore Geol. Rev. 2022, 143, 104762. [Google Scholar] [CrossRef]
- Afzal, P.; Mirzaei, M.; Yousefi, M.; Adib, A.; Khalajmasoumi, M.; Zarifi, A.Z.; Foster, P.; Yasrebi, A.B. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. J. Afr. Earth Sci. 2016, 119, 139–149. [Google Scholar] [CrossRef]
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem. Explor. Env. A. 2014, 14, 45–58. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G. Factor analysis applied to regional geochemical data: Problems and possibilities. Appl. Geochem. 2002, 17, 185–206. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y. Application of association rule algorithm in studying abnormal elemental associations in the Pangxidong area in western Guangdong Province, China. Earth Sci. Front. 2019, 26, 125–130, (In Chinese with English abstract). [Google Scholar]
- Tripathi, V.S. Factor analysis in geochemical exploration. J. Geochem. Explor. 1979, 11, 263–275. [Google Scholar] [CrossRef]
- Sadeghi, M.; Billay, A.; Carranza, E.J.M. Analysis and mapping of soil geochemical anomalies: Implications for bedrock mapping and gold exploration in Giyani area, South Africa. J. Geochem. Explor. 2015, 154, 180–193. [Google Scholar] [CrossRef]
- Agrawal, R.; Imielinski, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD Conference, Washington, DC, USA, 26–28 May 1993; pp. 1–10. [Google Scholar]
- Chang, L.; Zhu, Y.; Zhang, G.; Zhang, X.; Hu, B. Spatial correlation analysis of mineral resources information. Acta Petrol. Sin. 2018, 34, 314–318, (In Chinese with English abstract). [Google Scholar]
- Han, D.; Shi, Y.; Wang, W.; Dai, Y. Research on multi-level association rules based on geosciences data. J. Softw. 2013, 8, 3269–3276. [Google Scholar] [CrossRef]
- Ding, W.; Eick, C.F.; Yuan, X.; Wang, J.; Nicot, J.-P. A framework for regional association rule mining and scoping in spatial datasets. Geoinformatica 2011, 15, 1–28. [Google Scholar] [CrossRef]
- Kotsiantis, S.; Kanellopoulos, D. Association rules mining: A recent overview. GESTS Int. Trans. Comput. Sci. Eng. 2005, 32, 71–82. [Google Scholar]
- Du, Y.; Huang, H.; Yang, J.; Huang, H.; Tao, P.; Huang, Z.; Hu, L.; Xie, C. The basin translation from late Paleozoic to Triassic of the Youjiang basin and its tectonic signification. Geol. Rev. 2013, 59, 1–11, (In Chinese with English abstract). [Google Scholar]
- Du, Y.; Huang, H.; Huang, Z.; Xu, Y.; Yang, J.; Huang, H. Basin translation from Late Palaeozoic to Triassic of Youjiang Basin and its tectonic significance. Geol. Sci. Technol. Inf. 2009, 28, 10–15, (In Chinese with English abstract). [Google Scholar]
- Hu, R.; Su, W.; Bi, X.; Tu, G.; Hofstra, A.H. Geology and geochemistry of Carlin-type gold deposits in China. Miner. Deposita 2002, 37, 378–392. [Google Scholar]
- Zaw, K.; Meffre, S.; Lai, C.K.; Burrett, C.; Santosh, M.; Graham, I.; Manaka, T.; Salam, A.; Kamvong, T.; Cromie, P. Tectonics and metallogeny of mainland Southeast Asia—A review and contribution. Gondwana Res. 2014, 26, 5–30. [Google Scholar]
- Lai, C.K.; Meffre, S.; Crawford, A.J.; Zaw, K.; Xue, C.D.; Halpin, J.A. The Western Ailaoshan Volcanic Belts and their SE Asia connection: A new tectonic model for the Eastern Indochina Block. Gondwana Res. 2014, 26, 52–74. [Google Scholar] [CrossRef]
- Li, Z.; Li, X. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Zheng, L.; Tan, Q.; Zuo, Y.; Xia, Y.; Xie, Z.; Zheng, L.; Liu, J. Two hydrothermal events associated with Au mineralization in the Youjiang Basin, southwestern China. Ore Geol. Rev. 2022, 144, 104816. [Google Scholar] [CrossRef]
- Tan, Q.; Xia, Y.; Xie, Z.; Wang, Z.; Wei, D.; Zhao, Y.; Yan, J.; Li, S. Two hydrothermal events at the Shuiyindong Carlin-Type gold deposit in Southwestern China: Insight from Sm–Nd dating of fluorite and calcite. Minerals 2019, 9, 230. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, J.; Qi, L.; Su, W.; Hu, R. Zircon U-Pb geochronology and elemental and Sr–Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China. Contrib. Mineral. Petr. 2006, 151, 1–19. [Google Scholar] [CrossRef]
- Fan, W.M.; Zhang, C.H.; Wang, Y.J.; Guo, F.; Peng, T.P. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-litho sphere interaction. Lithos 2008, 102, 218–236. [Google Scholar] [CrossRef]
- Liu, S.; Su, W.; Hu, R.; Feng, C.; Gao, S.; Coulson, I.M.; Wang, T.; Feng, G.; Tao, Y.; Xia, Y. Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China. Lithos 2010, 114, 253–264. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Meng, Y.; Lu, G.; Liu, S. Determination of upper limit of metallogenic epoch of Liaotun gold deposit in western Guangxi and its implications for chronology of Carlin-type gold deposits in Yunnan-Guizhou-Gangxi golden triangle area. Miner. Depos. 2014, 33, 1–13, (In Chinese with English abstract). [Google Scholar]
- Su, W.; Zhang, H.; Hu, R.; Ge, X.; Xia, B.; Chen, Y.; Zhu, C. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for gold depositional processes. Miner. Depos. 2012, 47, 653–662. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Zhang, A.; Wang, J. Earth Science Big Data Mining and Machine Learning; Sun Yat-sen University Press: Guangzhou, China, 2018. (In Chinese) [Google Scholar]
- Härdle, W.; Simar, L. Applied Multivariate Statistical Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Seyedrahimi-Niaraq, M.; Mahdiyanfar, H. Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry 2021, 81, 125830. [Google Scholar] [CrossRef]
- Cheng, Q. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Tan, Q.; Xia, Y.; Xie, Z.; Yan, J. Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong Carlin-type gold deposit, Guizhou, China. Ore Geol. Rev. 2015, 69, 140–156. [Google Scholar] [CrossRef]
- Hu, R.; Gao, W.; Fu, S.; Su, W.; Peng, J.; Bi, X. Mesozoic intraplate metallogenesis in South China. Earth Sci. Front. 2024, in press. (In Chinese with English abstract). [Google Scholar]
- Liu, J.; Wang, Z.; Song, W.; Wang, D.; Yang, C.; Li, J.; Zheng, L.; Li, S.; Tan, Q.; Xie, Z.; et al. Construction and prospecting practice of multilevel structural detachment metallogenic system of Carlin-type gold deposits in Yunnan-Guizhou-Guangxi area. Geol. Rev. 2023, 69, 513–525, (In Chinese with English abstract). [Google Scholar]
- Xie, X. Exploration geochemistry: Present status and prospects. Geol. Rev. 1996, 42, 346–356, (In Chinese with English abstract). [Google Scholar]
- Hickey, K.A.; Ahmed, A.D.; Barker, S.L.; Leonardson, R. Fault-controlled lateral fluid flow underneath and into a Carlin-type gold deposit: Isotopic and geochemical footprints. Econ. Geo. 2014, 109, 1431–1460. [Google Scholar] [CrossRef]
- Vaughan, J.R.; Hickey, K.; Barker, S.; Dipple, G.M. Stable isotopes and fluid flow pathways in the Banshee Carlin-type gold deposit. In Smart Science for Exploration and Mining, Vol 1 and 2; Williams, P.J., Ed.; James Cook University: Townsville, QLD, Australia, 2010; pp. 266–268. [Google Scholar]
- Muntean, J.L.; Cassinerio, M.D.; Arehart, G.B.; Cline, J.S.; Longo, A.A. Fluid pathways at the Turquoise Ridge Carlin-type gold deposit, Getchell district, Nevada. In Smart Science for Exploration and Mining, Vol 1 and 2; Williams, P.J., Ed.; James Cook University: Townsville, QLD, Australia, 2010; pp. 251–253. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; Volume 3, pp. 1–64. [Google Scholar]
- Xie, Z.; Huang, K.-J.; Xia, Y.; Cline, J.; Tan, Q.; Liu, J.; Xiao, J.; Yan, B. Heavy δ26Mg values in carbonate indicate a magmatic-hydrothermal origin of Carlin-type Au deposit. Geochim. Cosmochim. Acta 2022, 333, 166–183. [Google Scholar] [CrossRef]
- Gao, W.; Hu, R.; Wang, X.; Yin, R.; Bi, X.; Xie, Z.; Fu, S.; Yan, J. Large-scale basement mobilization endows the giant Carlin-type gold mineralization in the Youjiang Basin, South China: Insights from mercury isotopes. GSA Bulletin 2023, 135, 3163–3172. [Google Scholar] [CrossRef]
- Jin, X.; Hofstra, A.H.; Hunt, A.G.; Liu, J.; Yang, W.; Li, J. Noble gases fingerprint the source and evolution of ore-forming fluids of Carlin-type gold deposits in the golden triangle, south China. Econ. Geo. 2020, 115, 455–469. [Google Scholar] [CrossRef]
- Hou, Z.; Duan, L.; Lu, Y.; Zheng, Y.; Zhu, D.; Yang, Z.; Yang, Z.; Wang, B.; Pei, Y.; Zhao, Z.; et al. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Econ. Geo. 2015, 110, 1541–1575. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Li, G.; Li, C.; Wang, C. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res. 2014, 26, 419–437. [Google Scholar] [CrossRef]
- Mao, J.; Cheng, Y.; Chen, M.; Pirajno, F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Deposita 2013, 48, 267–294. [Google Scholar]
Parameters | Au | Ag | As | Bi | Cd | Co | Cu | Hg | Mo | Ni | Pb | Sb | Tl | W | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DL | 0.2 | 0.01 | 0.2 | 0.03 | 0.02 | 0.1 | 0.1 | 0.0005 | 0.12 | 1 | 0.2 | 0.03 | 0.05 | 0.3 | 1 |
Average | 290 | 0.08 | 436 | 0.36 | 0.18 | 15.4 | 33.2 | 0.42 | 0.44 | 29.6 | 22.1 | 3.13 | 0.68 | 1.66 | 80.6 |
Median | 8.2 | 0.07 | 29.3 | 0.35 | 0.15 | 15.2 | 32.5 | 0.28 | 0.30 | 29.1 | 18.9 | 1.93 | 0.70 | 1.61 | 80.5 |
Minimum | 1.1 | 0.01 | 1.61 | 0.06 | 0.07 | 1.02 | 1.2 | 0.063 | 0.13 | 6.23 | 3.4 | 0.31 | 0.09 | 0.11 | 8.64 |
Maximum | 9615 | 0.39 | 4473 | 1.17 | 0.97 | 29.5 | 107 | 4.99 | 2.81 | 56.2 | 107 | 39.7 | 1.10 | 3.13 | 132 |
Std | 0.85 | 0.05 | 0.91 | 0.03 | 0.03 | 0.03 | 0.04 | 0.35 | 0.08 | 0.01 | 0.06 | 0.16 | 0.02 | 0.02 | 0.02 |
Skewness | 1.22 | −0.34 | 0.34 | −1.12 | 1.89 | −4.09 | −3.72 | 0.57 | 1.13 | −2.27 | 0.32 | 0.26 | −3.12 | −5.17 | −4.3 |
Kurtosis | 0.47 | 6.37 | −1.25 | 5.84 | 6.42 | 23.4 | 24.0 | 0.83 | 1.38 | 11.9 | 1.67 | −0.24 | 17.01 | 37.9 | 24 |
CV | 3.52 | 0.68 | 1.83 | 0.37 | 0.75 | 0.26 | 0.35 | 0.64 | 1.01 | 0.23 | 0.72 | 1.34 | 0.22 | 0.21 | 0.21 |
Elements | As | Sb | Au | Hg | Cd | Mo | Pb | Ag | Bi | W | Tl | Ni | Zn | Cu | Co |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | 1 | ||||||||||||||
Sb | 0.81 | 1.00 | |||||||||||||
Au | 0.79 | 0.69 | 1.00 | ||||||||||||
Hg | 0.56 | 0.70 | 0.59 | 1.00 | |||||||||||
Cd | 0.06 | 0.31 | 0.06 | 0.39 | 1.00 | ||||||||||
Mo | 0.12 | 0.34 | 0.09 | 0.28 | 0.26 | 1.00 | |||||||||
Pb | 0.03 | 0.02 | 0.01 | −0.20 | −0.25 | 0.40 | 1.00 | ||||||||
Ag | 0.13 | 0.18 | 0.11 | −0.01 | −0.32 | 0.28 | 0.69 | 1.00 | |||||||
Bi | 0.05 | 0.02 | 0.01 | −0.25 | −0.40 | 0.10 | 0.54 | 0.61 | 1.00 | ||||||
W | 0.29 | 0.24 | 0.22 | 0.03 | −0.37 | 0.05 | 0.33 | 0.46 | 0.69 | 1.00 | |||||
Tl | 0.39 | 0.47 | 0.34 | 0.22 | −0.13 | 0.18 | 0.28 | 0.43 | 0.64 | 0.81 | 1.00 | ||||
Ni | 0.20 | 0.05 | 0.11 | −0.14 | −0.33 | 0.03 | 0.35 | 0.37 | 0.56 | 0.64 | 0.59 | 1.00 | |||
Zn | 0.27 | 0.09 | 0.18 | −0.02 | −0.46 | 0.07 | 0.44 | 0.49 | 0.58 | 0.71 | 0.53 | 0.80 | 1.00 | ||
Cu | 0.22 | 0.18 | 0.11 | −0.03 | −0.47 | 0.15 | 0.50 | 0.70 | 0.73 | 0.73 | 0.68 | 0.69 | 0.79 | 1.00 | |
Co | 0.22 | 0.09 | 0.11 | −0.13 | −0.53 | 0.14 | 0.53 | 0.66 | 0.71 | 0.68 | 0.60 | 0.84 | 0.83 | 0.86 | 1 |
Percentiles | Au | Ag | As | Bi | Cd | Co | Cu | Hg | Mo | Ni | Pb | Sb | Tl | W | Zn | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.5% | 2570 | 0.26 | 2904 | 0.66 | 0.64 | 23.6 | 57.3 | 1.61 | 1.71 | 47.2 | 62.9 | 10.2 | 0.93 | 2.29 | 106 | 1.20 | 1.95 | 2.57 | 2.69 |
90% | 739 | 0.11 | 1362 | 0.49 | 0.23 | 19.3 | 43.4 | 0.73 | 0.78 | 35.9 | 34.2 | 6.87 | 0.86 | 2.10 | 97.6 | 0.71 | 1.55 | 0.99 | 0.89 |
85% | 282 | 0.10 | 1063 | 0.44 | 0.21 | 18.3 | 39.5 | 0.58 | 0.60 | 34.9 | 31.4 | 5.17 | 0.83 | 1.96 | 93.1 | 0.61 | 1.22 | 0.66 | 0.72 |
75% | 39.8 | 0.09 | 520 | 0.40 | 0.18 | 17.1 | 37.7 | 0.51 | 0.47 | 32.1 | 25.5 | 3.74 | 0.78 | 1.83 | 91.0 | 0.45 | 0.79 | 0.48 | 0.39 |
60% | 11.5 | 0.08 | 113 | 0.37 | 0.16 | 16.4 | 34.6 | 0.35 | 0.34 | 30.2 | 19.9 | 2.54 | 0.74 | 1.67 | 85.2 | 0.26 | 0.03 | 0.09 | 0.07 |
40% | 6.02 | 0.07 | 16.0 | 0.33 | 0.14 | 14.5 | 31.1 | 0.23 | 0.27 | 28.2 | 16.3 | 1.48 | 0.65 | 1.56 | 78.4 | 0.00 | −0.48 | −0.30 | −0.31 |
25% | 3.80 | 0.06 | 10.6 | 0.29 | 0.12 | 13.5 | 27.6 | 0.16 | 0.21 | 25.9 | 13.4 | 1.00 | 0.59 | 1.51 | 74.1 | −0.21 | −0.80 | −0.63 | −0.52 |
15% | 3.10 | 0.05 | 7.34 | 0.27 | 0.11 | 12.4 | 24.0 | 0.11 | 0.18 | 24.9 | 11.8 | 0.74 | 0.55 | 1.43 | 69.9 | −0.45 | −1.00 | −0.88 | −0.71 |
10% | 2.74 | 0.04 | 5.11 | 0.23 | 0.10 | 11.7 | 22.0 | 0.10 | 0.17 | 23.6 | 10.1 | 0.63 | 0.51 | 1.38 | 64.3 | −0.71 | −1.14 | −0.95 | −1.01 |
2.5% | 1.70 | 0.03 | 2.78 | 0.17 | 0.08 | 7.64 | 14.8 | 0.08 | 0.14 | 18.3 | 7.85 | 0.42 | 0.32 | 1.04 | 35.0 | −1.62 | −1.37 | −1.45 | −1.52 |
Elements | F1 | F2 | F3 | F4 |
---|---|---|---|---|
W | 0.87 | 0.16 | 0.07 | −0.03 |
Ni | 0.85 | 0.00 | 0.08 | −0.13 |
Tl | 0.83 | 0.31 | 0.05 | 0.23 |
Cu | 0.82 | 0.08 | 0.39 | −0.13 |
Co | 0.82 | 0.03 | 0.40 | −0.23 |
Zn | 0.80 | 0.11 | 0.24 | −0.25 |
Bi | 0.75 | −0.13 | 0.38 | −0.05 |
As | 0.18 | 0.91 | 0.02 | −0.07 |
Au | 0.08 | 0.90 | 0.03 | −0.12 |
Sb | 0.13 | 0.87 | 0.08 | 0.32 |
Hg | −0.07 | 0.77 | −0.09 | 0.35 |
Pb | 0.28 | −0.08 | 0.86 | −0.01 |
Ag | 0.43 | 0.09 | 0.77 | −0.08 |
Cd | −0.35 | 0.17 | −0.24 | 0.77 |
Mo | 0.02 | 0.14 | 0.57 | 0.66 |
Eigenvalue | 6.42 | 3.35 | 1.48 | 0.87 |
% of variance | 34.6 | 21.4 | 14.9 | 9.85 |
Cumulative % | 34.6 | 56.0 | 70.9 | 80.8 |
Element | Categories | Range | Numbers | Element | Categories | Range | Numbers |
---|---|---|---|---|---|---|---|
Au | Au1 | [1.1, 4.5) | 40 | Ag | Ag1 | [0.01, 0.06) | 35 |
Au2 | [4.5, 69.2) | 58 | Ag2 | [0.06, 0.08) | 43 | ||
Au3 | [69.2, 9615] | 27 | Ag3 | [0.08, 6.37] | 47 | ||
As | As1 | [1.61, 33.1) | 64 | Bi | Bi1 | [0.06, 0.29) | 29 |
As2 | [33.1, 339) | 27 | Bi2 | [0.29, 0.41) | 67 | ||
As3 | [339, 4473] | 34 | Bi3 | [0.41, 1.17] | 29 | ||
Cd | Cd1 | [0.07, 0.13) | 33 | Co | Co1 | [1.02, 14.1) | 41 |
Cd2 | [0.13, 0.19) | 62 | Co2 | [14.1, 17.8) | 58 | ||
Cd3 | [0.19, 0.97] | 30 | Co3 | [17.8, 29.5] | 26 | ||
Cu | Cu1 | [1.20, 28.2) | 35 | Hg | Hg1 | [0.06, 0.20) | 44 |
Cu2 | [28.2, 39.8) | 72 | Hg2 | [0.20, 0.48) | 47 | ||
Cu3 | [39.8, 107] | 18 | Hg3 | [0.48, 4.99] | 34 | ||
Mo | Mo1 | [0.13, 0.26) | 47 | Ni | Ni1 | [6.23, 27.5) | 42 |
Mo2 | [0.26, 0.52) | 50 | Ni2 | [27.5, 33.1) | 60 | ||
Mo3 | [0.52, 2.81] | 28 | Ni3 | [33.1, 56.2] | 23 | ||
Pb | Pb1 | [3.40, 15.1) | 42 | Sb | Sb1 | [0.31, 1.24) | 45 |
Pb2 | [15.1, 26.9) | 57 | Sb2 | [0.52, 3.61) | 48 | ||
Pb3 | [26.9, 107] | 26 | Sb3 | [3.61, 39.7] | 32 | ||
Tl | Tl1 | [0.09, 0.62) | 35 | W | W1 | [0.11, 1.51) | 31 |
Tl2 | [0.62, 0.78) | 55 | W2 | [1.51, 1.82) | 62 | ||
Tl3 | [0.78, 1.1] | 35 | W3 | [1.82, 3.13] | 32 | ||
Zn | Zn1 | [8.64, 70.8) | 21 | ||||
Zn2 | [70.8, 87.1) | 64 | |||||
Zn3 | [87.1, 132] | 40 |
Number | Association Rules | Support (%) | Confidence (%) | Lift |
---|---|---|---|---|
Rule 1 | Ag1-As1 → Au1 | 16.8 | 95.2 | 2.98 |
Rule 3 | Tl1-Sb1-As1-Ag1 → Au1 | 9.60 | 100 | 3.13 |
Rule 2 | Cu1-Ag1-Sb1 → Au1 | 10.4 | 100 | 3.13 |
Rule 4 | Bi1-Cu1-Co1-Sb1-Mo1 → Au1 | 6.40 | 100 | 3.13 |
Rule 5 | Mo3-Pb2-Bi2 → Au2 | 7.20 | 100 | 2.16 |
Rule 6 | As2-Hg2-Tl2-W2 → Au2 | 4.80 | 100 | 2.16 |
Rule 7 | Cu3-Bi3-As1 → Au2 | 6.40 | 100 | 2.16 |
Rule 8 | Hg2-Ag2-Tl2-Cd2 → Au2 | 6.40 | 100 | 2.16 |
Rule 9 | Tl3-As3-Ag2 → Au3 | 8.00 | 100 | 4.63 |
Rule 10 | Sb3-W3-Tl3-As3-Ni2 → Au3 | 8.00 | 100 | 4.63 |
Rule 11 | Ni2-Tl3-As3-Cu2 → Au3 | 8.00 | 100 | 4.63 |
Rule 12 | W3-Tl3-As3-Zn3-Ni2-Cd2 → Au3 | 5.60 | 100 | 4.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cao, S.; Tan, Q.; Xie, Z.; Xia, Y.; Zheng, L.; Liu, J.; Zhou, K.; Xiao, J.; Ren, T. Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China. Minerals 2024, 14, 492. https://doi.org/10.3390/min14050492
Wang X, Cao S, Tan Q, Xie Z, Xia Y, Zheng L, Liu J, Zhou K, Xiao J, Ren T. Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China. Minerals. 2024; 14(5):492. https://doi.org/10.3390/min14050492
Chicago/Turabian StyleWang, Xiaolong, Shengtao Cao, Qinping Tan, Zhuojun Xie, Yong Xia, Lujing Zheng, Jianzhong Liu, Kelin Zhou, Jingdan Xiao, and Tingxian Ren. 2024. "Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China" Minerals 14, no. 5: 492. https://doi.org/10.3390/min14050492
APA StyleWang, X., Cao, S., Tan, Q., Xie, Z., Xia, Y., Zheng, L., Liu, J., Zhou, K., Xiao, J., & Ren, T. (2024). Exploration Vectors and Indicators Extracted by Factor Analysis and Association Rule Algorithms at the Lintan Carlin-Type Gold Deposit, Youjiang Basin, China. Minerals, 14(5), 492. https://doi.org/10.3390/min14050492