The Characteristics and Enrichment Process of Dabu Ion-Adsorption Heavy Rare-Earth Element (HREE) Deposits in Jiangxi Province, South China
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Methods
3.1. Description of Regolith Profile and Sampling
3.2. Analytical Methods
3.3. Mass Transfer Calculations
4. Results
4.1. Characteristics of Bedrock
4.1.1. Petrology
4.1.2. Petrogeochemistry
4.2. Material Variations of Dabu Granite in Weathering Profile
4.2.1. Mineral Compositions
4.2.2. Major Elements
4.2.3. Distribution of REEs
4.2.4. Speciation of REEs
5. Discussion
5.1. REEs Fractionation
5.2. Ore-Forming Process
- Initial stage: At the onset of weathering, rock-forming minerals that are susceptible to weathering, such as plagioclase and biotite, dissolve and transform into 2:1 type clay, mainly illite (Figure 8h). These clays have a large specific surface area (SSA) and provide abundant adsorption sites for REEs [66]. During this stage, a certain amount of Fe oxides is precipitated from the primary Fe oxide minerals (e.g., magnetite and ilmenite) and Fe-bearing silicate minerals (e.g., biotite). Mn, usually present as a trace element, leaches with Fe oxides and forms Fe–Mn (hydr)oxides through oxidation and precipitation (Figure 8h,i) [3]. Fe–Mn oxides are crucial for the enrichment of HREEs, owing to their preferential adsorption of HREEs [68,69]. Crystalline Fe oxides exhibit stronger selective adsorption of HREEs compared with amorphous Fe oxides; however, the latter has a higher adsorption capacity because of its larger SSA [75,76]. Both illite and Fe–Mn oxides are excellent scavengers of REEs, owing to their relatively high adsorption capacities, as previously mentioned. Therefore, they are indispensable for the fixation of iREEs in the early stages of weathering (Figure 13a).
- Intermediate stage: As weathering progresses, many minerals in parent rocks continuously decompose, leading to the release of elements from minerals. Mobile major elements (e.g., Na+, Ca2+, K+) are largely removed by weathering fluids from the regolith (Figure 13b). Conversely, REEs are mainly fixed by clays and Fe–Mn oxides through ion exchange, electrostatic interaction, surface complexation, structural incorporation, or formation of secondary minerals (such as florencite and cerianite) in the regolith [13,14,22,23,24,77]. These processes often cause significant REE fractionation, owing to the different geochemical behaviors of REEs during weathering [2,3,4,10,22,23,24,38,65]. Intensified weathering also accelerates the transformation from 2:1 type clays (mainly illite) to 1:1 type clays (e.g., kaolinite and halloysite). Illite has a larger SSA and stronger cation exchange capacity than kaolinite and halloysite [66,77]. However, the relative content of illite is much lower than that of kaolinite and halloysite in REE-rich horizons (Figure 7, Figure 11 and Figure 12). Therefore, REEs are mainly adsorbed by kaolinite and halloysite.
- Advanced stage: Under conditions of intense chemical weathering, rock-forming minerals almost completely decompose, except for quartz (Figure 7). At this stage, major elements are massively removed from the regolith by fluids (Figure 9). The REE-bearing minerals that can be weathered completely dissolve, serving as the main source of iREEs. However, weathering-resistant REE-bearing minerals (e.g., zircon, xenotime, and monazite) retain REEs in the residue fraction. Since halloysite is relatively unstable under intense weathering, it transforms into thermodynamically stable kaolinite by unrolling its edges. This process results in the adsorbed REEs located in the internal and lumen pores being directly exposed to the weathering fluids, making desorption much more feasible [77]. The pH value of the upper regolith is relatively low (4.44–4.65), causing the adsorbed iREEs to be largely exchanged by abundant H+ [2,42,77,78,79]. The released iREEs then migrate downward with the fluids. As the pH value increases, the mobility of REE complexes decreases, enhancing the adsorption capacity of clays, organic matter, and Fe–Mn oxides for REEs [57,80,81,82]. As a result, REEs gradually accumulate in the horizons, where the pH value rapidly increases from 4.65 at a depth of 8.5 m to 5.59 at a depth of 20 m (Figure 11 and Table 2). However, the complexes of HREE are more stable than those of LREEs, causing HREEs to tend to be enriched in the deeper regolith (Figure 13c).
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferhaoui, S.; Kechiched, R.; Bruguier, O.; Sinisi, R.; Kocsis, L.; Mongelli, G.; Bosch, D.; Ameur-Zaimeche, O.; Laouar, R. Rare earth elements plus yttrium (REY) in phosphorites from the Tébessa region (Eastern Algeria): Abundance, geochemical distribution through grain size fractions, and economic significance. J. Geochem. Explor. 2022, 241, 107058. [Google Scholar] [CrossRef]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Villanova-De-Benavent, C.; Nason, P. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tan, W.; Liang, X.; He, H.; Ma, L.; Bao, Z.; Zhu, J. REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province, South China. Ore Geol. Rev. 2021, 134, 104172. [Google Scholar] [CrossRef]
- Li, Y.H.M.; Zhou, M.F. The role of clay minerals in forming the regolith-hosted heavy rare earth element deposits. Am. Mineral. 2020, 105, 92–108. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhou, J.; Chi, Q.H.; Wang, W.; Zhang, B.M.; Nie, L.S.; Liu, D.S.; Xu, S.F.; Wu, H.; Gao, Y.F. Geochemical Background and Distribution of Rare Earth Elements in China: Implications for Potential Prospects. Acta Geosci. Sin. 2020, 41, 747–758. [Google Scholar]
- Xu, C.; Kynický, J.; Smith, M.P.; Kopriva, A.; Brtnický, M.; Urubek, T.; Yang, Y.; Zhao, Z.; He, C.; Song, W. Origin of heavy rare earth mineralization in South China. Nat. Commun. 2017, 8, 14598. [Google Scholar] [CrossRef]
- Simandl, G.J. Geology and market-dependent significance of rare earth element resources. Miner. Depos. 2014, 49, 889–904. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhou, J.; Zhang, B.M.; Liu, D.S.; Xu, S.F.; Wang, W.; Wang, Q.; Qiao, Y.; Xie, M.J.; Liu, F.T.; et al. Finding and Implication of an Undiscovered Giant Deposit of Ion-adsorption Rare Earth Elements in Honghe, South Yunnan, China. Acta Geosci. Sin. 2022, 43, 509–519. [Google Scholar]
- García, M.V.R.; Krzemień, A.; del Campo, M.M.; Álvarez, M.M.; Gent, M.R. Rare earth elements mining investment: It is not all about China. Resour. Policy 2017, 53, 66–76. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.-F.; Williams-Jones, A.E. The genesis of regolith-hosted heavy rare earth element deposits:Insights from the world-class Zudong deposit in Jiangxi Province, South China. Econ. Geol. 2019, 114, 541–568. [Google Scholar] [CrossRef]
- Pan, G.T.; Lu, S.N.; Xiao, Q.H.; Zhang, K.X.; Yin, F.G.; Hao, G.J.; Luo, M.S.; Ren, F.; Yuan, S.H. Division of tectonic stages and evolution in China. Earth Sci. Front. 2016, 23, 1–23. [Google Scholar]
- Chu, G.B.; Chen, H.Y.; Feng, Y.Z.; Wu, C.; Li, S.S.; Zhang, Y.; Lai, C.K. Are South China granites special in forming ion-adsorption REE deposits? Gondwana Res. 2024, 125, 82–90. [Google Scholar] [CrossRef]
- Fu, W.; Li, X.; Feng, Y.; Feng, M.; Peng, Z.; Yu, H.; Lin, H. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology. Chem. Geol. 2019, 520, 33–51. [Google Scholar] [CrossRef]
- Fu, W.; Luo, P.; Hu, Z.; Feng, Y.; Liu, L.; Yang, J.; Feng, M.; Yu, H.; Zhou, Y. Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: Genetic mechanism and formation preference. Ore Geol. Rev. 2019, 114, 103120. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, Q.; Luo, P.; Li, P.Q.; Lu, J.P.; Zhou, H.; Yi, Z.B.; Xu, C. Mineralization diversity of ion-adsorption type REE deposit in southern China and the critical influence of parent rocks. Acta Geol. Sin. 2022, 96, 3901–3925. [Google Scholar]
- Zhao, Z.; Wang, D.H.; Chen, Z.Y.; Guo, N.X.; Liu, X.X.; He, H.H. Metallogenic speciation of rare earth mineralized igneous rocks in the Eastern Nanling region. Geotecton. Met. 2014, 38, 255–263. [Google Scholar]
- Zhao, Z.; Wang, D.H.; Chen, D.H.; Chen, Z.Y. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling range. Acta Geol. Sin. 2017, 91, 2814–2827. [Google Scholar]
- Liu, R.; Wang, R.C.; Lu, X.C.; Li, J. Nano-sized rareearth mineralsfrom granite related weathering-type REE deposits in southern Jiangxi. Acta Petrol. Mineral. 2016, 35, 617–626, (In Chinese with English abstract). [Google Scholar]
- Huang, D.H.; Wu, C.Y.; Han, J.Z. REE Geochemistry and Mineralization Characteristics of the Zudong and Guanxi Granites, Jiangxi Province. Acta Geol. Sin.-Engl. 1989, 2, 139–157. [Google Scholar]
- Wu, K.X.; Zhu, P.; Sun, T.; Chen, L.K.; Ouyang, H.; Xiong, F.K. Study on the Ore-controlling Factors and the Mineralization and Enrichment Features of Dabu HREE Deposit, Southern Jiangxi Province. Chin. Rare Earths 2017, 38, 1–10. [Google Scholar]
- Deng, Z.C. Characteristics and genesis of the Datian HREE granite, southern Jiangxi. J. Guilin Coll. Geol. 1988, 8, 39–48. [Google Scholar]
- Ma, Y.J.; Huo, R.K.; Xu, Z.F.; Zhang, H.; Liu, C.Q. REE behavior and influence factors during chemical weathering. Adv. Earth Sci. 2004, 19, 87–94. [Google Scholar]
- Yang, M.; Liang, X.; Ma, L.; Huang, J.; He, H.; Zhu, J. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chem. Geol. 2019, 525, 210–217. [Google Scholar] [CrossRef]
- Yang, M.; Liang, X.; Li, Y.; He, H.; Zhu, R.; Arai, Y. Ferrihydrite transformation impacted by adsorption and structural incorporation of rare earth elements. ACS Earth Space Chem. 2021, 5, 2768–2777. [Google Scholar] [CrossRef]
- Sanematsu, K.; Kon, Y.; Imai, A.; Watanabe, K.; Watanabe, Y. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner. Depos. 2013, 48, 437–451. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Huang, C.; Liu, X.; Wang, X.; Li, C.; Wu, B.; Luo, W. Discovery of supergene REE-fluorocarbonate minerals in weathered spheres of Xiajialing regolith-hosted rare earth element deposit in Xiangshan, Jiangxi Province, South China. Ore Geol. Rev. 2023, 162, 105712. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, B.F.; Zhang, X.W. Geological, geochemical characteristics and significance of Fengshan HREE deposit in Ganxian district, Jiangxi Province. East China Geol. 2020, 41, 359–367. [Google Scholar]
- Liu, X.Y. 1:50000 Dabu Rigional Geological Survey Report; Geological Survey of Jiangxi Province: Nanchang, China, 2000. [Google Scholar]
- Bureau of Geology and Mineral Resources of Jiangxi Province. Regional Geology of Jiangxi Province; Geological Publishing House: Beijing, China, 1982; pp. 373–375.
- Fang, G.C.; Chen, Z.H.; Chen, Y.C.; Zhao, Z.; Hou, K.J.; Zeng, Z.L.; Luo, Z. Two petrogenetic stages of Dabu composite granite pluton in South Jiangxi and their geological implications. Miner. Depos. 2017, 36, 1415–1424, (In Chinese with English abstract). [Google Scholar]
- Wang, H.; He, H.; Yang, W.; Bao, Z.; Liang, X.; Zhu, J.; Ma, L.; Huang, Y. Zircon texture and composition fingerprint HREE enrichment in muscovite granite bedrock of the Dabu ion-adsorption REE deposit, South China. Chem. Geol. 2023, 616, 121231. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Han, Z.; Zhou, J.; Xu, S.; Zhang, Q.; Chen, H.; Bo, W.; Xia, X. Concentration and distribution of mercury in drainage catchment sediment and alluvial soil of China. J. Geochem. Explor. 2015, 154, 32–48. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, J.F.; Wang, Y. Analytical scheme and quality monitoring system for China Geochemical Baselines. Earth Sci. Front. 2012, 19, 33–42. [Google Scholar]
- Liu, Y.; Liu, H.C. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica 1996, 25, 552–558. [Google Scholar]
- Ma, Y.J. Geochemistry of Trace Elements and Strontium Isotopes in Chemical Weathering. Ph.D. Thesis, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China, 1999. (In Chinese). [Google Scholar]
- Shi, Y.H.; Qiu, L.; Tang, B.Y.; Yang, Z.P.; Gu, X.Q. Determination of total ionic-phase rare earth and component in ion-adsorption rare earth ore by inductively coupled plasma mass spectrometry. Metall. Anal. 2014, 34, 14–19. [Google Scholar]
- Brimhall, G.H.; Dietrich, W.E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochim. Cosmochim. Acta 1987, 51, 567–587. [Google Scholar] [CrossRef]
- Nesbitt, H.W. Mobility and fractionation of rare earth elements during weathering of agranodiorite. Nature 1979, 279, 206–210. [Google Scholar] [CrossRef]
- Wu, C.Y. The Study of Ion-Adsorbed Type of Rare Earth Deposits in Weathering Crust from South Jiangxi and North Guangdong Provinces. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 1988. [Google Scholar]
- Li, Y.H.M.; Zhao, W.W.; Zhou, M.-F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Bao, Z.; Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Huang, J.; Tan, W.; Liang, X.L.; He, H.P.; Ma, L.Y.; Bao, Z.W.; Zhu, J.X.; Zhou, Q. Weathering characters of REE-bearing accessory minerals and their effects on REE mineralization in Renju regolith-hosted REE deposits in Guangdong Province. Geochimica 2022, 51, 684–695. [Google Scholar]
- Zhao, Z.; Wang, D.H.; Bagsa, L.; Chen, Z.Y. Geochemical and REE mineralogical characteristics of the Zhaibei Granite in Jiangxi Province, southern China, and a model for the genesis of ion-adsorption REE deposits. Ore Geol. Rev. 2022, 140, 104579. [Google Scholar] [CrossRef]
- Huang, D.H.; Wu, C.Y.; Han, J.Z. Petrology, rare earth geochemistry and diagenetic mechanism of Zudong and Guanxi granites in Jiangxi Province. Bull. Chin. Acad. Geol. Sci. 1993, Z1, 69–94. [Google Scholar]
- Murakami, H.; Ishihara, S. REE mineralization of weathered crust and clay sediment on granitic rocks in the Sanyo belt, SW Japan and the southern Jiangxi Province, China. Resour. Geol. 2008, 58, 373–401. [Google Scholar] [CrossRef]
- Ishihara, S.; Hua, R.; Hoshino, M.; Murakami, H. REE abundance and REE minerals in granitic rocks in the Nanling range, Jiangxi Province, southern China, and generation of the REE-rich weathered crustd eposits. Resour. Geol. 2008, 58, 355–372. [Google Scholar] [CrossRef]
- Zhang, B.T.; Wu, J.Q.; Ling, H.F.; Chen, P.R. Magma-dynamic evidence for Indo-sinian cycle emplacement of the Zhaibei and Pitou granite batholith of Nanling range in south China and the tectonic implication. Contrib. Geol. Miner. Resour. Res. 2011, 26, 119–130. [Google Scholar]
- Xie, Z.D.; Yang, Y. Isotopic age and geological significance of Anxi pluton in Xinfeng, Jiangxi Province. Jiangxi Geol. 2000, 14, 172–175. [Google Scholar]
- Zhang, B.; Zhu, X.P.; Zhang, B.H.; Gao, R.D.; Zeng, Z.J.; Ma, G.T. Geochemical Characteristics of Tuguanzhai Ion-Adsorption Type REE Deposit in Tengchong, Yunnan. J. Chin. Soc. Rare Earths 2019, 37, 491–506. [Google Scholar]
- Huang, H.Q.; Li, X.H.; Li, W.X.; Liu, Y. Age and origin of the Dadongshan granite from the Nanling range: SHRIMP U-Pb zircon age, geochemistry and Sr-Nd-Hf isotopes. Geol. J. China Univ. 2008, 3, 317–333, (In Chinese with English abstract). [Google Scholar]
- Chen, B.F.; Zou, X.Y.; Peng, L.L.; Qi, F.Y.; Que, X.H.; Zhang, Q.; Zhou, X.H. Geological characteristics and heavy rare earth Ore prospecting potential of Qingxi Pluton rare earth deposit. Chin. Rare Earths 2019, 40, 20–31. [Google Scholar]
- Shi, C.; Yan, M.; Chi, Q. Abundances of chemical elements of the granitoids in different geotectonic units of China and their characteristics. Front. Earth Sci. China 2007, 1, 309–321. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basin; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Nesbitt, H.; Young, G. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Sanematsu, K.; Ejima, T.; Kon, Y.; Manaka, T.; Zaw, K.; Morita, S.; Seo, Y. Fractionation of rare-earth elements during magmatic differentiation and weathering of calc-alkaline granites in southern Myanmar. Miner. Mag. 2016, 80, 77–102. [Google Scholar] [CrossRef]
- Wang, L.; Xu, C.; Zhao, Z.; Song, W.; Kynicky, J. Petrological and geochemical characteristics of Zhaibei granites in Nanling region, Southeast China: Implications for REE mineralization. Ore Geol. Rev. 2015, 64, 569–582. [Google Scholar] [CrossRef]
- Chen, D.Q.; Wu, J.S. Mineralization mechanism of the ion-adsorption rare earth deposit. J. Chin. Rare Earth Soc. 1990, 8, 175–179. [Google Scholar]
- Chen, Z.C.; Hong, H.H.; Zhuang, W.M.; Yu, S.J. A study on determination of rare earth species in weathering crust of granites. J. Anal. Test. 1993, 4, 21–25. [Google Scholar]
- Wang, L.J.; Wang, Y.Q.; Zhang, S.; Liu, S.J.; Gao, X.J.; Sun, J.X.; Hu, A.T.; Chen, H.M.; Guo, F.Q. Speciation of rare earth elements in different types of soils in China. J. Chin. Rare Earth Soc. 1997, 1, 65–71. [Google Scholar]
- Wood, S.A. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 1990, 82, 159–186. [Google Scholar] [CrossRef]
- Wood, S.A. The aqueous geochemistry of the rare-earth element: Critical stability constants for complexes with simple carboxylic acids at 25 ℃ and 1 bar and their application to nuclear waste management. Eng. Geol. 1993, 34, 229–259. [Google Scholar] [CrossRef]
- Yusoff, Z.M.; Ngwenya, B.T.; Parsons, I. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chem. Geol. 2013, 349–350, 71–86. [Google Scholar] [CrossRef]
- Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 2002, 182, 57–68. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Fan, B.; Luan, Z. Sorption of endrin to montmorillonite and kaolinite clays. J. Hazard. Mater. 2009, 168, 210–214. [Google Scholar] [CrossRef]
- Huang, J.; He, H.; Tan, W.; Liang, X.; Ma, L.; Wang, Y.; Qin, X.; Zhu, J. Groundwater controls REE mineralisation in the regolith of South China. Chem. Geol. 2021, 577, 120295. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Wang, Y.; Xu, Y.; Lin, Z.; Liang, X.; Cheng, H. Review of rare earth element (REE) adsorption on and desorption from clay minerals: Application to formation and mining of ion-adsorption REE deposits. Ore Geol. Rev. 2023, 157, 105446. [Google Scholar] [CrossRef]
- Ichimura, K.; Sanematsu, K.; Kon, Y.; Takagi, T.; Murakami, T. REE redistributions during granite weathering: Implications for Ce anomaly as a proxy for paleoredox states. Am. Miner. 2020, 105, 848–859. [Google Scholar] [CrossRef]
- Ohta, A.; Kagi, H.; Nomura, M.; Tsuno, H.; Kawabe, I. Coordination study of rare earth elements on Fe oxyhydroxide and Mn dioxides: Part I. Influence of a multi-electron excitation on EXAFS analyses of La, Pr, Nd, and Sm. Am. Miner. 2009, 94, 467–475. [Google Scholar] [CrossRef]
- Quinn, K.A.; Byrne, R.H.; Schijf, J. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of pH and ionic strength. Mar. Chem. 2006, 99, 128–150. [Google Scholar] [CrossRef]
- Chi, R.A.; Tian, J.; Luo, X.P.; Xu, Z.G.; He, Z.Y. The basic research on the weathered crust elution-deposited rare earth ores. Nonferrous Met. Sci. Eng. 2012, 3, 1–13. [Google Scholar]
- Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 1999, 63, 67–77. [Google Scholar] [CrossRef]
- Davranche, M.; Pourret, O.; Gruau, G.; Dia, A.; Jin, D.; Gaertner, D. Competitive binding of REE to humic acid and manganese oxide: Impact of reaction kinetics on development of cerium anomaly and REE adsorption. Chem. Geol. 2008, 247, 154–170. [Google Scholar] [CrossRef]
- Xiao, S.; Liu, Y.; Zhao, W. Redox constraints on clay-sized rare earth element fractionation in weathered granite crust in the Chahe deposit, China. Appl. Clay Sci. 2024, 254, 107365. [Google Scholar] [CrossRef]
- Cantrell, K.J.; Byrne, R.H. Rare earth element complexation by carbonate and oxalate ions. Geochim. Cosmochim. Acta 1987, 51, 597–605. [Google Scholar] [CrossRef]
- Koeppenkastrop, D.; De Carlo, E.H. Sorption of rare-earth elements from seawater onto synthetic mineral particles: An experimental approach. Chem. Geol. 1992, 95, 251–263. [Google Scholar] [CrossRef]
- Wu, P.Q.; Zhou, J.W.; Huang, J.; Lin, X.J.; Liang, X.L. Enrichment and fractionation of rare earth elements in ion-adsorption rare earth elements deposits: Constraints of iron oxide-clay mineral composites. Geochemica 2022, 51, 271–282. [Google Scholar]
- Li, Y.H.M.; Zhou, M.F.; Williams-Jones, A.E. Controls on the Dynamics of Rare Earth Elements During Subtropical Hillslope Processes and Formation of Regolith-Hosted Deposits. Econ. Geol. 2020, 115, 1097–1118. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Li, M.Y.H.; Wang, Z.; Li, X.-C.; Liu, J. The genesis of regolith-hosted rare earth element and scandium deposits: Current understanding and outlook to future prospecting. Chin. Sci. Bull. 2020, 65, 3809–3824. [Google Scholar] [CrossRef]
- Huang, Y.; He, H.; Liang, X.; Bao, Z.; Tan, W.; Ma, L.; Zhu, J.; Huang, J.; Wang, H. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China. Ore Geol. Rev. 2021, 135, 104173. [Google Scholar] [CrossRef]
- Alshameri, A.; He, H.; Xin, C.; Zhu, J.; Xinghu, W.; Zhu, R.; Wang, H. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters. Hydrometallurgy 2019, 185, 149–161. [Google Scholar] [CrossRef]
- Gu, Q.; Liu, J.; Yang, Y.; Zhu, R.; Ma, L.; Liang, X.; Long, S.; Zhu, J.; He, H. The different effects of sulfate on the adsorption of REEs on kaolinite and ferrihydrite. Appl. Clay Sci. 2022, 221, 106468. [Google Scholar] [CrossRef]
- Song, Y.H.; Shen, L.P. REE geochemistry of the weathering crust of acid volcanic rocks-An experimental study. Geochimica 1986, 3, 225–234. [Google Scholar]
Sample | SiO2 | Al2O3 | TFe2O3 | MgO | CaO | Na2O | K2O | MnO | P2O5 | TiO2 | CIA |
---|---|---|---|---|---|---|---|---|---|---|---|
DBS01 | 52.3 | 28.8 | 3.40 | 0.15 | 0.06 | 0.03 | 0.77 | 0.03 | 0.02 | 0.31 | 96.8 |
DBS02 | 55.6 | 27.7 | 2.24 | 0.12 | 0.06 | 0.03 | 0.75 | 0.05 | 0.02 | 0.14 | 96.8 |
DBS03 | 48.9 | 31.4 | 3.28 | 0.15 | 0.06 | 0.04 | 0.75 | 0.03 | 0.02 | 0.23 | 97.1 |
DBS04 | 60.8 | 25.6 | 2.00 | 0.12 | 0.07 | 0.03 | 0.71 | 0.03 | 0.02 | 0.13 | 96.7 |
DBS05 | 54.6 | 28.0 | 2.59 | 0.14 | 0.06 | 0.03 | 0.65 | 0.07 | 0.02 | 0.18 | 97.2 |
DBS06 | 56.2 | 29.3 | 0.86 | 0.06 | 0.06 | 0.07 | 2.00 | 0.14 | 0.01 | 0.09 | 92.4 |
DBS07 | 56.2 | 29.7 | 0.72 | 0.06 | 0.06 | 0.08 | 2.43 | 0.34 | 0.01 | 0.06 | 91.2 |
DBS08 | 66.1 | 20.9 | 0.80 | 0.08 | 0.06 | 0.10 | 4.96 | 0.15 | 0.01 | 0.05 | 78.7 |
DBS09 | 60.8 | 24.3 | 0.76 | 0.05 | 0.06 | 0.14 | 5.82 | 0.12 | 0.01 | 0.06 | 78.5 |
DBS10 | 64.7 | 22.8 | 0.50 | 0.05 | 0.06 | 0.17 | 5.83 | 0.10 | 0.01 | 0.05 | 77.3 |
DBS11 | 62.1 | 24.0 | 0.81 | 0.04 | 0.07 | 0.20 | 5.93 | 0.21 | 0.01 | 0.05 | 77.8 |
DBS12 | 67.3 | 20.5 | 0.59 | 0.03 | 0.06 | 0.18 | 5.72 | 0.13 | 0.01 | 0.05 | 75.7 |
DBS13 | 70.8 | 18.4 | 0.64 | 0.04 | 0.10 | 0.69 | 5.26 | 0.11 | 0.01 | 0.04 | 72.3 |
DBS14 | 72.6 | 15.6 | 0.57 | 0.04 | 0.11 | 1.55 | 5.23 | 0.09 | 0.01 | 0.04 | 72.6 |
DBR01 | 76.4 | 11.9 | 0.51 | 0.03 | 0.24 | 3.54 | 4.63 | 0.07 | 0.01 | 0.03 | 51.4 |
DBR02 | 74.5 | 12.0 | 1.23 | 0.13 | 0.64 | 3.08 | 4.51 | 0.07 | 0.03 | 0.09 | 52.0 |
DBR03 | 75.8 | 12.1 | 0.75 | 0.04 | 0.48 | 3.31 | 4.57 | 0.11 | 0.01 | 0.03 | 51.7 |
DBR04 | 76.1 | 12.3 | 1.47 | 0.05 | 0.18 | 2.49 | 4.77 | 0.08 | 0.01 | 0.03 | 56.1 |
Sample | ΣREE (ppm) | ΣLREE (ppm) | ΣHREE (ppm) | ΣLREE/ΣHREE | δEu | δCe | pH |
---|---|---|---|---|---|---|---|
DBS01 | 191 | 67 | 124 | 0.55 | 0.18 | 1.17 | 4.44 |
DBS02 | 232 | 111 | 121 | 0.92 | 0.17 | 2.97 | 4.64 |
DBS03 | 197 | 96 | 101 | 0.95 | 0.17 | 2.55 | 4.73 |
DBS04 | 192 | 72 | 120 | 0.60 | 0.15 | 2.10 | 4.60 |
DBS05 | 235 | 123 | 112 | 1.10 | 0.17 | 3.79 | 4.60 |
DBS06 | 156 | 71 | 85 | 0.83 | 0.15 | 2.57 | 4.87 |
DBS07 | 460 | 186 | 274 | 0.68 | 0.11 | 0.86 | 4.91 |
DBS08 | 799 | 266 | 533 | 0.50 | 0.09 | 0.40 | 4.65 |
DBS09 | 797 | 164 | 633 | 0.26 | 0.07 | 0.37 | 5.47 |
DBS10 | 706 | 117 | 589 | 0.20 | 0.06 | 0.19 | 5.32 |
DBS11 | 517 | 103 | 414 | 0.25 | 0.06 | 0.53 | 5.59 |
DBS12 | 449 | 78 | 372 | 0.21 | 0.05 | 0.52 | 5.41 |
DBS13 | 386 | 69 | 318 | 0.22 | 0.05 | 0.77 | 4.96 |
DBS14 | 396 | 66 | 330 | 0.20 | 0.04 | 0.49 | 5.57 |
DBR01 | 178 | 37 | 141 | 0.26 | 0.04 | 0.96 | |
DBR02 | 210 | 84 | 127 | 0.66 | 0.2 | 0.96 | |
DBR03 | 222 | 38 | 184 | 0.20 | 0.06 | 0.96 | |
DBR04 | 500 | 69 | 430 | 0.16 | 0.04 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Zhou, J.; Du, X.; Wang, X.; Zhang, B.; Wu, H.; Hu, Q.; Wang, W.; Tian, M.; Chen, B.; et al. The Characteristics and Enrichment Process of Dabu Ion-Adsorption Heavy Rare-Earth Element (HREE) Deposits in Jiangxi Province, South China. Minerals 2024, 14, 857. https://doi.org/10.3390/min14090857
Xie M, Zhou J, Du X, Wang X, Zhang B, Wu H, Hu Q, Wang W, Tian M, Chen B, et al. The Characteristics and Enrichment Process of Dabu Ion-Adsorption Heavy Rare-Earth Element (HREE) Deposits in Jiangxi Province, South China. Minerals. 2024; 14(9):857. https://doi.org/10.3390/min14090857
Chicago/Turabian StyleXie, Mingjun, Jian Zhou, Xuemiao Du, Xueqiu Wang, Bimin Zhang, Hui Wu, Qinghai Hu, Wei Wang, Mi Tian, Binfeng Chen, and et al. 2024. "The Characteristics and Enrichment Process of Dabu Ion-Adsorption Heavy Rare-Earth Element (HREE) Deposits in Jiangxi Province, South China" Minerals 14, no. 9: 857. https://doi.org/10.3390/min14090857
APA StyleXie, M., Zhou, J., Du, X., Wang, X., Zhang, B., Wu, H., Hu, Q., Wang, W., Tian, M., Chen, B., Mo, H., & Wang, L. (2024). The Characteristics and Enrichment Process of Dabu Ion-Adsorption Heavy Rare-Earth Element (HREE) Deposits in Jiangxi Province, South China. Minerals, 14(9), 857. https://doi.org/10.3390/min14090857