40Ar/39Ar Dating and In Situ Trace Element Geochemistry of Quartz and Mica in the Weilasituo Deposit in Inner Mongolia, China: Implications for Li–Polymetallic Metallogenesis
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
3.1. Stratigraphy, Structures, and Magmatic Rocks
3.2. Mineralisation and Alteration Features
4. Sampling and Analytical Methods
4.1. 40Ar/39Ar Dating Analysis
4.2. Cathodoluminescence (CL) and Backscattered Electron (BSE) Images
4.3. Trace Element Analysis
5. Results
5.1. 40Ar/39Ar Chronology
5.2. Trace Element Geochemistry
5.2.1. Quartz and Mica Textures by SEM-CL
5.2.2. Trace Element Trends
6. Discussion
6.1. Metallogenic Chronology
6.2. Trace Element Geochemistry of Quartz
6.3. Trace Element Geochemistry of Mica
6.4. Implications for Li–Polymetallic Metallogenesis
7. Conclusions
- As the ore-bearing mineral of the deposit, the plateau age of zinnwaldite indicates the cooling age when the zinnwaldite was formed at 132.45 ± 1.3 Ma.
- The Al-Ti and Ge-Ti values of quartz and the Nb/Ta ratio of mica illustrate that the degree of magmatic evolution gradually increased and that there was continuous crystallisation differentiation for the initial magma. The high Sc, V, and W characteristics of mica indicate that it is in a high-fO2 environment, and the lower content in zinnwaldite indicates a slight decrease in fO2. Magmatic evolution and an increase in the F content promoted the enrichment of W and Sn during the late hydrothermal period.
- The continuous crystallisation differentiation of magma leads to the enrichment of ore-forming elements such as Li and Rb in the residual magma. Fluid exsolution further enriches the Li, Rb, and other elements in the fluid. Variations in physicochemical conditions (T, fO2, pH, etc.), accompanied by crypto-explosions, cause the instability of metal complexes in the fluid, leading to precipitation and mineralisation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakhmouradian, A.R.; Smith, M.P.; Kynicky, J. From “strategic” tungsten to “green” neodymium: A century of critical metals at aglance. Ore Geol. Rev. 2015, 64, 455–458. [Google Scholar] [CrossRef]
- Ding, X.Y.; Li, H.; Luo, L.M.; Huang, L.M.; Luo, G.N.; Zan, X.; Zhu, X.Y.; Wu, Y.C. Progress in Research of International Thermonuclear Experimental Reator First Wall Materials. Mater. Mech. Eng. 2013, 37, 6–11, (In Chinese with English abstract). [Google Scholar]
- Linnen, R.L.; Van, L.M.; Cěrný, P. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Miyamoto, M.; Sugimoto, Y.; Nishijima, D.; Baldwin, M.J.; Doerner, R.P.; Zaloznik, A.; Kim, J.H.; Nakamichi, M. Comparative study of surface modification and D retention between beryllium and beryllides under high fluxplasma exposure. Nucl. Mater. Energy 2021, 27, 101014. [Google Scholar] [CrossRef]
- Xu, X.W.; Zhai, M.G.; Hong, T.; Ma, Y.C.; Guo, J.H. Migration-circulation processes and enrichment-mineralization mechanism of lithium-beryllium elements in the continental crust. Acta Petrol. Sin. 2023, 39, 639–658. [Google Scholar] [CrossRef]
- Yin, X.Q. Strategic thinking for the protection of domestic rare metals. China Min. Mag. 2010, 19, 17–21, (In Chinese with English abstract). [Google Scholar]
- Zheng, L.F.; Wang, X.G.; Yue, L.N.; Huang, J.Z.; Zhong, J.M. Progress in Application of Rare Light Metal Beryllium and Its Alloys. Chin. J. Rare Met. 2021, 45, 475–483, (In Chinese with English abstract). [Google Scholar]
- Brown, M. Crustal melting and melt extraction, ascent and in orogens: Mechanisms and consequences. J. Geol. Soc. 2007, 164, 709–730. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Fu, X.F.; Zhao, Z.B.; Li, G.W.; Zheng, Y.L.; Ma, Z.L. Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite-Type Lithium Deposits. Earth Sci. 2019, 44, 1452–1463. [Google Scholar]
- Zhu, K.; Jiang, S.; Su, H.; Duan, Z. In situ geochemical analysis of multiple generations of sphalerite from the Weilasituo Sn-Li-Rb-Cu-Zn ore field (Inner Mongolia, Northeastern China); implication for critical metal enrichment and ore-forming process. Ore Geol. Rev. 2021, 139, 104473. [Google Scholar] [CrossRef]
- Wang, D.H.; Dai, H.Z.; Liu, S.B.; Li, J.; Wang, C.; Lou, D.; Yang, Y.; Li, P. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. J. Geomech. 2022, 28, 743–764. [Google Scholar]
- Wang, X.; Wang, K.Y.; Ge, W.C.; Sun, Q.F.; Zhang, C.; Quan, H.Y. Fluid evolution and ore genesis of the Weilasituo Li-Sn-Cu-Zn polymetallic deposit in Inner Mongolia: Evidence from fluid inclusion and C-H-O-Li isotopes. Ore Geol. Rev. 2023, 163, 105750. [Google Scholar] [CrossRef]
- Chen, X.K.; Zhou, Z.H. Deposit types, deposits and resource prospect of Li-Be-Nb-Ta deposits in the Great Xing’an Range. Acta Petrol. Sin. 2023, 39, 1973–1991. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Z.H.; Breiter, K.; Ouyang, H.G.; Liu, J. Ore-formation mechanism of the Weilasituo tin-polymetallic deposit, NE China: Constraints from bulk-rock and mica chemistry, He-Ar isotopes, and Re-Os dating. Ore Geol. Rev. 2019, 109, 163–183. [Google Scholar] [CrossRef]
- Wu, G.; Liu, R.L.; Chen, G.Z.; Li, T.G.; Li, R.H.; Li, Y.L.; Yang, F.; Zhang, T. Mineralization of the Weilasituo rare metal-tin-polymetallic ore deposit in Inner Mongolia: Insights from fractional crystallization of granitic magmas. Acta Petrol. Sin. 2021, 37, 637–664. [Google Scholar]
- Zhou, Z.H.; Breiter, K.; Wilde, S.A.; Gao, X.; Burnham, A.D.; Ma, X.H.; Zhao, J.Q. Ta-Nb mineralization in the shallow-level highly-evolved P-poor Shihuiyao granite, Northeast China. Lithos 2022, 416–417, 106655. [Google Scholar] [CrossRef]
- Guo, G.J. Discussion on Geological Characteristics and Metallogenic Origin of Weilasituo Sn Polymetal Deposit in Inner Mongolia. Master’s Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese with English abstract). [Google Scholar]
- Liu, R.L.; Wu, G.; Li, T.G.; Chen, G.Z.; Wu, L.W.; Zhang, P.C.; Zhang, T.; Jiang, B.; Liu, W.Y. LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing’an Range and their geological significance. Earth Sci. Front. 2018, 25, 183–201. [Google Scholar]
- Wang, F.X.; Jiang, S.H.; Liu, Y.F. Weilasituo porphyry tin-polymetallic mineralization: Millions of years of hydrothermal evolution history. Acta Mineral. Sin. 2015, 35, 721–722. (In Chinese) [Google Scholar]
- Yang, F.; Sun, J.G.; Wang, Y.; Fu, J.Y.; Na, F.C.; Fan, Z.Y.; Hu, Z.Z. Geology, Geochronology and Geochemistry of Weilasituo Sn-Polymetallic Deposit in Inner Mongolia, China. Minerals 2019, 9, 104. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Li, J.M.; Zhang, M.; Li, B.Y.; Fu, X.; Jiang, H.C.; Ma, L.J.; Qi, L. Geochronological study of Weilasituo porphyry type Sn deposit in Inner Mongolia and its geological significance. Miner. Depos. 2016, 35, 1011–1022, (In Chinese with English abstract). [Google Scholar]
- Zhang, H.Y. The Studies on High-Intermediate Temperature Sn-Rb-Li-W and Intermediate-Low Temperature Cu-Zn-Ag Metallogenic ore System at Weilasituo, Inner Mongolia, NE China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2020. (In Chinese with English abstract). [Google Scholar]
- Zhang, T.F.; Guo, S.; Xin, H.T.; Zhang, Y.; He, P.; Liu, W.G.; Zhang, K.; Liu, C.B.; Wang, K.X.; Zhang, C. Petrogenesis and magmatic evolution of highly fractionated granite and their constraints on Sn-(Li-Rb-Nb-Ta) mineralization in the Weilasituo deposit, Inner Mongolia, Southern Great Xing’an Range, China. Earth Sci. 2019, 44, 248–267, (In Chinese with English abstract). [Google Scholar]
- Zhu, X.Y.; Zhang, Z.H.; Fu, X.; Li, B.; Wang, Y.; Jiao, S.; Sun, Y. Geological and geochemical characteristics of the Weilasito Sn-Zn deposit, Inner Mongolia. Geol. China 2016, 43, 188–208, (In Chinese with English abstract). [Google Scholar]
- Liu, H.Z. Discussion on Metallogenic Characteristics and Genesis of Weilasituo Sn Polymetal Deposit in Inner Mongolia. Master’s Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese with English abstract). [Google Scholar]
- Sun, Y.L. Characteristics and Evolution of Ore-Forming Fluids and Mineralization Model for the Weilasituo tin Polymetallic Deposit, Inner Mongolia. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. (In Chinese with English abstract). [Google Scholar]
- Jiang, S.H.; Nie, F.J.; Liu, Y.F.; Yu, F. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia. Miner. Depos. 2010, 29, 101–112, (In Chinese with English abstract). [Google Scholar]
- Shi, R.; Zhao, J.; Evans, N.J.; Qin, K.; Wang, F.; Li, Z.; Han, R.; Li, X. Temporal-spatial variations in Li-Fe mica compositions from the Weilasituo Sn-polymetallic deposit (NE China): Implications for deposit-scale fluid evolution. Ore Geol. Rev. 2021, 134, 104132. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Yu, C.M.; Ye, J.; Liu, H.T. Metal deposits in the Da Hinggan Mountains, NE China: Styles, characteristics, and exploration potential. Int. Geol. Rev. 2011, 53, 846–878. [Google Scholar] [CrossRef]
- Mao, J.W.; Zhou, Z.H.; Wu, G.; Jiang, S.H.; Liu, C.L.; Li, H.M.; Ouyang, H.G.; Liu, J. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas. Miner. Depos. 2013, 32, 715–729, (In Chinese with English abstract). [Google Scholar]
- Ouyang, H.G.; Mao, J.W.; Zhou, Z.H.; Su, H.M. Late metallogeny and intracontinental, southern Great Xing’an Range, northeastern China. Gondwana Res. 2015, 27, 1153–1172. [Google Scholar] [CrossRef]
- Hou, X.Z.; Liu, Z.N.; Han, W.; Wang, W.C. The Occurrence State of Tin and Beryllium in Polymetallic Ore from Huanggangliang Area, Hexigten County, Inner Mongolia, China. Acta Mineral. Sin. 2017, 37, 807–812, (In Chinese with English abstract). [Google Scholar]
- Niu, H.C.; Shan, Q.; Luo, Y.; Yang, W.B.; Yu, X.Y. Study on the crystal-rich fluid inclusion from the Baerzhe super-large rare elements and REE deposit. Acta Petrol. Sin. 2008, 24, 2149–2154. [Google Scholar]
- Sengor, A.M.C.; Natalin, B.A. Paleotectnics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, M., Eds.; Cambridge University Press: London, UK, 1996; pp. 486–640. [Google Scholar]
- Tang, J.; Xu, W.L.; Wang, F.; Wang, W.; Xu, M.J.; Zhang, Y.H. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: Petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Res. 2013, 224, 597–611. [Google Scholar] [CrossRef]
- Mao, Z.X.; Zheng, C.Q.; Bi, Z.W.; Yang, Y.J.; Chai, L.; Zhang, C.P. Preliminary study on the prospecting potential of niobium-tantalum deposits in Daxinganling region. Geol. Resour. 2016, 25, 269–274, (In Chinese with English abstract). [Google Scholar]
- Mei, W.; Lü, X.B.; Cao, X.F.; Liu, Z.; Zhao, Y.; Ai, Z.L.; Tang, R.K.; Abfaua, M.M. Ore genesis and hydrothermal evolution of the Huanggang iron-tin polymetallic deposit, southern Great Xing’an Range: Evidence from fluid inclusions and isotope analyses. Ore Geol. Rev. 2015, 64, 239–252. [Google Scholar] [CrossRef]
- Ma, X.L.; Wang, K.Y.; Li, S.D.; Shi, K.T.; Wang, W.Y.; Yang, H. Geology, fluid inclusion, and H–O–S–Pb isotopic study of the Shenshan skarn Fe–Cu deposit, Southern Great Xing’an Range, Northeast China. J. Geochem. Explor. 2019, 200, 167–180. [Google Scholar] [CrossRef]
- Mao, J.W.; Ouyang, H.G.; Song, S.W.; Santosh, M.; Yuan, S.D.; Zhou, Z.H.; Zheng, W.; Liu, H.; Liu, P.; Cheng, Y.B.; et al. Geology and metallogeny of tungsten and tin deposits in China. Econ. Geol. (Spec. Publ.) 2019, 22, 411–482. [Google Scholar]
- Meng, Q.R.; Wei, H.H.; Qu, Y.Q.; Ma, S.X. Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China craton at the Paleo–to Mesoproterozoic transition. Gondwana Res. 2011, 20, 205–218. [Google Scholar] [CrossRef]
- Jin, R.X. Mineralogy, Petrochemistry, and Petrogenesis of Nb-Ta-Rich Alkaline Rhyolite of the Tuohe Forest farm in the Northern DaHinggan Mountains; Jilin University: Changchun, China, 2018; pp. 1–46, (In Chinese with English abstract). [Google Scholar]
- Li, J.Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo–Asian Ocean and subduction of the Paleo–Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Wang, M.Y.; He, L. Re–Os Dating of Molybdenites from Chamuhan W–Mo Deposit, Inner Mongolia and its Geological Implications. Geotecton. Metallog. 2013, 37, 49–56, (In Chinese with English abstract). [Google Scholar]
- Zhou, Z.H.; Gao, X.; Ouyang, H.G.; Liu, J.; Zhao, J.Q. Formation mechanism and intrinsic genetic relationship between tin-tungsten-lithium mineralization and peripheral lead-zinc-silver-copper mineralization: Exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia. Miner. Depos. 2019, 38, 1004–1022, (In Chinese with English abstract). [Google Scholar]
- Wu, H.R.; Yang, H.; Ge, W.C.; Ji, Z.; Wang, K.Y.; Jing, J.H.; Jing, Y. Formation age and genesis of the Nasigatu greisen-type mineralization in the southern Great Xing’an Range: Monazite chronological and geochemical evidence. Acta Petrol. Sin. 2022, 38, 1915–1936. [Google Scholar]
- Zhao, C.; Xu, C.B.; Zhang, Y.C.; Liu, C.; Ma, J. Geophysical and geochemical characteristics and prospecting prospects In Toudaoqiao Nb-Ta District, Greater Khingan Mountains. Gold 2021, 42, 19–24, (In Chinese with English abstract). [Google Scholar]
- Xu, W.L.; Wang, F.; Pei, F.P.; Meng, E.; Tang, J.; Xu, M.J.; Wang, W. Mesozoic tectonic regimes and regional ore–forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrol. Sin. 2013, 29, 339–353. [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Li, H.M.; Jahn, B.M.; Wilde, S. A–type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 187, 143–173. [Google Scholar] [CrossRef]
- Wilde, S.A. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo–Asian Ocean closure versus Paleo–Pacific plate subduction–A review of the evidence. Tectonophysics 2015, 662, 345–362. [Google Scholar] [CrossRef]
- Li, S.; Chung, S.L.; Wang, T.; Wilde, S.A.; Chu, M.F.; Pang, C.J.; Guo, Q.Q. Water–fluxed melting and petrogenesis of large–scale intracontinental s in the southern GreatXing’an Range, North China. GSA Bull. 2018, 130, 580–597. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic zircons in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Shi, K.T.; Wang, K.Y.; Ma, X.L.; Li, S.D.; Li, J.; Wang, R. Fluid inclusions, C–H–O–S–Pb isotope systematics, geochronology and geochemistry of the Budunhua Cu deposit, northeast China: Implications for ore genesis. Geosci. Front. 2020, 11, 1145–1161. [Google Scholar] [CrossRef]
- Liu, Y.F.; Jiang, S.H.; Bavapor, L. The genesis of metal zonation in the Weilasituo and Bairendaba Ag–Zn–Pb–Cu–(Sn–W) deposits in the shallow part of a porphyry Sn–W–Rb system, Inner Mongolia, China. Ore Geol. Rev. 2016, 75, 150–173. [Google Scholar] [CrossRef]
- Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region (Inner Mongolia BGMR). Regional Geology of Inner Mongolia Autonomous Region; Geological Publishing House: Beijing, China, 1991. [Google Scholar]
- Wang, S. Age determinations of 40Ar/-40K, 40Ar-39Ar and radiogenic 40Ar released characteristics on K-Ar geostandards of China. Sci. Geol. Sin. 1983, 18, 315–323, (In Chinese with English abstract). [Google Scholar]
- Zhang, W.; Li, J.; Zheng, D.; Sun, S.; Guo, Y.; Zhang, J.; Xiao, M.; Wang, J.; Zhang, Y.; Jiang, Y.; et al. Sample Neutron Irradiation with the Min Jiang Testing Reactor (Mjtr): Implications for High-Precision 40Ar/39Ar Dating. J. Anal. At. Spectrom. 2023, 38, 1540–1548. [Google Scholar] [CrossRef]
- Lee, J.; Marti, K.; Severinghaus, J.P.; Kawamura, K.; Yoo, H.; Lee, J.B.; Kim, J.S. A Redetermination of the Isotopic Abundances of Atmospheric Ar. Geochim. Cosmochim. Acta 2006, 70, 4507–4512. [Google Scholar] [CrossRef]
- Bai, X.; Qiu, H.; Liu, W.; Mei, L. Automatic 40Ar/39Ar Dating Techniques Using Multicollector Argus Vi Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. J. Earth Sci. 2018, 29, 408–415. [Google Scholar] [CrossRef]
- He, L.; Qiu, H.; Shi, H.; Zhu, J.; Bai, X.; Yun, J. A Novel Purification Technique for Noble Gas Isotope Analyses of Authigenic Minerals. Sci. China Earth Sci. 2016, 59, 111–117. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, H.; Zheng, D.; Jiang, Y.; Bai, X. An automatic degassing system for 40Ar/39Ar dating. Geochimica 2020, 49, 509–515, (In Chinese with English abstract). [Google Scholar]
- Koppers, A. Ararcalc—Software for 40Ar/39Ar Age Calculations. Comput. Geosci. 2002, 28, 605–619. [Google Scholar] [CrossRef]
- Renne, P.R.; Balco, G.; Ludwig, K.R.; Mundil, R.; Min, K. Response to the Comment by W.H. Schwarz Et Al. On “Joint Determination of 40K Decay Constants and 40Ar*/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology” by P.R. Renne Et Al. (2010). Geochim. Cosmochim. Acta 2011, 75, 5097–5100. [Google Scholar] [CrossRef]
- Renne, P.R.; Mundil, R.; Balco, G.; Min, K.; Ludwig, K.R. Joint Determination of 40K Decay Constants and 40Ar∗/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology. Geochim. Cosmochim. Acta 2010, 74, 5349–5367. [Google Scholar] [CrossRef]
- Ning, S.; Wang, F.; Xue, W.; Zhou, T. Geochemistry of the Baoshan pluton in the Tongling region of the Lower Yangtze River Belt. Geochimica 2017, 46, 397–412, (In Chinese with English abstract). [Google Scholar]
- Wang, F.; Ge, C.; Ning, S.; Nie, L.; Zhong, G.; White, N. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrol. Sinia 2017, 33, 3422–3436, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Audétat, A.; Garbe-Schönberg, D.; Kronz, A.; Pettke, T.; Rusk, B.; Donovan, J.J.; Lowers, H.A. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostand. Geoanal. Res. 2015, 39, 171–184. [Google Scholar] [CrossRef]
- Breiter, K.; Ďurišová, J.; Dosbaba, M. Quartz chemistry—A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-WLi deposit, Central Europe. Ore Geol. Rev. 2017, 90, 25–35. [Google Scholar] [CrossRef]
- Lehmann, K.; Berger, A.; Götte, T.; Ramseyer, K.; Wiedenbeck, M. Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineral. Mag. 2009, 73, 633–643. [Google Scholar] [CrossRef]
- Götte, T.; Pettke, T.; Ramseyer, K.; Koch-Müller, M.; Mullis, J. Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. Am. Mineral. 2011, 96, 802–813. [Google Scholar] [CrossRef]
- Jacamon, F.; Larsen, R.B. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos 2009, 107, 281–291. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Graupner, T.; Hallbauer, D.K.; Bray, C.J. Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim. Cosmochim. Acta. 2004, 68, 3741–3759. [Google Scholar] [CrossRef]
- Müller, A.; Herklotzc, G.; Gieglingc, H. Chemistry of quartz related to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit, Eastern Erzgebirge, Germany. J. Geochem. Explor. 2018, 190, 357–373. [Google Scholar] [CrossRef]
- Mao, W.; Rusk, B.; Yang, F.C.; Zhang, M.J. Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, South China: Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz. Econ. Geol. 2017, 112, 889–918. [Google Scholar] [CrossRef]
- Götze, J. Chemistry, textures and physical properties of quartz-geological interpretation and technical application. Mineral. Mag. 2009, 73, 645–671. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Trautmann, T. Structure and luminescence characteristics of quartz from pegmatites. Am. Mineral. 2005, 90, 13–21. [Google Scholar] [CrossRef]
- Czamanske, G.K.; Roedder, E.; Burns, F.C. Neutron activation analysis of fluid inclusions for copper, manganese, and zinc. Science 1963, 140, 401–403. [Google Scholar] [CrossRef]
- Bian, Y.B.; Zou, S.H.; Xu, D.L.; Chen, X.L.; Deng, T.; Wan, T.A.; Li, B. Research Progress on Textural and Trace Element Characteristics of Quartz and its Application in Magmatic-Hydrothermal Deposits. Geotecton. Metallog. 2023, 47, 407–427, (In Chinese with English abstract). [Google Scholar]
- Rottier, B.; Casanova, V. Trace element composition of quartz from porphyry systems: A tracer of the mineralizing fluid evolution. Miner. Depos. 2021, 56, 843–862. [Google Scholar] [CrossRef]
- Naumov, G.B.; Mironova, O.F.; Saveleva, N.I.; Danilova, T.V. Concentration of uranium in hydrothermal solutions obtained from investigations of fluid inclusions. Dokl. Akad. Nauk SSSR 1984, 279, 1486–1488. [Google Scholar]
- Rusk, B.G.; Lowers, H.A.; Reed, M.H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology 2008, 36, 547–550. [Google Scholar] [CrossRef]
- Lehmann, K.; Pettke, T.; Ramseyer, K. Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones, Sultanate of Oman. Chem. Geol. 2011, 280, 47–57. [Google Scholar] [CrossRef]
- Breiter, K.; Müller, A. Evolution of rare-metal granitic magmas documented by quartz chemistry. Eur. J. Mineral. 2009, 21, 335–346. [Google Scholar] [CrossRef]
- Monnier, L.; Lach, P.; Salvi, S.; Melleton, J.; Bailly, L.; Béziat, D.; Monnier, Y.; Gouy, S. Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France. Lithos 2018, 320, 355–377. [Google Scholar] [CrossRef]
- Müller, A.; Herrington, R.; Armstrong, R.; Seltmann, R.; Kirwin, D.J.; Stenina, N.G.; Kronz, A. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Miner. Depos. 2010, 45, 707–727. [Google Scholar] [CrossRef]
- Fu, S.L.; Lan, Q.; Yan, J. Trace element chemistry of hydrothermal quartz and its genetic significance: A case study from the Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geol. Rev. 2020, 126, 103732. [Google Scholar] [CrossRef]
- Breiter, K.; Ackerman, L.; Svojtka, M.; Mueller, A. Behavior of trace elements in quartz from plutons of different geochemical signature; a case study from the bohemian massif, czech republic. Lithos 2013, 175–176, 54–67. [Google Scholar] [CrossRef]
- Hayden, L.A.; Watson, E.B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet. Sci. Lett. 2007, 258, 561–568. [Google Scholar] [CrossRef]
- Drivenes, K.; Larsen, R.B.; Müller, A.; Sørensen, B.E. Crystallization and uplift path of late Variscan granites evidenced by quartz chemistry and fluid inclusions: Example from the Land’s End granite, SW England. Lithos 2016, 252–253, 57–75. [Google Scholar] [CrossRef]
- Beurlen, H.; Müller, A.; Silva, D.; Silva, M.R.R.D. Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema pegmatite province, northeast Brazil. Mineral. Mag. 2011, 75, 2703–2719. [Google Scholar] [CrossRef]
- Müller, A.; Ihlen, P.M.; Snook, B.; Larsen, R.B.; Flem, B.; Bingen, B.; Williamson, B.J. The chemistry of quartz in granitic pegmatites of southern Norway: Petrogenetic and economic implications. Econ. Geol. 2015, 110, 1737–1757. [Google Scholar] [CrossRef]
- Müller, A.; Koch-Müller, M. Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral. Mag. 2009, 73, 569–583. [Google Scholar] [CrossRef]
- Larsen, R.B.; Henderson, I.; Ihlen, P.M.; Jacamon, F. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib. Mineral. Petrol. 2004, 147, 615–628. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–65. [Google Scholar]
- Han, J.Z.; Gao, S.X.; Wang, Q.; Meng, Y.; Bi, S.D. Application of Mica Chemical Composition in the Study of Metallogenic Mechanism. Nonferrous Met. Des. 2023, 50, 122–126, (In Chinese with English abstract). [Google Scholar]
- Alfonso, P.; Melgarejo, J.C.; Yusta, I.; Velasco, F. Geochemistry offeldspars and muscovite in granitic pegmatite from the Cap de Creusfield, Catalonia, Spain. Can. Mineral. 2003, 41, 103–116. [Google Scholar] [CrossRef]
- Cěrny, P.; Galliski, M.A.; Oyarzábal, J.C.; Teertstra, D.K.; Chapman, R.; MacBride, L.; Ferreira, K. Stranded and equilibrated assemblages of late feldspars in two granitic pegmatites in the Pampean Ranges, Argentina. Can. Mineral. 2003, 41, 1013–1026. [Google Scholar] [CrossRef]
- Foord, E.E.; Cěrny, P.; Jackson, L.L.; Sherman, D.M.; Eby, R.K. Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith, Colorado. Mineral. Petrol. 1995, 55, 1–26. [Google Scholar] [CrossRef]
- Jollif, B.L.; Papike, J.J.; Shearer, C.K. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA. Geochim. Cosmochim. Acta 1992, 56, 1915–1939. [Google Scholar] [CrossRef]
- Lentz, D.R.; Fowler, A.D. A dynamic model for graphic quartz feldspar intergrowths in granitic pegmatites in the southwestern Grenville Province. Can. Mineral. 1992, 30, 571–585. [Google Scholar]
- Oyarzábal, J.; Galliski, M.; Perino, E. Geochemistry of K-feldspar and Muscovite in rare-element pegmatites and granites from the Totoral pegmatite field, San Luis, Argentina. Resour. Geol. 2008, 59, 315–329. [Google Scholar] [CrossRef]
- Roda-Robles, E.; Keller, P.; Pesquera-Peréz, A.; Fontan, F. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia. Mineral. Mag. 2007, 71, 41–62. [Google Scholar] [CrossRef]
- Van Lichtervelde, M.; Grégoire, M.; Linnen, R.L.; Béziat, D.; Slavi, S. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contrib. Mineral. Petrol. 2008, 155, 791–806. [Google Scholar] [CrossRef]
- Vieira, R.; Roda-Robles, E.; Pesquera, A.; Lima, A. Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). Am. Mineral. 2011, 96, 637–645. [Google Scholar] [CrossRef]
- Linnen, R.L.; Cuney, M. Granite–related rare–element deposits and experimental constraints on Ta–Nb–W–Sn–Zr–Hf mineralization. In Rare–Element Geochemistry and Mineral Deposits; Linnen, R.L., Samson, I.M., Eds.; Geological Association of Canada Short Course Notes: St. John’s, NL, Canada, 2005; Volume 17, pp. 45–68. [Google Scholar]
- Tian, R.; Zhang, H.; Lyu, Z.H.; Tang, Y. Mineralogical characteristics of micas in the Xiaohusite No. 91 pegmatite dyke in the Koktokay area, Xinjiang and their geological significances. Acta Mineral. Sin. 2021, 41, 593–609, (In Chinese with English abstract). [Google Scholar]
- Ouyang, H.G.; Mao, J.W.; Santosh, M.; Wu, Y.; Hou, L.; Wang, X.F. The Early Cretaceous Weilasituo Zn–Cu–Ag vein deposit in the southern Great Xing’an Range, northeast China: Fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications. Ore Geol. Rev. 2013, 56, 503–515. [Google Scholar] [CrossRef]
- Ridolff, F.; Zanetti, A.; Renzulli, A.; Perugini, D.; Holtz, F.; Oberti, R. AMFORM, a new mass-based model for the calculation of the unit formula of amphiboles from electron microprobe analyses. Am. Mineral. 2018, 103, 1112–1125. [Google Scholar] [CrossRef]
- Wang, F.X.; Bavapor, L.; Jiang, S.H.; Liu, Y.F. Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geol. Rev. 2017, 80, 1206–1229. [Google Scholar] [CrossRef]
- Heinrich, C.A. The chemistry of hydrothermal tin (-tungsten) ore deposition. Econ. Geol. 1990, 85, 457–481. [Google Scholar] [CrossRef]
- Chu, X.K.; Shen, P.; Li, C.H.; Lin, Q. Ore-forming fluid evolution of the Wunuget Pe Cu Mo deposit. Inner Mongolia: Evidence from the shortwave infrared spectrum, mica composition and fluid inclusion of quartz. Acta Petrol. Sin. 2023, 39, 3461–3478. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Zhang, Z.H.; Li, X.F.; Wang, Y.T.; Zhang, C.Q.; Li, Y.F. Meso0zoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrol. Sin. 2005, 21, 169–188. [Google Scholar]
- Mao, J.W.; Zhang, Z.H.; Yu, J.J.; Niu, B. Geodynamic background of Mesozoic large-scale mineralization in North China and adjacent areas: Inspiration from precise dating of metal deposits. Sci. China (Ser. D) 2003, 33, 289–299. (In Chinese) [Google Scholar]
- Zhai, D.; Williams-Jones, A.E.; Liu, J.; Selby, D.; Voudouris, P.C.; Tombros, S.; Li, K.; Li, P.; Sun, H. The genesis of the giant Shuangjianzishan epithermal Ag-Pb-Zn deposit, Inner Mongolia, northeastern China. Econ. Geol. 2020, 115, 101–128. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Wang, J.P.; Peng, R.M.; Wang, S.G.; Li, Y.X.; Chang, Z.Y. Re-Os Isotopic Chronology of Molybdenite from the Taipinggou Porphyry-type Molybdenum Deposit in Inner and Its Geological Significance. Geoscience 2009, 23, 262–268, (In Chinese with English abstract). [Google Scholar]
- Yang, Y.; Yang, X.; Jiang, B.; Wang, Y.; Pang, X.J. Spatial-temporal distribution of Mesozoic volcanic strata in the Great Xing’an Range: Response to the subduction of the Mongolian Okhotsk Ocean and the Paleo-Pacific Ocean. Earth Sci. Front. 2022, 29, 115–131. [Google Scholar]
- Breaks, F.W.; Moore, J.M. The Ghost Lake batholith, Superior Province of Qiu Ontario: A fertile, S-type peraluminous granite-rare element pegmatite system. Can. Mineral. 1992, 30, 835–875. [Google Scholar]
- Cěrny, P.; Blevin, P.L.; Cuney, M.; London, D. Granite-Related Ore Deposits. Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Economic Geology 100th Anniversary Volume. 2005, pp. 337–370. Available online: https://pubs.geoscienceworld.org/segweb/books/edited-volume/1940/chapter-abstract/107714621/Granite-Related-Ore-Deposits?redirectedFrom=fulltext (accessed on 27 May 2024).
- Simmons, W.; Webber, K.L. Pegmatite genesis: State of the art. Eur. J. Mineral. 2008, 20, 421–438. [Google Scholar] [CrossRef]
- Hulsbosch, N.; Hertogen, J.; Dewaele, S.; André, L.; Muchez, P. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional pegmatite groups. Geochim. Cosmochim. Acta 2014, 132, 349–374. [Google Scholar] [CrossRef]
- Kaeter, D.; Barros, R.; Menuge, J.F.; Chew, D.M. The magmatic- hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite. Geochim. Cosmochim. Acta 2018, 240, 98–130. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Fu, X.F.; Wang, R.C.; Li, G.W.; Zheng, Y.L.; Zhao, Z.B.; Lian, D.Y. Generation of lithium-bearing pegmatite deposits Within the Songpan-Ganze orogenic belt, East Tibet. Lithos 2020, 354–355, 105281. [Google Scholar] [CrossRef]
- Müller, A.; Romer, R.L.; Pedersen, R.B. The Sveconorwegian pegmatite province-thousands of pegmatites without parental Granites. Can. Mineral. 2017, 55, 283–315. [Google Scholar] [CrossRef]
- Lv, Z.H.; Zhang, H.; Tang, Y.; Liu, Y.L.; Zhang, X. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf Isotope. Ore Geol. Rev. 2018, 95, 161–181. [Google Scholar] [CrossRef]
- Cěrny, P. Rare-element pegmatites.1. Anatomy and internal evolution of pegmatite deposits. Geosci. Can. 1991, 18, 49–67. [Google Scholar]
- London, D. Ore-forming processes within pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Evensen, J.M.; London, D. Experimental partitioning of Be, Cs, and other trace elements between cordierite and felsic melt, and the chemical signature of S-type granite. Contrib. Mineral. Petrol. 2003, 144, 739–757. [Google Scholar] [CrossRef]
- Simons, B.; Andersen, J.C.Ø.; Shail, R.K.; Jenner, F.E. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos 2017, 278, 491–512. [Google Scholar] [CrossRef]
- Yin, R.; Huang, X.L.; Xu, Y.G.; Wang, R.C.; Wang, H.; Yuan, C.; Ma, Q.; Sun, X.M.; Chen, L.L. Mineralogical constraints on the magmatic-hydrothermal evolution of rare-elements deposits in the Bailongshan pegmatites, Xinjiang, NW China. Lithos 2020, 352–353, 105208. [Google Scholar] [CrossRef]
- Taylor, J.R.; Wall, V.J. The behavior of tin in granitoid magmas. Econ. Geol. 1992, 87, 403–420. [Google Scholar] [CrossRef]
- Huang, C.M. Petrogenesis of the Cuonadong-Lhozag Leucogranites and Implication for Tectonic Evolution and Be-W-Sn Metallogeny in Southern Tibet. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, K.-Y.; Gao, Y.; Chen, J.-C.; Xue, H.-W.; Li, H.-M. 40Ar/39Ar Dating and In Situ Trace Element Geochemistry of Quartz and Mica in the Weilasituo Deposit in Inner Mongolia, China: Implications for Li–Polymetallic Metallogenesis. Minerals 2024, 14, 575. https://doi.org/10.3390/min14060575
Wang X, Wang K-Y, Gao Y, Chen J-C, Xue H-W, Li H-M. 40Ar/39Ar Dating and In Situ Trace Element Geochemistry of Quartz and Mica in the Weilasituo Deposit in Inner Mongolia, China: Implications for Li–Polymetallic Metallogenesis. Minerals. 2024; 14(6):575. https://doi.org/10.3390/min14060575
Chicago/Turabian StyleWang, Xue, Ke-Yong Wang, Yang Gao, Jun-Chi Chen, Han-Wen Xue, and Hao-Ming Li. 2024. "40Ar/39Ar Dating and In Situ Trace Element Geochemistry of Quartz and Mica in the Weilasituo Deposit in Inner Mongolia, China: Implications for Li–Polymetallic Metallogenesis" Minerals 14, no. 6: 575. https://doi.org/10.3390/min14060575
APA StyleWang, X., Wang, K. -Y., Gao, Y., Chen, J. -C., Xue, H. -W., & Li, H. -M. (2024). 40Ar/39Ar Dating and In Situ Trace Element Geochemistry of Quartz and Mica in the Weilasituo Deposit in Inner Mongolia, China: Implications for Li–Polymetallic Metallogenesis. Minerals, 14(6), 575. https://doi.org/10.3390/min14060575