Geochemical Signature and Risk Assessment of Potential Toxic Elements in Intensively Cultivated Soils of South-West Punjab, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Collection of Soil Samples
2.3. Analysis of Soil Physicochemical Properties
2.4. Analysis of PTEs in Soil
2.5. Statistical and Geospatial Analysis of Data
2.6. Soil Pollution Indices Calculation
2.6.1. Contamination Factor
2.6.2. Degree of Contamination
2.6.3. Geo-Accumulation Index (Igeo)
2.6.4. Health Risk Assessment Index
Non-Carcinogenic Risk Assessment
Carcinogenic Risk Assessment
3. Results and Discussion
3.1. Physicochemical Properties of Soil
3.2. Comparison of Soil PTE Concentrations with Other Studies of Punjab and Other Reference Values
Unit | Min | 1st Quartile | Median | Mean | 3rd Quartile | Max | SD | |
---|---|---|---|---|---|---|---|---|
pH | - | 6.9 | 7.5 | 7.7 | 7.7 | 8 | 8.5 | 0.3 |
EC | μS/cm | 125 | 284.2 | 403.4 | 476.9 | 532.8 | 1703 | 312.2 |
Salinity | mg/kg | 107 | 239.2 | 351.2 | 414.7 | 475.6 | 1544 | 280 |
HCO3− | mg/kg | 150 | 277.5 | 500 | 491.3 | 650 | 1050 | 228.4 |
TKN | % | 0.06 | 0.1 | 0.17 | 0.1 | 0.2 | 0.2 | 0.06 |
AP | mg/kg | 40.3 | 92.4 | 103.5 | 100.5 | 113.7 | 132.4 | 17.7 |
TOC | % | 0.07 | 0.7 | 1 | 1.1 | 1.5 | 2.2 | 0.4 |
Zn | mg/kg | 1 | 17.5 | 48.2 | 67.4 | 74.3 | 971.4 | 120 |
Cu | mg/kg | 2.8 | 6.5 | 10.5 | 12.0 | 15.8 | 41.9 | 7.4 |
Pb | mg/kg | 0.2 | 6.4 | 11.5 | 31.5 | 47.4 | 179 | 40.4 |
Mn | mg/kg | 0.1 | 107.2 | 164.2 | 186.3 | 223.3 | 672.1 | 117.7 |
V | mg/kg | 41.8 | 672.4 | 1136.2 | 1289.5 | 1816.5 | 3142.1 | 765.9 |
Ni | mg/kg | 0.8 | 1.7 | 3.85 | 3.9 | 5.8 | 17 | 2.7 |
Al | mg/kg | 346.3 | 7002.1 | 9479 | 11,541.8 | 15,077.5 | 33,462.4 | 6420.6 |
Cr | mg/kg | 6.3 | 15.4 | 22.5 | 22.9 | 29.4 | 49.2 | 10 |
As | mg/kg | 0.7 | 1.3 | 1.7 | 1.7 | 1.9 | 2.6 | 0.42 |
Fe | mg/kg | 422 | 6973 | 9964 | 10,382 | 12,743 | 33,437 | 5233.9 |
Locations | Zn | Cu | Pb | Mn | V | Ni | Al | Cr | As | Fe | References |
---|---|---|---|---|---|---|---|---|---|---|---|
This study | 67.4 | 12 | 31.5 | 186.3 | 1289.5 | 3.9 | 11,541.8 | 22.9 | 1.7 | 10,382 | |
Jalandhar City, Punjab | 2.9 | 0.9 | 14.3 | 0.56 | 0.81 | 1.8 | 13.8 | [42] | |||
SBS Nagar, Punjab | 80.1 | 15.4 | 184.2 | 19 | 749.6 | [79] | |||||
Jalalabaad, Punjab | 9.0 | 6.6 | 29.5 | [80] | |||||||
Rajewal, Punjab | 9.1 | 3.83 | 86.9 | [80] | |||||||
Yousufpur, Punjab | 5.5 | [80] | |||||||||
Tibbi Taiba, Punjab | 3.0 | 7 | 87.7 | [80] | |||||||
Doomniwala, Punjab | 13.3 | 5.8 | 67 | [80] | |||||||
Harike, Punjab | 59 | 18.7 | 6.5 | 374 | 22.3 | 17,700 | [83] | ||||
Barnala, Punjab | 55.7 | 17.1 | 19.3 | 36 | 55.2 | 27.6 | 64.8 | 9.9 | 25,722 | [84] | |
Mansa, Punjab | 15.6 | 47.7 | 10,700 | 37.5 | 8.1 | 14,000 | [53] | ||||
Bathinda, Punjab | 114.7 | 28.8 | 6.6 | 56 | 94 | 15 | 28,803 | [9] | |||
Ludhiana, Punjab | 71.5 | 40.3 | 31.5 | 21.9 | 115.7 | [52] | |||||
Amritsar, Punjab | 96.5 | 58.1 | 24.8 | 24.7 | [49] | ||||||
Rupnagar and Ludhiana, Punjab | 70.1 | 30.5 | 47.5 | 342 | 33.3 | 36.2 | 1498 | [85] | |||
SAS Nagar, Punjab | 32.6 | 5.1 | 90 | 6.5 | 5.2 | 2.7 | [81] | ||||
Batla, Punjab | 120.1 | 4.1 | 4.0 | 152.4 | 12.7 | 488.2 | [82] | ||||
Indian natural soil background | 22.1 | 56.5 | 13.1 | 27.7 | 114 | [66] | |||||
World background soil | 67.8 | 28.2 | 28.4 | 571 | 17.8 | 70.9 | 11.4 | [68] | |||
Reference soil China | 74 | 23 | 27 | 27 | 61 | 11.2 | [86] | ||||
Reference soil USA | 55 | 21 | 17 | 380 | 15 | 41 | 5.5 | [87] | |||
Reference soil Spain | 192 | 30 | 43 | 73 | [88] | ||||||
Upper continental crust | 52 | 14 | 17 | 900 | 19 | 35 | 2 | [89] | |||
Reference soil Brazil | 59.9 | 35.1 | 17 | 13.2 | 40.3 | [4] |
3.3. Geospatial Distribution of PTEs in Soil
3.4. Weight Matrix and Spatial Autocorrelation
3.5. Spatial Autocorrelation of Selected Elements in Soil
3.6. Multivariate Statistical Analysis
3.7. Environmental Pollution Level Assessment
3.8. Geo-Accumulation Index
3.9. Human Health Risk Assessment
3.9.1. Non-Carcinogenic Risks Assessment
3.9.2. Carcinogenic Risks Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adimalla, N.; Qian, H.; Wang, H. Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: An approach of spatial distribution and multivariate statistical analysis. Environ. Monit. Assess. 2019, 191, 246. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Bhatt, R.; Sharma, V.; Hadda, M.S. Indigenous Practices of Soil and Water Conservation for Sustainable Hill Agriculture and Improving Livelihood Security. Environ. Manag. 2023, 72, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Dall’Agnol, R.; Salomao, G.N.; Junior, J.d.S.F.; Silva, M.S.; Filho, P.W.M.e.S.; da Costa, M.L.; Angelica, R.S.; Filho, C.A.M.; da Costa, M.F.; et al. Regional-scale mapping for determining geochemical background values in soils of the Itacaiunas River Basin, Brazil: The use of compositional data analysis (CoDA). Geoderma 2020, 376, 114504. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, T.; Zhou, L.; Lou, W.; Zeng, W.; Liu, T.; Yin, H.; Liu, H.; Liu, X.; Mathivanan, K.; et al. Soil microbial community assembly model in response to heavy metal pollution. Environ. Res. 2022, 213, 113576. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabel, M.I.; Sallam, A.E.-A.S.; Usman, A.R.; Ahmad, M.; El-Naggar, A.H.; El-Saeid, M.H.; Al-Faraj, A.; El-Enazi, K.; Al-Romian, F.A. Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia. Environ. Monit. Assess. 2017, 189, 252. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, M.E.; Tawfik, W.; Mankoula, A.F.; Gagnon, J.E.; Fryer, B.J.; El-Mekawy, F. Determination of heavy metal content and pollution indices in the agricultural soils using laser ablation inductively coupled plasma mass spectrometry. Environ. Sci. Pollut. Res. 2021, 28, 36039–36052. [Google Scholar] [CrossRef] [PubMed]
- Terzano, R.; Rascio, I.; Allegretta, I.; Porfido, C.; Spagnuolo, M.; Khanghahi, M.Y.; Crecchio, C.; Sakellariadou, F.; Gattullo, C.E. Fire effects on the distribution and bioavailability of potentially toxic elements (PTEs) in agricultural soils. Chemosphere 2021, 281, 130752. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Saeed, Q.; Shah, S.M.U.; Gondal, M.A.; Mumtaz, S. Environmental sustainability: Challenges and approaches. In Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 243–270. [Google Scholar] [CrossRef]
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Agricultural productivity and food supply to meet increased demands. In Future Foods; Elsevier: Amsterdam, The Netherlands, 2022; pp. 539–553. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Ammar, K.A.; Kheir, A.M.S.; Ali, B.M.; Sundarakani, B.; Manikas, I. Developing an analytical framework for estimating food security indicators in the United Arab Emirates: A review. Environ. Dev. Sustain. 2024, 26, 5689–5708. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Manna, M.C.; Jha, S.; Singh, A.K.; Misra, S.; Srivastava, R.C.; Srivastava, P.P.; Laik, R.; Bhattacharyya, R.; Prasad, S.S.; et al. Impact of soil-water contaminants on tropical agriculture, animal and societal environment. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2022; Volume 176, pp. 209–274. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Stoate, C.; Báldi, A.; Beja, P.; Boatman, N.; Herzon, I.; van Doorn, A.; de Snoo, G.; Rakosy, L.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Cyrys, J.; Stölzel, M.; Heinrich, J.; Kreyling, W.; Menzel, N.; Wittmaack, K.; Tuch, T.; Wichmann, H.-E. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci. Total Environ. 2003, 305, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K.; Abd-Elsalam, K.A. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. Agrochemicals 2023, 2, 296–336. [Google Scholar] [CrossRef]
- Ravisankar, N.; Ansari, M.A.; Panwar, A.S.; Aulakh, C.S.; Sharma, S.K.; Suganthy, M.; Jaganathan, D. Organic farming research in India: Potential technologies and way forward. Indian J. Agron. 2021, 66, S142–S162. [Google Scholar]
- Shukla, A.K.; Behera, S.K.; Chaudhari, S.K.; Singh, G. Fertilizer use in Indian agriculture and its impact on human health and environment. Indian J. Fertil. 2022, 18, 218–237. [Google Scholar]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Volume 2; Ecofriendly tools for reclamation of degraded soil environs; Springer: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar]
- Gambuś, F.; Wieczorek, J. Pollution of fertilizers with heavy metals. Ecol. Chem. Eng. A 2012, 19, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 1–21. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Huang, B.; Shi, X.; Chen, W.; Zhao, Y.; Jiao, W. Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicol. Environ. Saf. 2013, 98, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar] [PubMed]
- Yang, G.-H.; Zhu, G.-Y.; Li, H.-L.; Han, X.-M.; Li, J.-M.; Ma, Y.-B. Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments. J. Integr. Agric. 2018, 17, 1861–1870. [Google Scholar] [CrossRef]
- Adamo, P.; Iavazzo, P.; Albanese, S.; Agrelli, D.; De Vivo, B.; Lima, A. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Sci. Total Environ. 2014, 500–501, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Alavanja, M.; Baron, J.A.; Brownson, R.C.; Buffler, P.A.; DeMarini, D.M.; Djordjevic, M.V.; Doll, R.; Fontham, E.T.H.; Gao, Y.T.; Gray, N.; et al. Tobacco smoke and involuntary smoking. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization International Agency for Research on Cancer: Lyon, France, 2004; Volume 83, pp. 1–1413. [Google Scholar]
- Duan, B.; Feng, Q. Comparison of the Potential Ecological and Human Health Risks of Heavy Metals from Sewage Sludge and Livestock Manure for Agricultural Use. Toxics 2021, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Gui, H.; Wang, Y.; Peng, W. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environ. Sci. Pollut. Res. 2017, 24, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Wang, Z.; Hu, B.; Wang, Z.; Li, H.; Goodman, R.C. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: A case study assessment. Agric. Water Manag. 2016, 171, 153–161. [Google Scholar] [CrossRef]
- Jayakumar, M.; Surendran, U.; Raja, P.; Kumar, A.; Senapathi, V. A review of heavy metals accumulation pathways, sources and management in soils. Arab. J. Geosci. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Yu, Z.; Dong, J.; Fu, W.; Ye, Z.; Li, W.; Zhao, K. The Transfer Characteristics of Potentially Toxic Trace Elements in Different Soil-Rice Systems and Their Quantitative Models in Southeastern China. Int. J. Environ. Res. Public Health 2019, 16, 2503. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, D.; O’Connor, D.; Shen, Z.; Shi, P.; Ok, Y.S.; Tsang, D.C.W.; Wen, Y.; Luo, M. Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1386–1423. [Google Scholar] [CrossRef]
- Nematollahi, M.J.; Keshavarzi, B.; Zaremoaiedi, F.; Rajabzadeh, M.A.; Moore, F. Ecological-health risk assessment and bioavailability of potentially toxic elements (PTEs) in soil and plant around a copper smelter. Environ. Monit. Assess. 2020, 192, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Nieder, R.; Benbi, D.K. Potentially toxic elements in the environment—A review of sources, sinks, pathways and mitigation measures. Rev. Environ. Health 2023. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Sun, K.; Wang, S.; Huang, L.; Bi, J. Monte Carlo Simulation-Based Health Risk Assessment of Heavy Metal Soil Pollution: A Case Study in the Qixia Mining Area, China. Hum. Ecol. Risk Assess. Int. J. 2012, 18, 733–750. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Bhatia, A.; Ghosh, B.N.; Santra, P.; Mandal, D.; Kumar, G.; Singh, R.J.; Madhu, M.; Ghosh, A.; Mandal, A.K.; et al. Soil degradation and mitigation in agricultural lands in the Indian Anthropocene. Eur. J. Soil Sci. 2023, 74, e13388. [Google Scholar] [CrossRef]
- Brar, M.S.; Malhi, S.S.; Singh, A.P.; Arora, C.L.; Gill, K.S. Sewage water irrigation effects on some potentially toxic trace elements in soil and potato plants in northwestern India. Can. J. Soil Sci. 2000, 80, 465–471. [Google Scholar] [CrossRef]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Manna, M.C.; Rahman, M.M.; Naidu, R.; Bari, A.S.M.F.; Singh, A.B.; Thakur, J.K.; Ghosh, A.; Patra, A.K.; Chaudhari, S.K.; Subbarao, A. Organic farming: A prospect for food, environment and livelihood security in Indian agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2021; Volume 170, pp. 101–153. [Google Scholar] [CrossRef]
- Sharma, N.; Singhvi, R. Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 675–680. [Google Scholar] [CrossRef]
- Daulta, R.; Prakash, M.; Goyal, S. Metal content in soils of Northern India and crop response: A review. Int. J. Environ. Sci. Technol. 2023, 20, 4521–4548. [Google Scholar] [CrossRef]
- ENVIS Centre Punjab. Fertilizer Consumption in Punjab (1960–2017). 2018. Available online: http://punenvis.nic.in/index3.aspx?sslid=5862&subsublinkid=4973&langid=1&mid=1 (accessed on 10 May 2024).
- World Bank Collection. Fertilizer Consumption (Kilograms per Hectare of Arable Land. 2016. Available online: https://data.worldbank.org/indicator/AG.CON.FERT.ZS?end=2016&start=2002&view=chart (accessed on 10 May 2024).
- Kaur, R.; Pakade, Y.B.; Katnoria, J.K. A study on physicochemical analysis of road and railway track side soil samples of Amritsar (Punjab) and their genotoxic effects. Int. J. Environ. Ecol. Eng. 2014, 8, 510–513. [Google Scholar]
- Kumar, R.; Mittal, S.; Peechat, S.; Sahoo, P.K.; Sahoo, S.K. Quantification of groundwater–agricultural soil quality and associated health risks in the agri-intensive Sutlej River Basin of Punjab, India. Environ. Geochem. Health 2020, 42, 4245–4268. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Bhat, S.A.; Singh, N.; Bhatti, S.S.; Kaur, V.; Katnoria, J.K. Assessment of the Heavy Metal Contamination of Roadside Soils Alongside Buddha Nullah, Ludhiana, (Punjab) India. Int. J. Environ. Res. Public Health 2022, 19, 1596. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kaur, J.; Katnoria, J.K. Assessment of spatial variations in pollution load of agricultural soil samples of Ludhiana district, Punjab. Environ. Monit. Assess. 2023, 195, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Kaur, R.; Boparai, J.K.; Sharma, V.K.; Sharma, P.K. Investigating the heavy metals and pesticides concentration in agricultural soil and groundwater of mansa district of Punjab, India: Insights into its impact on human health. Int. J. Innovat. Res. Sci. Eng. 2017, 3, 179–187. [Google Scholar]
- CGWB. Groundwater Information Booklet, Muktsar District Punjab. 2013. Available online: http://cgwb.gov.in/districtprofile/Punjab/muktsar.pdf (accessed on 10 May 2024).
- CGWB. Groundwater Information Booklet, Faridkot District Punjab. 2013. Available online: https://www.cgwb.gov.in/old_website/District_Profile/Punjab/Faridkot.pdf (accessed on 10 May 2024).
- CGWB. Groundwater Information Booklet, Moga District Punjab. 2013. Available online: https://www.cgwb.gov.in/old_website/District_Profile/Punjab/Moga.pdf (accessed on 10 May 2024).
- NRSC. Thematic Data set—Geomorphology (50k) through Bhuvan. 2006. Available online: https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php (accessed on 10 May 2024).
- IS: 2720 (Part 26)-1987; Methods of Test for Soils (Second revision). Determination of pH Value. Bureau of Indian Standards: New Delhi, India, 1987.
- IS: 14767-2000; Determination of the Specific Electrical Conductivity of Soils Method of Test. Bureau of Indian Standards: New Delhi, India, 2000.
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate USDA Circular; Gov. Printing Office: Washington, DC, USA, 1954; Volume 939, pp. 1–19. [Google Scholar]
- Filzmoser, P.; Hron, K.; Reimann, C. Principal component analysis for compositional data with outliers. Environ. Off. J. Int. Environ. Soc. 2009, 20, 621–632. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2007, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.K.; Equeenuddin, S.M.; Powell, M.A. Trace elements in soils around coal mines: Current scenario, impact and available techniques for management. Curr. Pollut. Rep. 2016, 2, 1–14. [Google Scholar] [CrossRef]
- Reimann, C.; Garrett, R.G. Geochemical background—Concept and reality. Sci. Total Environ. 2005, 350, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Gowd, S.S.; Reddy, M.R.; Govil, P. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J. Hazard. Mater. 2010, 174, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Halim, M.A.; Majumder, R.K.; Zaman, M.N. Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arab. J. Geosci. 2015, 8, 3391–3401. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in sediments of the Rhine River. GEO J. 1969, 2, 108–118. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund, Vol. I, Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response: Washington, DC, USA, 1989. [Google Scholar]
- US Environmental Protection Agency. Exposure Factors Handbook; EPA/540/1-88/001; Office of Remedial Response: Washington, DC, USA, 2002. [Google Scholar]
- Cocârţă, D.M.; Neamţu, S.; Deac, A.M.R. Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. Int. J. Environ. Sci. Technol. 2016, 13, 2025–2036. [Google Scholar] [CrossRef]
- Aendo, P.; Netvichian, R.; Thiendedsakul, P.; Khaodhiar, S.; Tulayakul, P. Carcinogenic Risk of Pb, Cd, Ni, and Cr and Critical Ecological Risk of Cd and Cu in Soil and Groundwater around the Municipal Solid Waste Open Dump in Central Thailand. J. Environ. Public Health 2022, 2022, 3062215. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Riskbased Concentration Table. 2010. Available online: http://www.epa.gov/reg3hwmd/risk/human/index.htm (accessed on 10 May 2024).
- Kaur, I.; Gupta, A.; Singh, B.P.; Sharma, S.; Kumar, A. Assessment of radon and potentially toxic metals in agricultural soils of Punjab, India. Microchem. J. 2019, 146, 444–454. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Mittal, S.; Arora, M.; Babu, J.N. Role of soil physicochemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. J. Soils Sediments 2016, 16, 605–620. [Google Scholar] [CrossRef]
- Parihar, J.K.; Parihar, P.K.; Pakade, Y.B.; Katnoria, J.K. Bioaccumulation potential of indigenous plants for heavy metal phytoremediation in rural areas of Shaheed Bhagat Singh Nagar, Punjab (India). Environ. Sci. Pollut. Res. 2021, 28, 2426–2442. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, S.S.; Kumar, V.; Singh, N.; Sambyal, V.; Singh, J.; Katnoria, J.K.; Nagpal, A.K. Physico-chemical Properties and Heavy Metal Contents of Soils and Kharif Crops of Punjab, India. Procedia Environ. Sci. 2016, 35, 801–808. [Google Scholar] [CrossRef]
- Sonkar, V.; Jaswal, V.; Chenlak, S.; Nandabalan, Y.K. Pollution status and health risk assessment of heavy metals in the soil of Sahibzada Ajit Singh (SAS) Nagar district of Punjab, India and its source apportionment. J. Geochem. Explor. 2024, 261, 107453. [Google Scholar] [CrossRef]
- Bala, N.; Pakade, Y.B.; Mahurkar, M.; Kadaverugu, R.; Minakshi; Katnoria, J.K. Spatial distribution and source identification of metal contaminants in soil and rice grain samples: A study on exploration of soil quality and risk assessment. Environ. Monit. Assess. 2024, 196, 260. [Google Scholar] [CrossRef]
- Bhatti, S.S.; Kumar, V.; Sambyal, V.; Singh, J.; Nagpal, A.K. Comparative analysis of tissue compartmentalized heavy metal uptake by common forage crop: A field experiment. CATENA 2018, 160, 185–193. [Google Scholar] [CrossRef]
- Karanveer, K.; Bala, R.; Das, D. Appraisal and spatial distribution of Potential toxic elements in agricultural and non-agricultural land from alluvial plains of Punjab, India. In Proceedings of the 2022 Goldschmidt Conference, Honolulu, HI, USA, 15 July 2022; Goldschmidt: Wilmington, DE, USA, 2022. [Google Scholar]
- Setia, R.; Dhaliwal, S.S.; Singh, R.; Kumar, V.; Taneja, S.; Kukal, S.S.; Pateriya, B. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 2021, 263, 128321. [Google Scholar] [CrossRef]
- Chen, J.; Wei, F.; Zheng, C.; Wu, Y.; Adriano, D.C. Background concentrations of elements in soils of China. Water Air Soil Pollut. 1991, 57, 699–712. [Google Scholar] [CrossRef]
- Shacklette, H.T.; Boerngen, J.G. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States; US Government Printing Office: Washington, DC, USA, 1984; Volume 1270. [Google Scholar]
- Pérez, C.; Martínez, M.J.; Vidal, J.; Navarro, C. Proposed reference values for heavy metals in calcaric fluvisols of the Huerta de Murcia (SE Spain). In Proceedings of the International Symposium on Sustainable Use and Management of Soils in Arid and Semiarid Regions, Cartagena, Colombia, 22–26 September 2002; Quaderna Editorial: Cartagena, Colombia, 2002; pp. 22–26. [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Chaudhari, U.; Mehta, M.; Sahoo, P.K.; Mittal, S.; Tiwari, R.P. Co-occurrence of geogenic uranium and fluoride in a semiarid belt of the Punjab plains, India. Groundw. Sustain. Dev. 2023, 23, 101019. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Virk, H.S.; Powell, M.A.; Kumar, R.; Pattanaik, J.K.; Salomao, G.N.; Mittal, S.; Chouhan, L.; Nandabalan, Y.K.; Tiwari, R.P. Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: Status, health risk, and hydrogeochemical processes. Sci. Total Environ. 2022, 807, 151753. [Google Scholar] [CrossRef] [PubMed]
- Krishan, G.; Taloor, A.K.; Sudarsan, N.; Bhattacharya, P.; Kumar, S.; Ghosh, N.C.; Singh, S.; Sharma, A.; Rao, M.S.; Mittal, S.; et al. Occurrences of potentially toxic trace metals in groundwater of the state of Punjab in northern India. Groundw. Sustain. Dev. 2021, 15, 100655. [Google Scholar] [CrossRef]
- Balakrishna, M.; Krishna, T.G.; Nagamadhuri, K.V.; Sudhakar, P.; Reddy, B.R.; Yuvaraj, K.M. Soil fertility and leaf nutrient status of mango orchards in the YSR district of Andhra Pradesh. Pharma Innov. J. 2021, 10, 87–91. [Google Scholar]
- Gong, Q.; Chen, P.; Shi, R.; Gao, Y.; Zheng, S.-A.; Xu, Y.; Shao, C.; Zheng, X. Health Assessment of Trace Metal Concentrations in Organic Fertilizer in Northern China. Int. J. Environ. Res. Public Health 2019, 16, 1031. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Nagpal, A.K.; Kaur, I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 2018, 255, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.-N.; Li, H.; Sun, D.-F.; Zhou, L.-D.; Li, B.-G. Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China. Int. J. Environ. Res. Public Health 2012, 9, 995–1017. [Google Scholar] [CrossRef]
- Li, W.; Xu, B.; Song, Q.; Liu, X.; Xu, J.; Brookes, P.C. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Sci. Total Environ. 2014, 472, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Xiao, R.; Christakos, G.; Langousis, A.; Ren, Z.; Tian, Y.; Lv, X. Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecol. Indic. 2019, 106, 105508. [Google Scholar] [CrossRef]
- Martin, H.W.; Kaplan, D.I. Temporal Changes in Cadmium, Thallium, and Vanadium Mobility in Soil and Phytoavailability under Field Conditions. Water Air Soil Pollut. 1998, 101, 399–410. [Google Scholar] [CrossRef]
- Shen, Q.; Demisie, W.; Zhang, S.; Zhang, M. The Association of Heavy Metals with Iron Oxides in the Aggregates of Naturally Enriched Soil. Bull. Environ. Contam. Toxicol. 2020, 104, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Chen, Z.; Li, Y.; Ding, K.; Liu, W.; Liu, Y.; Yuan, Y.; Zhang, M.; Baker, A.J.M.; Yang, W.; et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J. Hazard. Mater. 2020, 400, 123289. [Google Scholar] [CrossRef]
- Moturi, M.C.Z.; Rawat, M.; Subramanian, V. Distribution and fractionation of heavy metals in solid waste from selected sites in the industrial belt of Delhi, India. Environ. Monit. Assess. 2004, 95, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bai, Y.; Gao, J.; Li, J. Driving factors on accumulation of cadmium, lead, copper, zinc in agricultural soil and products of the North China Plain. Sci. Rep. 2023, 13, 7429. [Google Scholar] [CrossRef] [PubMed]
- Maji, P.; Mistri, B. Chemical fertilization as potential pathways of heavy metal contents in agricultural soil in Memari II block, west Bengal, India. Pollut. Resear. J. 2022, 41, 1008–10115. [Google Scholar] [CrossRef]
- Singh, S.; Raju, N.J.; Nazneen, S. Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India. Environ. Monit. Assess. 2015, 187, 345. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, M.N.; Schimel, J.P. Interactions between Carbon and Nitrogen Mineralization and Soil Organic Matter Chemistry in Arctic Tundra Soils. Ecosystems 2003, 6, 129–143. [Google Scholar] [CrossRef]
- Bouaroudj, S.; Menad, A.; Bounamous, A.; Ali-Khodja, H.; Gherib, A.; Weigel, D.E.; Chenchouni, H. Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere 2019, 219, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.-L.; Shi, J.; Jiang, G.; Jing, C. Arsenic Levels and Speciation from Ingestion Exposures to Biomarkers in Shanxi, China: Implications for Human Health. Environ. Sci. Technol. 2013, 47, 5419–5424. [Google Scholar] [CrossRef] [PubMed]
- Rinklebe, J.; Antoniadis, V.; Shaheen, S.M.; Rosche, O.; Altermann, M. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ. Int. 2019, 126, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef] [PubMed]
- Man, S.; Gao, W.; Zhang, Y.; Huang, L.; Liu, C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia 2010, 81, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xu, Y.; Hou, H.; Shangguan, Y.; Li, F. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468, 654–662. [Google Scholar] [CrossRef]
Sources | As | Cd | Cr | Ni | Pb | Zn | Mn | References |
---|---|---|---|---|---|---|---|---|
Fly Ash | 38.3 | - | 306.5 | 99.0 | 187.5 | 116 | 638 | This study |
Bottom Ash | 30.6 | - | 281.9 | 76.6 | 128.9 | 96.6 | 596 | This study |
P fertilizers | - | 0.1–170 | - | - | 1–300 | 50–1450 | - | [22] |
N fertilizers | - | 0.05–8.5 | - | - | 1–15 | 1–42 | - | [22] |
Lime fertilizers | - | 0.04–0.1 | - | - | 2–125 | 10–450 | - | [22] |
Manure fertilizers | - | 0.3–0.8 | - | - | 2–60 | 15–250 | - | [22] |
Solid waste | - | 0.8–224 | - | 154–1534 | 23–530 | 116–23,321 | 494–19,964 | [103] |
Organic fertilizer | - | 5.87 | - | - | 49.62 | 664.27 | - | [104] |
Urea | - | 0.8 | - | - | - | - | - | [105] |
DAP | - | 236.00 | - | 108.14 | 174.54 | - | [105] | |
SSP | - | 12.35 | 83.00 | 128.47 | 216.14 | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhari, U.; Kumari, D.; Tyagi, T.; Mittal, S.; Sahoo, P.K. Geochemical Signature and Risk Assessment of Potential Toxic Elements in Intensively Cultivated Soils of South-West Punjab, India. Minerals 2024, 14, 576. https://doi.org/10.3390/min14060576
Chaudhari U, Kumari D, Tyagi T, Mittal S, Sahoo PK. Geochemical Signature and Risk Assessment of Potential Toxic Elements in Intensively Cultivated Soils of South-West Punjab, India. Minerals. 2024; 14(6):576. https://doi.org/10.3390/min14060576
Chicago/Turabian StyleChaudhari, Umakant, Disha Kumari, Tanishka Tyagi, Sunil Mittal, and Prafulla Kumar Sahoo. 2024. "Geochemical Signature and Risk Assessment of Potential Toxic Elements in Intensively Cultivated Soils of South-West Punjab, India" Minerals 14, no. 6: 576. https://doi.org/10.3390/min14060576
APA StyleChaudhari, U., Kumari, D., Tyagi, T., Mittal, S., & Sahoo, P. K. (2024). Geochemical Signature and Risk Assessment of Potential Toxic Elements in Intensively Cultivated Soils of South-West Punjab, India. Minerals, 14(6), 576. https://doi.org/10.3390/min14060576