Mineralogical Method as an Effective Way to Predict Gold Ore Types of Deposits in Platform Areas (East of the Siberian Platform)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Indicators of Placer Gold of Ore Formations of the Precambrian Stage of Ore Formation
3.2. Indicators of Placer Gold of Ore Formations of the Mesozoic Stage of Ore Formation
4. Discussion
4.1. Mechanisms of Placement of Predicted Gold Deposits of the Precambrian Stage of Ore Formation
4.2. Mechanisms of Placement of Predicted Gold Deposits of the Mesozoic Stage of Ore Formation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parfenov, L.M.; Kuzmin, M. (Eds.) Tectonics, Geodynamics and Metallogeny of the Territory of the Republic of Sakha (Yakutia); Science/Interperiodics: Moscow, Russia, 2001; 571p. (In Russian) [Google Scholar]
- Rodionov, N.T. Geomorphology and Placer Gold Content of the Middle Lena River Region: Abstract of the Dissertation of the Candidate of Geological and Mineralogical Sciences; Kazan State University: Kazan, Russia, 1973; 27p. (In Russian) [Google Scholar]
- Trushkov, Y.N.; Izbekov, E.D.; Tomskaya, A.I.; Timofeev, V.I. Gold Content of the Vilyui Syneclise and Its Framing; Nauka: Novosibirsk, Russia, 1975; 149p. (In Russian) [Google Scholar]
- Shpunt, B.R.; Shamshina, E.A.; Shapovalova, I.G.; Krylov, I.I.; Davydov, Y.V.; Kelle, E.Y.; Zabuga, B.R.; Lazebnik, K.A. The Precambrian of the Anabar-Olenek Interfluve; Nauka: Novosibirsk, Russia, 1976; 142p. (In Russian) [Google Scholar]
- Masaitis, V.L.; Tuganova, E.V.; Staritsky, Y.G. Ore Content of Magmatic Formations of the Siberian Platform. Ore Formation and Its Connection with Magmatism; Iakutskoe Knizhnoe Izdatel’stvo: Yakutsk, Russia, 1969; pp. 112–114. (In Russian) [Google Scholar]
- Chumak, M.A.; Timofeev, V.I.; Shpunt, B.R. Prospects of Gold Content in Western Yakutia. Abstracts and Reports for the Meeting of Yakutia Geologists on Gold; Ministry of Geology of the RSFSR. Yakut Order of Lenin Territorial Geological Department of NTO “Gornoye”: Yakutsk, Russia, 1967; pp. 31–32. (In Russian) [Google Scholar]
- Report on the State of Fundamental Sciences in the Russian Federation and on the Most Important Scientific Achievements of Russian Scientists in 2014. The Most Important Achievements, Earth Sciences; Nauka: Moscow, Russia, 2014; p. 181. (In Russian)
- Nikiforova, Z.S.; Kalinin, Y.A.; Makarov, V.A. Evolution of native gold in exogenous conditions. Geol. Geophys. 2020, 61, 1514–1534. [Google Scholar] [CrossRef]
- Nikiforova, Z.S.; Gerasimov, B.B.; Glushkova, E.G.; Kazenkina, A.G. Gold content of the east of the Siberian plat-form (placers–primary sources). Geol. Ore Depos. 2013, 55, 265–277. [Google Scholar] [CrossRef]
- Nikiforova, Z.S. Criteria for determining the genesis of placers and their different sources based on the morpho-logical features of placer gold. Minerals 2021, 11, 381. [Google Scholar] [CrossRef]
- Nikiforova, Z.S.; Tolstov, A.V. Gold-bearing placer-forming formations of the east of the Siberian platform: Origin and prospects. Geol. Ore Depos. 2022, 64, 1–25. [Google Scholar] [CrossRef]
- Nikiforova, Z.S.; Anisimova, G.S.; Sokolov, E.P.; Kazenkina, A.G. Prediction of the type of gold deposits according to the native gold mineralogy of the Verkhneamginskaya area (Yakutia). Proc. Russ. Mineral. Soc. 2021, 150, 30–47. (In Russian) [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Konstantinov, M.M. Gold Provinces of the World; Scientific World: Moscow, Russia, 2006; 358p. (In Russian) [Google Scholar]
- Nikiforova, Z.S. Mineralogical Criteria for the Prediction of Gold Mineralization in the Structures of the Siberian Craton. Minerals 2022, 12, 694. [Google Scholar] [CrossRef]
- Petrovskaya, N.V. Native Gold; Nauka: Moscow, Russia, 1973; 348p. (In Russian) [Google Scholar]
- Nikolaeva, L.A.; Gavrilov, A.M.; Nekrasova, A.N.; Yablokova, S.V.; Shatilova, L.V. Native Gold in Lode and Placer Deposits of Russia. Atlas; Krivtsov, A.I., Ed.; TsNIGRI: Moscow, Russia, 2003; 184p. [Google Scholar]
- Savva, N.E.; Shilyaeva, N.A.; Aleyevskaya, N.L. Topomineralogy of Constitutional Features of Native Gold of the Lower Amur Placer Area; SVKNII FEB RAS: Magadan, Russia, 2004; 172p. (In Russian) [Google Scholar]
- Nikolaeva, L.A.; Gavrilov, A.M.; Nekrasova, A.N.; Yablokova, S.V.; Shatilova, L.V. Native Gold of Ore and Placer Deposits of Russia; TsNIGRI: Moscow, Russia, 2015; 200p. (In Russian) [Google Scholar]
- Palyanova, G.A.; Zhegunov, P.S.; Beliaeva, T.V.; Murzin, V.V.; Borovikov, A.A.; Goryachev, N.A. Palladian Gold: Chemical Composition, Minerals in Association, and Physicochemical Conditions of Formation at Different Types of Gold Deposits. Minerals 2023, 13, 1019. [Google Scholar] [CrossRef]
- Zhmodik, S.M.; Airiyants, E.V.; Belyanin, D.K.; Damdinov, B.B.; Karmanov, N.S.; Kiseleva, O.N.; Kozlov, A.V.; Mironov, A.A.; Moroz, T.N.; Ponomarchuk, V.A. Native Gold and Unique Gold–Brannerite Nuggets from the Placer of the Kamenny Stream, Ozerninsky Ore Cluster (Western Transbakalia, Russia) and Possible Sources. Minerals 2023, 13, 1149. [Google Scholar] [CrossRef]
- Lalomov, A.; Grigorieva, A.; Kotov, A.; Ivanova, L. Typomorphic Features and Source of Native Gold from the Sykhoi Log Area Placer Deposits, Bodaibo Gold-Bearing District, Siberia, Russia. Minerals 2023, 13, 707. [Google Scholar] [CrossRef]
- Minter, W.E.L.; Goedhart, M.; Knight, J.; Frimmel, H.E. Morphology of Witwatersrand gold grains from the Basal reef: Evidence for their detrital origin. Econ. Geol. 1993, 88, 237–248. [Google Scholar] [CrossRef]
- Knight, J.B.; Mortensen, J.K.; Morrison, S.R. Lode and placer gold composition in the Klondike district, Yukon Territory, Canada: Implications for the nature and genesis of Klondike placer and lode gold deposits. Econ. Geol. 1999, 94, 649–664. [Google Scholar] [CrossRef]
- Knight, J.B.; Leitch, C.H. Phase relations in the system Au–Cu–Ag at low temperatures, based on natural asseblages. Can. Mineral. 2001, 39, 889–905. [Google Scholar] [CrossRef]
- Oberthür, T.; Weiser, T.W.; Gast, L.; Schoenberg, R.; Davis, D.W. Platinum-group minerals and other detrital components in the Karoo-age Somabula gravels, Gweru, Zimbabwe. Can. Mineral. 2002, 40, 435–456. [Google Scholar] [CrossRef]
- Marquez-Zavalia, M.F.; Southam, G.; Craig, J.R.; Galliski, M.A. Morphological and chemical study of placer gold from the San Luis Range, Argentina. Can. Mineral. 2004, 42, 169–182. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mortensen, J.K. Application of microchemical characterization of placer gold grains to explortion for epithermal gold mineralization in regions of poor exposure. J. Geochem. Explor. 2006, 91, 1–26. [Google Scholar] [CrossRef]
- Dill, H.G. Geogene and anthropogenic controls on the mineralogy and geochemistry of modern alluvial-(fluvial) gold placer deposits in man-made landscapes in France, Switzerland and Germany. J. Geochem. Explor. 2008, 99, 29–60. [Google Scholar] [CrossRef]
- Frimmel, H.E. Earth’s continental crustal gold endowment. Earth Planet. Sci. Lett. 2008, 267, 45–55. [Google Scholar] [CrossRef]
- Dill, H.G.; Klosa, D.; Steyer, G. The “Donauplatin”: Source rock analysis and origin of a distal fluvial Au-PGE (gold-platinum-group-element) placer in Central Europe. Mineral. Petrol. 2009, 96, 141–161. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mortensen, J.K.; Lebarge, W.P. Styles of lode gold mineralization contributing to the placers of the Indian River and Black Hills Creek, Yukon Territory, Canada as deduced from microchemical characterization of placer gold grains. Miner. Depos. 2011, 46, 881–903. [Google Scholar] [CrossRef]
- Craw, D.; Kerr, G. Geochemistry and mineralogy of contrasting supergene gold alteration zones, southern New Zealand. Appl. Geochem. 2017, 85, 19–34. [Google Scholar] [CrossRef]
- Alam, M.; Li, S.R.; Santosh, M.; Yuan, M.W. Morphology and chemistry of placer gold in the Bagrote and Dainter streams, northern Pakistan: Implications for provenance and exploration. Geol. J. 2018, 54, 1672–1687. [Google Scholar] [CrossRef]
- Liu, H.; Beaudoin, G. Geochemical signatures in native gold derived from Au-bearing ore deposits. Ore Geol. Rev. 2021, 132, 104066. [Google Scholar] [CrossRef]
- Chapman, R.J.; Moles, N.R.; Bluemel, B.; Walshaw, R.D. Detrital Gold as an Indicator Mineral; Geological Society, London, Special Publications: London, UK, 2022; Volume 516, pp. 313–336. [Google Scholar]
- Oberthür, T.; Goldmann, S.; Melcher, F. The Mooihoek Platinum Pipe, Eastern Bushveld Complex, South Africa—Geochemistry and Mineralization. Can. J. Mineral. Petrol. 2023, 61, 507–535. [Google Scholar] [CrossRef]
- Tolstov, A.V. Prospects for the gold content of the Anabar anteclise. Bull. State Comm. Geol. 2002, 1, 44–49. [Google Scholar]
- Smelov, A.P.; Amuzinsky, V.A.; Zedgenizov, A.N.; Berezkin, V.I.; Koval, S.G. Prospects of the Primary Gold Content of Metamorphic and Magmatic Complexes of the Anabar Shield. Gold of Siberia and the Far East: Geology, Geochemistry, Technology, Economics, Ecology. Abstracts of the Third All-Russian Symposium with International Participation; Publishing House of the BSC SB RAS: Ulan-Ude, Russia, 2004; pp. 279–281. (In Russian) [Google Scholar]
- Kravchenko, A.A.; Smelov, A.P.; Berezkin, V.I.; Zedgenizov, A.N.; Dobretsov, V.N. The nature of gold mineralization of the Early Proterozoic Billyakh granitoid complex according to geochemical data (Anabar shield). Russ. Geol. 2010, 5, 23–29. [Google Scholar]
- Kassandrov, E.G.; Marinich, V.A. The gold content of ferruginous quartzites of the Aldan shield. Geol. Geophys. 1979, 2, 87–91. [Google Scholar]
- Jurgenson, G.A.; Abramov, B.N. Mineral composition of ferruginous sandstones and sources of detrital material of copper-bearing sediments of the Udokan series. Notes RMS 2000, 129, 44–53. [Google Scholar]
- Glushkova, E.G.; Nikiforova, Z.S. The primary sources of placer gold of the Urinsky anticlinorium (south-east of the Siberian platform). Pac. Geol. 2013, 32, 118–123. [Google Scholar]
- Mishnin, V.M.; Istomin, I.N.; Grinenko, V.S. A new ore-bearing province in the east of the Siberian platform. Bull. State Comm. Geol. RS (Ya) 2002, 1, 6–14. [Google Scholar]
- Gerasimov, B.B.; Nikiforova, Z.S. Supposed mineragenic types of the primary gold sources of the Anabar region (northeast of the Siberian platform). Sci. Educ. 2017, 2, 11–16. [Google Scholar]
- Dodin, D.A. Metallogeny of the Taimyr-Norilsk Region; Nauka: St. Petersburg, Russia, 2002; 822p. (In Russian) [Google Scholar]
- Kazenkina, A.G.; Nikiforova, Z.S. Indicators of placer gold from the primary sources of the Au-Ag formation. Notes RMS 2015, 5, 82–89. [Google Scholar]
- Nikolaeva, L.A.; Yablokova, S.V. Typomorphic features of native gold and their use in geological exploration. Ores Met. 2007, 6, 41–57. [Google Scholar]
- Timofeev, V.I. The placer gold content of the Vilyui River. Explor. Prot. Miner. Resour. 1965, 6, 1–5. [Google Scholar]
- Mikhailov, V.A. Power Sources of Metalliferous Deposits of the Vilyui Syncline. Abstract of the Dissertation of the Candidate of Geological and Mineralogical Sciences; Tomsk State University Named after V. V. Kuibyshev: Tomsk, Russia, 1990; 20p. (In Russian) [Google Scholar]
- Dunn, E.J. Geology of Gold; Charles Griffin: London, UK, 1929; 303p. [Google Scholar]
- Giusti, L. The morphology, mineralogy and behaviour of «fine-grained» gold from placer deposits of Alberta: Sampling and implications for mineral exploration. Can. J. Earth Sci. 1986, 23, 1662–1672. [Google Scholar] [CrossRef]
- DiLabio, R.N.W.; Newsome, J.W.; McIvor, D.F.; Lowenstein, P.L. The spherical form of gold: Manmade or secondary? Econ. Geol. 1988, 83, 153–162. [Google Scholar] [CrossRef]
- Nikiforova, Z.S.; Ivensen, G.V.; Filippov, V.Y. Manifestations of Volcanic Activity in the Lena-Vilyui Interfluve and Its Association with Gold Mineralization. International Symposium Large Igneous Provinces of Asia, Mantle Plumes and Metallogeny; Publishing House of SB RAS: Novosibirsk, Russia, 2007; pp. 182–184. (In Russian) [Google Scholar]
- Nikiforova, Z.S.; Ivensen, G.V. The Issue of the Formation of Epithermal Gold Deposits on the Territory of the Lena-Vilyui Interfluve. Ore Genesis. Materials of the International Conference; Institute of Mineralogy of the Ural Branch of the Russian Academy of Sciences: Miass, Russia, 2008; pp. 203–206. (In Russian) [Google Scholar]
- Milanovsky, E.E. Rifting in the History of the Earth (Rifting on Ancient Platforms); Nedra: Moscow, Russia, 1983; 280p. (In Russian) [Google Scholar]
- Tugovik, G.I. Fluid-Explosive Structures and Their Ore Content; Publishing House Nauka: Moscow, Russia, 1984; 1933p. (In Russian) [Google Scholar]
Types of Gold Ore Formations | Characteristics of Placer Gold | |||||
---|---|---|---|---|---|---|
Granulometry (Mm) | Shape | Fineness (‰) | Impurity Elements | Micro-Inclusions | Internal Structures | |
Low-sulfide gold–quartz | <0.1–0.25, less often >0.25 | Scaly, lamellar | 900–999 | Ag < 20 wt.%, Cu 0.1 wt.% | Pyrite, arsenopyrite, quartz, carbonate | Primarily recrystallized, secondarily recrystallized, strain lines, high-grade shells up to 20 microns or more |
Gold–copper–porphyry | <0.1–0.25; >0.25 | - « - | 950–999 | Cu 0.5–1 wt.% to 4 wt.% | Not detected | - « - |
Gold–platinoid | <0.1–0.5 | - « - | 950–999 | Pt 96 g/t, (sometimes up to 1130 g/t), Pd 5–570 g/t, (sometimes up to >1015 g/t), Ni–5–100 g/t, Cu < 1.5 wt.% (sometimes up to 27 wt.%), Hg 0.2–0.5 wt.% | Mineral phases of the Pt group, growths of gold (Au–95.95%, Pd–4.12%, Ag–1.36%) and platinum (Pt–87.79%, Fe–10.95%) | - « - |
Gold–ferruginous quartzite | <0.1–0.25 | - « - | 950–999 | Fe—68 g/t and more | Hematite, magnetite, corundum | - « - |
Types of Gold Ore Formation | Characteristics of Placer Gold | |||||
---|---|---|---|---|---|---|
Granulometry (Mm) | Shape | Fineness (‰) | Impurity Elements | Microinclusions | Internal Structures | |
Gold–silver | <0.25–1–2 and more | Lamellar, tabular, lumpy | <500–870 | Ag < 47.7 wt.%, Hg < 1.46 wt.%, Pb 20–90 g/t, Zn 110–170 g/t, As 20–70 g/t (up to 1000 g/t), Sb 12–60 g/t, sinlgle Te 40 g/t etc. | Strontium barite, arsenopyrite, pyrite, quartz, adular, calcite | Two-phase gold, porous structure |
Gold–rare metal | <0.25; 0.25–0.5 and more | Lamellar, tabular, lumpy, dendrite-like | <400–990 | Bi 480 g/t, Fe 1000 g/t, Cu 1109 g/t | Native bismuth, maldonite, arsenopyrite, silver tellurides | Medium-grained, unclear zonal, clearly zonal |
Gold–sulfide–quartz | <0.1–0.25– 1–2 and more | Lamellar, tabular, lumpy | 750–999 | Hg up to 5 wt.% | Pyrite, arsenopyrite, calcite, tellurides, minerals with rare-earth elements | Coarse-grained, medium-grained, unclear zonal |
Formation | The Main Indicator Minerals and Impurity Elements in Gold | Geological Positions | Potentially Ore-Bearing Formations | Structural Position of Ore Location | Characteristic Ore-Bearing Rocks | Morphological Type of Ore Bodies | Location of the Supposed Gold Ore Sources |
---|---|---|---|---|---|---|---|
Low-sulfide gold–quartz | Quartz, pyrite, arsenopyrite, carbonates | Outcrops of the basement of the uplift, arches, highs | The Archean and Early Proterozoic metamorphic rocks | Mineralized crush zones of ancient basement outcrops | Terrigenous–carbonate strata, volcanogenic rocks, crystalline schists, granite-gneisses, granitoids | Sulfide quartz–carbonate veins with an Au content up to 2.7 g/t | Anabar Shield, Olenek and Biliro– Udzha uplift, Suntar Arch, Verkhnesinsky, Bappagaisky, Yakut highs, etc.; zone of junction with the Baikal– Patom fold–thrust belt |
Gold–copper–porphyry | Average Cu content from 0.5 to 4 wt.%, sometimes up to 25 wt.%, sulfides. | Anabar Shield | Igneous rocks | Granitoid massifs, stockworks, linear zones | Diorites, granodiorites, plagiogneisses, granite gneisses, crystalline schists | Quartz veins, sulfide disseminated mineralization with Au content up to 2.5 g/t | Anabar Shield, Kotuikanskaya and Billyakh zones |
Gold–ferruginous quartzite | Hematite, magnetite, corundum, ilmenite | Aldan Shield | Archean metamorphogenic rocks | Stratigraphic levels of the formations of ferruginous quartzite | Basalt terrigenous–volcanogenic strata with ferruginous quartzites | Deposits of disseminated mineralization | Framing of the Aldan Shield, basin of the Torgo and Tokko rivers |
Gold–platinoid | Intergrowths of Au with Pt, impurity elements in gold: Pt, Pd, Ni. | Anabar Shield and the framing of the Suntar Arch | Igneous rocks, basites | Massifs, intrusions | Anorthosites, gabbro-dolerites | Veinlet-disseminated sulfide ores | Anabar Shield (Kotuikan–Monkhoolinskaya zone); framing of the Suntar Arch. |
Formation | Main Indicator Minerals | Position of Metallogenetic Zones | Potentially Ore-Bearing Formations | Structural Position of the Ore Location | Characteristic Ore-Bearing Rocks | Morphological Type of Ore Bodies | Location of the Supposed Gold Ore Sources |
---|---|---|---|---|---|---|---|
Gold–rare metal | Bismuth, maldonite, silver tellurides | Anabar Shield, East Anabar fault | Hornfelsing zones and K-metasomatites | Near-intrusive, over-intrusive, intra-intrusive | Granitoids and adjacent hornfelsed sedimentary | Veins and veinlet zones | Anabar Shield, basin of the Bol. Kuonamka River |
Gold–sulfide–quartz | Pyrite, arsenopyrite, calcite, tellurides, minerals with rare-earth elements | Deep faults, Molodo–Popigai fault system, Bappagai, Kempendyai, and others | Metasomatite zones | Mineralized zones of crushing, breccation, silification, and ferruginization | Terrigenous–carbonate strata | Deposits of disseminated mineralization up to 10 g/t | Basin of the Ebelyakh, Morgogor, Kamenisty rivers, etc. The mouths of the Bolshoy Patom, and Kamenka rivers |
Gold–silver | Quartz, calcite, chalcedony, barite, adular, tellurides | Intracontinental paleorifts (Udzha Vilyuyi) | Volcanic rocks, andesite–dacites, rhyolites, etc. | Fluid explosive structures, caldera | Sandstones | Quartz–barite, calcite veins up to 1 g/t | Udzha River basin, river sources of the Kempendyai dislocation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikiforova, Z. Mineralogical Method as an Effective Way to Predict Gold Ore Types of Deposits in Platform Areas (East of the Siberian Platform). Minerals 2024, 14, 631. https://doi.org/10.3390/min14060631
Nikiforova Z. Mineralogical Method as an Effective Way to Predict Gold Ore Types of Deposits in Platform Areas (East of the Siberian Platform). Minerals. 2024; 14(6):631. https://doi.org/10.3390/min14060631
Chicago/Turabian StyleNikiforova, Zinaida. 2024. "Mineralogical Method as an Effective Way to Predict Gold Ore Types of Deposits in Platform Areas (East of the Siberian Platform)" Minerals 14, no. 6: 631. https://doi.org/10.3390/min14060631
APA StyleNikiforova, Z. (2024). Mineralogical Method as an Effective Way to Predict Gold Ore Types of Deposits in Platform Areas (East of the Siberian Platform). Minerals, 14(6), 631. https://doi.org/10.3390/min14060631