Source of Ore-Forming Fluids and Ore Genesis of the Batailing Au Deposit, Central Jilin Province, Northeast China: Constraints from Fluid Inclusions and H-O-C-S-Pb Isotopes
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
4. Sampling and Analytical Methods
4.1. Fluid Inclusion Analysis
4.2. H-O-C Isotope Analyses
4.3. S-Pb Isotope Analyses
5. Results
5.1. The Types and Characteristics of Fluid Inclusion
5.2. Fluid Inclusion Microthermometry
5.2.1. Stage I
5.2.2. Stage II
5.2.3. Stage III
5.3. Raman Spectroscopy Analysis
5.4. H-O-C Isotopic Composition
5.5. S-Pb Isotopic Composition
6. Discussion
6.1. Nature of Ore-Forming Fluids and Pressure Estimation
6.1.1. Nature of Ore-Forming Fluids
6.1.2. Pressure Estimation
6.2. Source and Evolution of Ore-Forming Fluids
6.2.1. Source of Ore-Forming Fluids
6.2.2. Evolution of Ore-Forming Fluids
6.3. Source of Ore-Forming Materials
6.4. Ore Genesis
7. Conclusions
- The Batailing Au deposit in central Jilin Province is a mesothermal magmatic–hydrothermal lode Au deposit.
- The ore-forming fluids belong to a NaCl-H2O-CO2±CH4 system with moderate temperatures and low salinities.
- The H-O isotopic data show a mainly magmatic source of ore-forming fluids. The C isotopic data and FIs’ characteristics show an organic carbon source of carbon in fluids. The organic carbon was added to the ore-forming system before mineralisation. The S-Pb isotopic data show a mainly magmatic source of ore-forming materials.
- The fluid immiscibility caused by sudden decrease in pressure may lead the precipitation of sulphides and Au in Batailing Au deposit.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, F.; Pei, F.P.; Meng, N.; Tang, J.; Xu, M.J.; Wang, W. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrol. Sin. 2013, 29, 339–353, (In Chinese with English Abstract). [Google Scholar]
- Yu, J.J.; Wang, F.; Xu, W.L.; Gao, F.H.; Pei, F.P. Early Jurassic mafic magmatism in the Lesser Xing’an–Zhangguangcai Range, NE China, and its tectonic implications: Constraints from zircon U–Pb chronology and geochemistry. Lithos 2012, 142, 256–266. [Google Scholar] [CrossRef]
- Han, J.L.; Sun, J.G.; Liu, Y.; Zhang, X.T.; He, Y.P.; Yang, F.; Chu, X.L.; Wang, L.L.; Wang, S.; Zhang, X.W.; et al. Genesis and age of the Toudaoliuhe breccia-type gold deposit in the Jiapigou mining district of Jilin Province, China: Constraints from fluid inclusions, H–O–S–Pb isotopes, and sulfide Rb–Sr dating. Ore Geol. Rev. 2020, 118, 103356. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.G.; Men, L.J.; Chai, P. Origin and evolution of the ore-forming fluids of the Erdaogou and Xiaobeigou gold deposits, Jiapigou gold province, NE China. J. Asian Earth Sci. 2016, 129, 170–190. [Google Scholar] [CrossRef]
- Zheng, W.; Yu, X.F. Geochronological and geochemical constraints on the petrogenesis and Geodynamic Setting of the Daheishan Porphyry Mo deposit, Northeast China. Resour. Geol. 2018, 68, 1–21. [Google Scholar] [CrossRef]
- Han, J.L. Metallogenesis and Geodynamic Setting of the Typical Gold Deposits in the Liuhe Area of the Huadian City, Jilin Province. Ph.D. Thesis, Jilin University, Changchun, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.G. Geological Characteristics of Lanjia Gold Deposit and Its Metallogenetic Prognosis in Changchun Jilin Province. Ph.D. Thesis, Jilin University, Changchun, China, 2004. (In Chinese with English Abstract). [Google Scholar]
- Qian, L.H. Metallogenic geological features and prospecting model of Batailing Au-Ag deposit, Yongji County, Jinlin Province. Jilin Geol. 2011, 30, 41–49, (In Chinese with English Abstract). [Google Scholar]
- Wen, S. Study on the Genesis and Metallogenic Prognosis of Lanjian Gold Deposit, Jilin Province. Ph.D. Thesis, Jilin University, Changchun, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Wen, S.; Li, B.L.; Li, L.B.; Wang, B. Zircon U-Pb age and geochemistry of Nanquanyan diorite in the Lanjia gold deposit, Jilin Province. Earth Sci. 2013, 38, 305–315, (In Chinese with English Abstract). [Google Scholar]
- Tian, L.D. Study on the Geological Characteristics and Metallogenic Potentiality Evaluation of Jiangjiagou Au Deposit in Jiutai, Jilin Province. Ph.D. Thesis, Jilin University, Changchun, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Wang, C.Z.; Chen, G.H.; Li, Q.Q.; Wang, W.B.; Chen, J.W.; Cui, X.W. Mineralization geological characteristics and genesis of Ailin gold deposit in Jiaohe, Jilin Province. Gold Sci. Technol. 2019, 27, 328–338. (In Chinese) [Google Scholar]
- Li, J.M.; Ren, Y.S.; Yang, Q.; Pei, F.P.; Sun, X.H.; Hao, Y.J. Sources of ore-forming materials and mineralization age of Guanma gold deposit in Jilin province. Mineral. Petrol. 2020, 40, 60–68, (In Chinese with English Abstract). [Google Scholar]
- Yang, Q. Late Paleozoic to Early Mesozoic Gold-Copper Polymetallic Metallogeny and Metallogenic Regularity in Central Jilin Province, Northeast China. Ph.D. Thesis, Jilin University, Changchun, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Deng, J.; Yuan, W.M.; Carranza, E.J.M.; Yang, L.Q.; Wang, C.M.; Yang, L.Y.; Hao, N.N. Geochronology and thermochronometry of the Jiapigou gold belt, northeastern China: New evidence for multiple episodes of mineralization. J. Asian Earth Sci. 2014, 89, 10–27. [Google Scholar] [CrossRef]
- Liu, J.; Li, T.G.; Duan, C. Rb–Sr isochron dating and isotopic geochemistry characteristics of the Bajiazi large gold deposit, Jilin Province, China. Acta Geol. Sin. 2018, 92, 1432–1446, (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.T.; Sun, J.G.; Han, J.L.; Feng, Y.Y. Genesis and ore-forming process of the Benqu mesothermal gold deposit in the Jiapigou ore cluster, NE China: Constraints from geology, geochronology, fluid inclusions, and whole-rock and isotope geochemistry. Ore Geol. Rev. 2021, 130, 103956. [Google Scholar] [CrossRef]
- Wutiepu, W.; Yang, Y.C.; Wang, J.L.; Chen, Y.J.; Zhou, K.F.; Wang, S.S.; Han, S.J. Genesis of the Xiaobeigou gold deposit in the Jiapigou gold district, Northeast China: Constraints from fluid inclusions, quartz H–O isotopes, and pyrite in situ sulfur isotope and trace element compositions. Ore Geol. Rev. 2023, 159, 105545. [Google Scholar] [CrossRef]
- Zhang, X.T.; Xu, X.Y.; Sun, J.G.; Han, J.L.; Feng, Y.Y.; Wang, S.; Liu, Y.; Chu, X.L. Geological, fluid inclusion, and H–O–S–Pb isotopic constraints on the genesis of the Bajiazi mesothermal lode gold deposit in the Jiapigou ore cluster, northeast China. Ore Geol. Rev. 2023, 152, 105259. [Google Scholar] [CrossRef]
- Cai, W.; Wang, Z.; Li, J.; Fu, L.; Wang, K.; Konare, Y.; Li, S. Zircon U-Pb and molybdenite Re-Os geochronology and geochemistry of Jinchang porphyry gold-copper deposit, NE China: Two-phase mineralization and the tectonic setting. Ore Geol. Rev. 2019, 107, 735–753. [Google Scholar] [CrossRef]
- Shan, P.F.; Cao, M.J.; Jourdan, F.; Evans, N.J.; Ge, X.; Sun, J.G.; Qin, K.Z.; Zhao, C. Biotite 40Ar/39Ar dating and chemical composition inform metallogenesis of Xiaoxi’nancha porphyry Au-Cu deposit, NE China. Ore Geol. Rev. 2021, 134, 104140. [Google Scholar] [CrossRef]
- Xu, Z.K.; Sun, J.G.; Liu, Y.; Xu, Z.T.; Zhang, X.W.; Pan, Y.D.; Liu, Y.M.; Li, X.P. Timing and ore genesis of the Ciweigou low-sulfidation epithermal gold deposit in the Yanbian Cu-Au district, NE China. Ore Geol. Rev. 2022, 149, 105067. [Google Scholar] [CrossRef]
- Hou, H.N.; Ren, Y.S.; Wang, C.; Wang, H.; Ju, N. Characteristics of fluid inclusions and its significance for ore prospecting of the Ciweigou gold deposit in Yanbian region. Glob. Geol. 2012, 31, 704–711, (In Chinese with English Abstract). [Google Scholar]
- Zhao, K.Q.; Sun, J.G.; Li, L.; Men, L.J.; Nagao, K.; Chai, P. Origin and evolution of ore-forming fluids, and genesis of the Duhuangling and Jiusangou gold deposits in eastern Yanbian, northeast China. Can. J. Earth Sci. 2017, 54, 393–408. [Google Scholar] [CrossRef]
- Men, L.J.; Zhang, X.W.; Sun, J.G.; Zhao, J.K.; Wang, H.J.; Liu, C.X. Metallogenic mechanism of the Xiaoxinancha Au-rich Cu deposit in Yanbian area, Jilin Province: Constrains from fluid inclusions and isotope geochemistry. Geol. China 2018, 45, 544–563, (In Chinese with English Abstract). [Google Scholar]
- Kang, T.H.; Yu, H.S. Overburden extent of ore deposit delineated by anomaly element horizontal zoning succession-taking Lanjia, Batailing, Guanma gold deposits as examples. Jilin Geol. 1997, 1, 57–63. [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Wu, F.Y.; Zhao, G.C.; Sun, D.Y.; Wilde, S.A.; Zhang, G.L. The Hulan group: Its role in the evolution of the central Asian orogenic belt of NE China. J. Asian Earth Sci. 2007, 16, 156–172. [Google Scholar] [CrossRef]
- Ju, G. Detrital-Zircon Geochronology from the Yangjiagou Formation in Southern Section of Zhangguangcai Range and Their Geological Significance. Ph.D. Thesis, Jilin University, Changchun, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Zhang, X.T.; Sun, J.G.; Yu, Z.T.; Song, Q.H. LA-ICP-MS zircon U-Pb and sericite 40Ar/39Ar ages of the Songjianghe gold deposit in southeastern Jilin Province, northeast China, and their geological significance. Can. J. Earth Sci. 2019, 56, 607–628. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, K.Y.; Wan, D.; Konare, Y.; Wang, C.Y. Genesis of the Tianbaoshan Pb–Zn–Cu–Mo polymetallic deposit in eastern Jilin, NE China: Constraints from fluid inclusions and C–H–O–S–Pb isotope systematics. Ore Geol. Rev. 2017, 80, 1111–1134. [Google Scholar] [CrossRef]
- Yu, X.F.; Hou, Z.Q.; Zhang, H.; Qian, Y.; Li, B.L. Characteristics of ore-forming fluids and metallogenic mechanism of the Daheishan porphyry Mo deposit in Yongji area, Jilin Province. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 1688–1699, (In Chinese with English Abstract). [Google Scholar]
- Pei, F.P.; Wang, Z.W.; Cao, H.H.; Xu, W.L.; Wang, F. Petrogenesis of the Early Paleozoic tonalite in the central Jilin Province: Evidence from zircon U-Pb chronology and geochemistry. Acta Petrol. Sin. 2014, 7, 2009–2019, (In Chinese with English Abstract). [Google Scholar]
- Pei, F.P.; Xu, W.L.; Yu, Y.; Zhao, Q.G.; Yang, D.B. Petrogenesis of the Late Triassic Mayihe pluton in southern Jilin Province: Evidence from zircon U-Pb geochronology and geochemistry. J. Jilin Univ. (Earth Sci. Ed.) 2008, 3, 351–362, (In Chinese with English Abstract). [Google Scholar]
- Hao, L.B.; Sun, L.J.; Zhao, Y.Y.; Lu, J.L.; Lv, C.D.; Ma, C. The No.2 mafic-ultramafic intrusion SHRIMP U-Pb zircon dating and its geological significance in Hongqiling area of Jilin Province, China. J. Jilin Univ. (Earth Sci. Ed.) 2012, A3, 166–178, (In Chinese with English Abstract). [Google Scholar]
- Xu, W.L.; Pei, F.P.; Wang, F.; Meng, E.; Ji, W.Q.; Yang, D.B.; Wang, W. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Zhao, H.W.; Li, D.H.; Zang, X.Y.; Peng, Y.J.; Ma, J. A study of magmatism and ore deposit series of Yanshanian magmatism in the central Jilin-Yanbian area. Acta Geol. Sin. 2020, 94, 241–254, (In Chinese with English Abstract). [Google Scholar]
- Jilin City Xusheng Geological Mineral Resources Exploration Design Institute. Verification Report of Gold and Silver Ore Reserves in Batailing, Jilin City, Jilin Province; Jilin City Xusheng Geological Mineral Resources Exploration Design Institute: Jilin, China, 2011; pp. 1–72. (In Chinese) [Google Scholar]
- Sterner, S.M.; Bodnar, R.J. Synthetic fluid inclusions in natural quartz I. compositional types synthesized and applications to experimental geochemistry. Geochim. Cosmochim. Acta 1984, 48, 2659–2668. [Google Scholar] [CrossRef]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Collins, P.L.F. Gas hydrates in CO2-bearing fluid inclusions and use freezing data for estimation of salinity. Econ. Geol. 1979, 74, 1435–1444. [Google Scholar] [CrossRef]
- Schmidt, C.; Bodnar, R.J. Synthetic fluid inclusions: XVI. PVTX properties in the system H2O-NaCl-CO2, at elevated temperatures, pressures, and salinities. Geochim. Cosmochim. Acta 2000, 64, 3853–3869. [Google Scholar] [CrossRef]
- Roedder, A.E.; Bodnar, R.J. Geologic pressure determinations from fluid inclusion studies. Annu. Rev. Earth Planet. Sci. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Robinson, B.W.; Kusakabe, M. Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal. Chem. 1975, 47, 1179–1181. [Google Scholar] [CrossRef]
- Roedder, E. The fluids in salt. Am. Miner. 1984, 69, 413–419. [Google Scholar]
- Burke, E. Raman microspectrometry of fluid inclusions. Lithos 2001, 55, 139–158. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 7th ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Wutiepu, W.; Yang, Y.C.; Zhou, K.F.; Han, S.J.; Chen, Y.J. Origin and evolution of the ore-forming fluids of the Bajiazi gold deposit in the Jiapigou gold ore belt, NE China: Constraints from fluid inclusions, H-O-S isotopes, and pyrite trace element concentrations. Ore Geol. Rev. 2023, 155, 105346. [Google Scholar] [CrossRef]
- Li, L.; Wei, H.; Yang, R.; Zhao, P.P.; Shi, L. Genesis of the Fenghuangshan gold deposit, eastern Hebei, China: Insights from ore geology, fluid inclusion and H-O-S isotopes. Ore Geol. Rev. 2023, 159, 105526. [Google Scholar] [CrossRef]
- Niu, P.P.; Jiang, S.Y. Fluid inclusion and stable isotope (C-H-O-S) constraints on the genesis of the Heilongtan-Xiejiagou Au deposit, northern, Hubei, China. Ore Geol. Rev. 2022, 144, 104841. [Google Scholar] [CrossRef]
- Hu, D.L.; Jiang, S.Y.; Xiong, S.F.; Dong, J.X.; Wang, K.X. Genesis of the Maogongdong deposit in the Dahutang W-Cu-(Mo) ore field of northern Jiangxi Province, South China: Constraints from mineralogy, fluid inclusions, and H-O-C-S isotopes. Miner. Depos. 2022, 57, 1449–1468. [Google Scholar] [CrossRef]
- Sun, Z.S.; Feng, B.Z.; Qing, X. The stable isopotic geology and exploration direction of the Jiapigou gold ore deposit, Jilin Province. J. Changchun Univ. Sci. Technol. 1998, 28, 142–147, (In Chinese with English Abstract). [Google Scholar]
- Shen, B.F.; Luo, H.; Han, G.G.; Dai, X.Y.; Jin, W.S.; Hu, X.D.; Niu, S.B.; Bi, S.Y. Archean Geology and Metallization in Northern Liaoning Province and Southern Jilin Province; Geological Publishing House: Beijing, China, 1994; pp. 1–255. (In Chinese) [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics-the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Ramboz, C.; Pichavant, M.; Weisbrod, A. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data. Chem. Geol. 1982, 37, 29–48. [Google Scholar] [CrossRef]
- Ma, Y.; Xiong, S.F.; Li, H.L.; Jiang, S.Y. Origin and evolution of the ore-forming fluids in the Liyuan gold deposits, central north China Craton: Constraints from fluid inclusions and H-O-C isotopic compositions. Geofluids 2017, 2017, 3107280. [Google Scholar] [CrossRef]
- Jiang, N.; Xu, J.H.; Song, M.X. Fluid inclusion characteristics of mesothermal gold deposits in the Xiaoqinling district, Shaanxi and Henan Provinces, People’s Republic of China. Miner. Depos. 1999, 34, 150–162. [Google Scholar]
- Lawrence, D.M.; Treloar, P.J.; Rankin, A.H.; Boyce, A.; Harbidge, P. A fluid inclusion and stable isotope study at the Luolo Mining district, Mali, West Africa: Implications for multifluid sources in the generation of orogenice gold deposits. Econ. Geol. 2013, 108, 229–257. [Google Scholar] [CrossRef]
- Olsen, S.N. High-density CO2 inclusions in the Colorado Front Range. Contrib. Mineral. Petrol. 1988, 100, 226–235. [Google Scholar] [CrossRef]
- Hollister, L.S. Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation. J. Struct. Geol. 1990, 12, 895–901. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.G.; Men, L.J.; Chai, P. Genesis of the Haigou gold deposit, Jilin Province, NE China: Evidence from fluid inclusions, 40Ar/39Ar geochronology and isotopes. Geol. J. 2017, 52, 882–1008. [Google Scholar] [CrossRef]
- Wu, J.J.; Zeng, Q.D.; Santosh, M.; Fan, H.R.; Bai, R.; Li, X.H.; Zhang, Z.M.; Zhang, Y.W.; Huang, L.L. Deep ore-forming fluid characteristics of the Jiaodong gold province: Evidence from the Qianchen gold deposit in the Jiaojia gold belt. Ore Geol. Rev. 2022, 45, 104911. [Google Scholar] [CrossRef]
- Lu, H.Z.; Fan, H.R.; Ni, P.; Ou, G.X.; Shen, K.; Zhang, W.H. Fluid Inclusions; Science Press: Beijing, China, 2004; pp. 1–487. (In Chinese) [Google Scholar]
- Niu, P.P.; Jiang, S.Y.; Xiong, S.F.; Hu, Q.S.; Xu, T.L. Fluid inclusions and H-O-C-S isotopes of the Wushan copper polymetallic deposit in the Suizao area, Hubei Province: Implications for ore genesis. Geofluids 2019, 2019, 1–29. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.Q.; Groves, D.; Liu, Y.; Sun, S.C.; Qi, P.; Wu, G.S.; Peng, S.J. Geological and isotopic constraints on ore genesis, Huangjindong gold deposit, Jiangnan Orogen, southern China. Ore Geol. Rev. 2018, 99, 264–281. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Wang, Z.C.; He, H.Y.; Wang, Y.B.; Zhang, S.; Liu, J.M. Multiple isotope composition (S, Pb, H, O, He, and Ar) and genetic implications for gold deposits in the Jiapigou gold belt, Northeast China. Miner. Depos. 2014, 49, 145–164. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Faure, G. Principles of Isotope Geology. Geol. Mag. 1986, 124, 594–595. [Google Scholar]
- Zhu, Z.L.; Cheng, H.G.; Zhang, M.; Wang, D.H.; Zhong, Q.C.; Li, J.; Li, J.Y. Geochemical characteristics of source rocks from Upper Permian Yangjiagou Formation in Jilin City. J. Hebei Univ. Eng. (Nat. Sci. Ed.) 2016, 33, 94–98. [Google Scholar]
- Tarasova, Y.; Budyak, A.; Goryachev, N.; Skuzovatov, S.; Reutsky, V.; Gareev, B.; Batalin, G.; Nizamova, A. The role of metamorphic devolatilization in building orogenic gold deposits within Paleoproterozoic organic-rich sediments: P-T-X thermobarometric and carbon isotopic constraints from the Chertovo Koryto deposit (Eastern Siberia). Russ. J. Pac. Geol. 2022, 16, 387–404. [Google Scholar] [CrossRef]
- Aibai, A.; Chen, X.; Wu, Y.S.; Deng, X.H.; Hao, F.Y.; Li, N.; Xiao, W.J.; Chen, Y.J. Nature, origin, and evolution of carbon-rich fluids in orogenic gold deposits: Insights from fluid inclusion and C-H-O isotope studies of the Tokuzbay gold deposit, Chinese Altai. Ore Geol. Rev. 2023, 163, 105766. [Google Scholar] [CrossRef]
- Xue, H.W.; Wang, K.Y.; Geng, J.Z.; Fan, S.W.; Chen, J.C.; Wang, X. Fluid evolution and genesis of the Zhuanghuhe Au-Sb mineralization in the Duobaoshan orefield, Northeast China: Evidence from fluid inclusions and H-O-C isotopes. Geochemistry 2023, 84, 126048. [Google Scholar] [CrossRef]
- Ohmoto, H.; Kerrick, D.M. Devolatilization equilibria in graphitic systems. Am. J. Sci. 1977, 277, 1013–1044. [Google Scholar] [CrossRef]
- Kiyosu, Y.; Asada, N.; Yoshida, Y. Origin of light hydrocarbon gases from the Matsukawa geothermal area in Japan. Chem. Geol. 1992, 94, 321–329. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, M.Y.; Li, Y.G.; Lu, L.N.; Lu, X.X.; Zhu, D.Q.; He, Y.L.; Peng, Y.; Huang, F.; Wang, W.X. Discovery and geological significance of methane-rich fluid inclusions of Chaihulanzi gold deposit in the northern margin of the North China Craton. Acta Geol. Sin. 2022, 96, 1321–1339, (In Chinese with English Abstract). [Google Scholar]
- Tarantola, A.; Mullis, J.; Vennemann, T.; Dubessy, J.; Capitani, C.D. Oxidation of methane at the CH4/H2O–(CO2) transition zone in the external part of the Central Alps, Switzerland: Evidences from stable isotope investigations. Chem. Geol. 2007, 237, 329–357. [Google Scholar] [CrossRef]
- Shen, P.; Pan, H.D. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China. Miner. Depos. 2015, 50, 967–986. [Google Scholar] [CrossRef]
- Lang, X.H.; Deng, Y.L.; Wang, X.H.; Tang, J.X.; Xie, F.W.; Yang, Z.Y.; Yin, Q.; Jiang, K. Reduced fluids in porphyry copper-gold systems reflect the occurrence of the wall-rock thermogenic process: An example from the No.1 deposit in the Xiongcun district, Tibet, China. Ore Geol. Rev. 2020, 118, 103212. [Google Scholar] [CrossRef]
- Chi, G.; Haid, T.; Quirt, D.; Fayek, M.; Blamey, N.; Chu, H. Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Miner. Depos. 2017, 52, 211–232. [Google Scholar] [CrossRef]
- Ding, L.L.; Zhu, L.M.; Xiong, X.; Zhang, G.W.; Li, S.H. Genesis of the Maanqiao gold deposit in the western Qinling orogen, central China: Constraints from fluid inclusions and in-situ sulfur isotopes. Geochemistry 2021, 81, 125691. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Baker, T.; Dube, B.; Groves, D.; Hart, C.; Gosslein, P. Distribution, character and genesis of gold deposits in metamorphic terranes. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2005; pp. 407–450. [Google Scholar]
- Ni, P.; Wang, G.G.; Chen, H.; Xu, Y.-F.; Guan, S.J.; Pan, J.Y.; Li, L. An Early Paleozoic orogenic gold belt along the Jiang−Shao Fault, South China: Evidence from fluid inclusions and Rb–Sr dating of quartz in the Huangshan and Pingshui deposits. J. Asian Earth Sci. 2015, 103, 87–102. [Google Scholar] [CrossRef]
- Seward, T.M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta 1973, 37, 379–399. [Google Scholar] [CrossRef]
- Shenberger, D.M.; Barnes, H.L. Solubility of gold in aqueous sulphide solutions from 150 to 350 °C. Geochim. Cosmochim. Acta 1989, 53, 269–278. [Google Scholar] [CrossRef]
- Stefansson, A.; Seward, T.M. Stability of chloride gold (I) complexes in aqueous solutions from 300 to 600 °C and from 500 to 1800 bar. Geochim. Cosmochim. Acta 2003, 67, 4559–4576. [Google Scholar] [CrossRef]
- Stefansson, A.; Seward, T.M. Gold (I) complexing in aqueous sulphide solutions to 500 °C at 500 bar. Geochim. Cosmochim. Acta 2004, 68, 4121–4143. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Chaussidon, M.; Lorand, J.P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Lang, J.R.; Baker, T. Intrusion-related gold systems: The present level of understanding. Miner. Depos. 2001, 36, 477–489. [Google Scholar] [CrossRef]
- Yang, Q.; Ren, Y.S.; Hao, Y.J.; Wang, B.; Sun, Z.M.; Li, J.M. Ore fluid, geochronology and tectonic setting of mesothermal gold metallogeny in southeastern Jilin Province, Northeast China: A case study of the Shajingou gold deposit. Ore Geol. Rev. 2019, 109, 229–252. [Google Scholar] [CrossRef]
- Thompson, J.F.H.; Sillitoe, R.H.; Baker, T. Intrusion-related gold deposits associated with tungsten-tin provinces. Miner. Depos. 1999, 34, 323–334. [Google Scholar] [CrossRef]
Stage | Mineral | Type (Number) | Size (μm) | Tm,CO2 (°C) | Tm,ice (°C) | Tm,Cla (°C) | Th,CO2 (°C) | Th,total (°C) | Salinity (wt% NaCl Equiv.) | CO2 Density (g/cm3) | Bulk Density (g/cm3) |
---|---|---|---|---|---|---|---|---|---|---|---|
I | quartz | C1 (15) | 5–25 | −60.5 to −57.3 | 5.5 to 7.1 | 25.8 to 29.8 | 264 to 332 | 5.6 to 8.3 | 0.6 to 0.69 | 0.72 to 0.85 | |
quartz | C2 (24) | 5–20 | −59.7 to −57.2 | 6.1 to 7.6 | 25.3 to 30.1 | 278 to 328 | 4.7 to 7.3 | 0.59 to 0.7 | 0.73 to 0.80 | ||
quartz | W (30) | 5–15 | −7.6 to −4.3 | 272 to 318 | 6.9 to 11.2 | 0.75 to 0.85 | |||||
quartz | PC (11) | 5–15 | −59.6 to −57 | 24.2 to 30.2 | 0.59 to 0.72 | ||||||
II | quartz | C1 (18) | 5–20 | −60.6 to −57.1 | 6.4 to 8.6 | 24.1 to 29.2 | 220 to 292 | 2.8 to 6.8 | 0.62 to 0.72 | 0.76 to 0.88 | |
quartz | C2 (37) | 5–25 | −60.2 to −56.9 | 6.8 to 9.1 | 25.6 to 30.3 | 231 to 286 | 1.8 to 6.1 | 0.58 to 0.69 | 0.77 to 0.83 | ||
quartz | W (51) | 5–15 | −7.9 to −2.5 | 213 to 277 | 4.2 to 11.6 | 0.79 to 0.87 | |||||
quartz | PC (15) | 5–10 | −59.4 to −56.9 | 26.1 to 30.6 | 0.57 to 0.69 | ||||||
III | quartz | W (26) | 5–10 | −4.0 to −0.8 | 152 to 215 | 1.4 to 6.4 | 0.86 to 0.94 |
Sample Number | Mineral | Stage | δDV-SMOW (‰) | δ18OV-SMOW (‰) | Th (°C) | δ18OH2O (‰) | δ13CCO2 (‰) |
---|---|---|---|---|---|---|---|
BTL-1 | quartz | I | −79.6 | 13.4 | 305 | 6.2 | −24.3 |
BTL-2 | quartz | I | −84 | 13.6 | 305 | 6.4 | −24.4 |
BTL-3 | quartz | II | −96.4 | 11.6 | 265 | 2.8 | −23.5 |
BTL-4 | quartz | II | −96.2 | 13.2 | 265 | 4.4 | −23.7 |
BTL-5 | quartz | II | −90.4 | 12.6 | 265 | 3.8 | −22.6 |
Sample Number | Mineral | Stage | δ34S (CDT) | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb |
---|---|---|---|---|---|---|
BTL-1 | Pyrite | I | −2.1 | 18.362 | 15.562 | 38.165 |
BTL-2 | Pyrite | I | −1.9 | 18.333 | 15.543 | 38.221 |
BTL-3 | Pyrite | II | −1.6 | 18.325 | 15.523 | 38.064 |
BTL-4 | Sphalerite | II | −2.4 | 18.334 | 15.522 | 38.082 |
BTL-5 | Sphalerite | II | −2.3 | 18.246 | 15.548 | 38.072 |
BTL-6 | Sphalerite | II | −3.5 | 18.234 | 15.533 | 38.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, K.; Yan, X.; Zhao, Q.; Sun, L. Source of Ore-Forming Fluids and Ore Genesis of the Batailing Au Deposit, Central Jilin Province, Northeast China: Constraints from Fluid Inclusions and H-O-C-S-Pb Isotopes. Minerals 2024, 14, 1028. https://doi.org/10.3390/min14101028
Li H, Wang K, Yan X, Zhao Q, Sun L. Source of Ore-Forming Fluids and Ore Genesis of the Batailing Au Deposit, Central Jilin Province, Northeast China: Constraints from Fluid Inclusions and H-O-C-S-Pb Isotopes. Minerals. 2024; 14(10):1028. https://doi.org/10.3390/min14101028
Chicago/Turabian StyleLi, Haoming, Keyong Wang, Xiangjin Yan, Qingying Zhao, and Lixue Sun. 2024. "Source of Ore-Forming Fluids and Ore Genesis of the Batailing Au Deposit, Central Jilin Province, Northeast China: Constraints from Fluid Inclusions and H-O-C-S-Pb Isotopes" Minerals 14, no. 10: 1028. https://doi.org/10.3390/min14101028
APA StyleLi, H., Wang, K., Yan, X., Zhao, Q., & Sun, L. (2024). Source of Ore-Forming Fluids and Ore Genesis of the Batailing Au Deposit, Central Jilin Province, Northeast China: Constraints from Fluid Inclusions and H-O-C-S-Pb Isotopes. Minerals, 14(10), 1028. https://doi.org/10.3390/min14101028