Enhancing Iron Ore Grindability through Hybrid Thermal-Mechanical Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Sample Characterizations
2.3. Bond Ball Mill Grindability Test
Comparative Method of Grindability Test
2.4. Thermal Pretreatment via Furnace
2.5. Thermal Pretreatment via Microwave
2.6. Mechanical Pretreatment
2.7. Hybrid-Thermal Mechanical Pretreatment
3. Results and Discussions
3.1. FTIR and XRD Analyses
3.2. SEM Analysis
3.3. Electrical Conductivity and Dielectric Properties
3.4. Effect of Pretreatment Methods on Work Index
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jankovic, A.; Valery, W. Reducing Grinding Energy and Cost–Magnetite Iron Ore Design Case Study. In Proceedings of the Conference XII International Mineral Processing Symposium, Cappadocia, Turkey, 6–8 October; 2010; pp. 71–78. [Google Scholar]
- Kruyswijk, J.B.; Vlot, E.; Janisch, J. Minıng Engineering; SME: Englewood, CO, USA, 2024; pp. 16–23. [Google Scholar]
- Chryss, A.; Fourie, A.B.; Mönch, A.; Nairn, D.; Seddon, K.D. Towards an Integrated Approach to Tailings Management. J. South. Afr. Inst. Min. Metall. 2012, 112, 965–969. [Google Scholar] [CrossRef]
- Klimpel, R.R. Some Industrial Experiences in Modifying Fine Grinding Environments for Improved Downstream Product Performance. Int. J. Miner. Process 1996, 44, 133–142. [Google Scholar] [CrossRef]
- Adewuyi, S.O.; Ahmed, H.A.M.; Ahmed, H.M.A. Methods of Ore Pretreatment for Comminution Energy Reduction. Minerals 2020, 10, 423. [Google Scholar] [CrossRef]
- Walkiewicz, J.W.; Clark, A.E.; McGill, S.L. Microwave-Assisted Grinding. IEEE Trans. Ind. Appl. 1991, 27, 239–243. [Google Scholar] [CrossRef]
- Liao, N.; Wu, C.; Xu, J.; Feng, B.; Wu, J.; Gong, Y. Effect of Grinding Media on Grinding-Flotation Behavior of Chalcopyrite and Pyrite. Front. Mater. 2020, 7, 176. [Google Scholar] [CrossRef]
- Can, N.M.; Başaran, Ç. Effects of Different Grinding Media and Milling Conditions on the Flotation Performance of a Copper-Pyrite Ore. Minerals 2023, 13, 85. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Z.; Mao, Y.; Yao, Z.; Zhang, W.; Ye, W.; Duan, Y.; Xie, Q. Analysis and Optimization of Grinding Performance of Vertical Roller Mill Based on Experimental Method. Minerals 2022, 12, 133. [Google Scholar] [CrossRef]
- Pamparana, G.; Klein, B.; Bergerman, M.G. Methodology and Model to Predict HPGR Throughput Based on Piston Press Testing. Minerals 2022, 12, 1377. [Google Scholar] [CrossRef]
- Baawuah, E.; Kelsey, C.; Addai-Mensah, J.; Skinner, W. Comparison of the Performance of Different Comminution Technologies in Terms of Energy Efficiency and Mineral Liberation. Miner. Eng. 2020, 156, 106454. [Google Scholar] [CrossRef]
- Ratan, S.; Gupta, R.C.; Dhar, B.B. Ore Grinding Energy Minimisation by Thermal Treatment. In Proceedings of the ICARISM ’99 Conference, Perth, WA, USA, 15–17 September 1999. [Google Scholar]
- Omran, M.; Fabritius, T.; Mattila, R. Thermally Assisted Liberation of High Phosphorus Oolitic Iron Ore: A Comparison between Microwave and Conventional Furnaces. Powder Technol. 2015, 269, 7–14. [Google Scholar] [CrossRef]
- Han, H.; Lu, L. Thermal Beneficiation of Refractory Iron Ore. In Iron Ore: Mineralogy, Processing and Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 421–456. ISBN 9780128202265. [Google Scholar]
- Adewuyi, S.O.; Ahmed, H.A.M. Grinding Behaviour of Microwave-Irradiated Mining Waste. Energies 2021, 14, 3991. [Google Scholar] [CrossRef]
- Mosher, J.B.; Tague, C.B. Conduct and Precision of Bond Grindability Testing. Miner. Eng. 2001, 14, 1187–1197. [Google Scholar] [CrossRef]
- Kumar, P.; Sahoo, B.K.; De, S.; Kar, D.D.; Chakraborty, S.; Meikap, B.C. Iron Ore Grindability Improvement by Microwave Pre-Treatment. J. Ind. Eng. Chem. 2010, 16, 805–812. [Google Scholar] [CrossRef]
- Song, S.; Campos-Toro, E.F.; López-Valdivieso, A. Formation of Micro-Fractures on an Oolitic Iron Ore under Microwave Treatment and Its Effect on Selective Fragmentation. Powder Technol. 2013, 243, 155–160. [Google Scholar] [CrossRef]
- Singh, V.; Venugopal, R.; Tripathy, S.K.; Saxena, V.K. Comparative Analysis of the Effect of Microwave Pretreatment on the Milling and Liberation Characteristics of Mineral Matters of Different Morphologies. Miner. Metall. Process. 2017, 34, 65–75. [Google Scholar] [CrossRef]
- Abdur Rasyid, M.; Aslam, A.; Rafiei, A.; Sasmito, A.P.; Hassani, F. Transforming Power Draw Trend of Ore Crushing by Applying Microwave Heating. In Proceedings of the 14th International Conference on Applied Energy (ICAE), Bochum, Germany, 8–11 August 2022. [Google Scholar]
- Hao, J.; Li, Q.; Qiao, L. Study on Magnetite Ore Crushing Assisted by Microwave Irradiation. Minerals 2021, 11, 1127. [Google Scholar] [CrossRef]
- Liu, L.X.; Powell, M. New Approach on Confined Particle Bed Breakage as Applied to Multicomponent Ore. Min. Eng. 2016, 85, 80–91. [Google Scholar] [CrossRef]
- Abouzeid, A.Z.M.A.; Seifelnassr, A.A.S.; Zain, G.; Mustafa, Y.S. Breakage Behavior of Quartz Under Compression in a Piston Die. Min. Met. Explor. 2019, 36, 173–180. [Google Scholar] [CrossRef]
- Vizcarra, T.G.; Wightman, E.M.; Johnson, N.W.; Manlapig, E.V. The Effect of Breakage Mechanism on the Mineral Liberation Properties of Sulphide Ores. Min. Eng. 2010, 23, 374–382. [Google Scholar] [CrossRef]
- Celik, I.B.; Oner, M. The Influence of Grinding Mechanism on the Liberation Characteristics of Clinker Minerals. Cem. Concr. Res. 2006, 36, 422–427. [Google Scholar] [CrossRef]
- Hosten, C.; Cimilli, H. The Effects of Feed Size Distribution on Confined-Bed Comminution of Quartz and Calcite in Piston-Die Press. Int. J. Min. Process. 2009, 91, 81–87. [Google Scholar] [CrossRef]
- Zhao, S.; Brzozowski, M.J.; Mueller, T.; Wang, L.; Li, W. Classification and Element Mobility in the Yeshan Iron Deposit, Eastern China: Insight from Lithogeochemistry. Ore. Geol. Rev. 2022, 145, 104909. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Ahmed, H.A.M.; Adewuyi, S.O. Characterization of Microschist Rocks under High Temperature at Najran Area of Saudi Arabia. Energies 2021, 14, 4612. [Google Scholar] [CrossRef]
- Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In Handbook of Materials Characterization; Sharma, S.K., Verma, D.S., Khan, L.U., Kumar, S., Khan, S.B., Eds.; Springer: Cham, Switzerland, 2018; pp. 113–145. ISBN 97833199295452. [Google Scholar]
- Saeed, A.; Adewuyi, S.O.; Ahmed, H.A.M.; Alharbi, S.R.; Al Garni, S.E.; Abolaban, F. Electrical and Dielectric Properties of the Natural Calcite and Quartz. Silicon 2022, 14, 5265–5276. [Google Scholar] [CrossRef]
- Bond, F.C. Crushing and Grinding Calculations-Part, I. Br. Chem. Eng. 1961, 6, 378–385. [Google Scholar]
- BICO Inc. Bond Bico Ball Mill Manual; BICO Inc.: Burbank, CA, USA, 2009. [Google Scholar]
- Berry, T.F.; Bruce, R.W. A Simple Method of Determining the Grindability of Ores. Can. Min. J. 1996, 87, 63–65. [Google Scholar]
- Vorster, W.; Rowson, N.A.; Kingman, S.W. The Effect of Microwave Radiation upon the Processing of Neves Corvo Copper Ore. Int. J. Miner. Process. 2001, 63, 29–44. [Google Scholar] [CrossRef]
- Adewuyi, S.O.; Ahmed, H.A.M.; Ahmed, H.M.A. Microwave Treatment of Rocks: Effect on Specific Gravity, Whiteness, and Grindability. Obogashchenie Rud 2020, 3, 8–13. [Google Scholar] [CrossRef]
- Kumar, A.; Kamath, B.P.; Ramarao, V.V.; Mohanty, D.B. Microwave Energy Aided Mineral Comminution. In Proceedings of the International Seminar on Mineral Processing Technology, Chennai, India, 8–10 March 2006; pp. 398–404. [Google Scholar]
- Anand, S.; Vinosel, V.M.; Jenifer, M.A.; Pauline, S. Dielectric Properties, AC Electrical Conductivity and Electrical Modulus Profiles of Hematite (α-Fe2O3) Nanoparticles. Int. Res. J. Eng. Technol. 2017, 4, 358–362. [Google Scholar]
- Ivashchenko, O.; Jurga-Stopa, J.; Coy, E.; Peplinska, B.; Pietralik, Z.; Jurga, S. Fourier Transform Infrared and Raman Spectroscopy Studies on Magnetite/Ag/Antibiotic Nanocomposites. Appl. Surf. Sci. 2016, 364, 400–409. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Kaya, E. Comminution Behaviour of Microwave Heated Two Sulphide Copper Ores. Indian J. Chem. Technol. 2010, 17, 455–461. [Google Scholar]
Sample Location | Mineral Phases | Size Fraction (mm) | Sample Mass (g) | MW Power (kW) | MW Time (min) | Average MW Temp. (°C) | Improvement in Grindability (%) | Reference |
---|---|---|---|---|---|---|---|---|
Republic mine, Michigan | Hematite, quartz | −3.35 | 350 | 3.0 | 3.5 | 840 | 23.7 | [6] |
Empire mine, Michigan | Magnetite, quartz | −3.35 | 350 | 3.0 | 3.5 | 840 | 21.4 | [6] |
Orissa, India | Hematite, alumina, silica | −19.05 + 12.7 | 500 | 0.9 | 2.0 | 148 | 50 | [16] |
Hubei province, China | Hematite, quartz, chlorite, apatite | - | 50 | 1.2 | 5.0 | - | - | [17] |
Aswan region, Egypt | Hematite, quartz, fluoroapatite, chamosite | - | 100 | 0.9 | 1.0 | 546 | - | [13] |
Joda, Odisha, India | Hematite, jasper | −3.35 | 50 | 0.9 | 5.0 | 510 | 20.8 | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewuyi, S.O.; Ahmed, H.A.M.; Anani, A.; Saeed, A.; Ahmed, H.M.; Alwafi, R.; Luxbacher, K. Enhancing Iron Ore Grindability through Hybrid Thermal-Mechanical Pretreatment. Minerals 2024, 14, 1027. https://doi.org/10.3390/min14101027
Adewuyi SO, Ahmed HAM, Anani A, Saeed A, Ahmed HM, Alwafi R, Luxbacher K. Enhancing Iron Ore Grindability through Hybrid Thermal-Mechanical Pretreatment. Minerals. 2024; 14(10):1027. https://doi.org/10.3390/min14101027
Chicago/Turabian StyleAdewuyi, Sefiu O., Hussin A. M. Ahmed, Angelina Anani, Abdu Saeed, Haitham M. Ahmed, Reem Alwafi, and Kray Luxbacher. 2024. "Enhancing Iron Ore Grindability through Hybrid Thermal-Mechanical Pretreatment" Minerals 14, no. 10: 1027. https://doi.org/10.3390/min14101027
APA StyleAdewuyi, S. O., Ahmed, H. A. M., Anani, A., Saeed, A., Ahmed, H. M., Alwafi, R., & Luxbacher, K. (2024). Enhancing Iron Ore Grindability through Hybrid Thermal-Mechanical Pretreatment. Minerals, 14(10), 1027. https://doi.org/10.3390/min14101027