Analysis of Controlling Factors of Pore Structure in Different Lithofacies Types of Continental Shale—Taking the Daqingzi Area in the Southern Songliao Basin as an Example
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
3.1. Samples
3.2. Sample Processing Flow
4. Results
4.1. Shale Lithofacies Types
4.1.1. Basic Petrological Characterisation
4.1.2. Sedimentary Structural Characteristics
4.1.3. Classification of Lithofacies Types
4.2. Differences in the Pore Structures of Different Lithofacies Reservoirs
4.2.1. Differences in Pore Types of Different Types of Lithofacies
4.2.2. Differences in Pore Sizes of Different Types of Lithofacies
5. Discussion
5.1. Influence of Mineral Fraction and Organic Matter on Pore Space
5.1.1. The Influence of Sedimentary Characteristics on Reservoir Pore Structure
5.1.2. The Controlling Effect of Organic Matter Characteristics on Reservoir Pore Structure
5.2. Impact of Diagenesis on Pore Characteristics
5.2.1. Types of Diageneses
5.2.2. Changes in Pore Characteristics during Diagenetic Evolution
5.2.3. Pore Evolution Model for Dominant Lithofacies Reservoirs
6. Conclusions
- The fine-grained sediments of the first member of the Qingshankou Formation in the Daqingzijing area of the Southern Songliao Basin are mainly composed of clay minerals, quartz and feldspar. The lithofacies types can be divided into four categories and six subcategories. They are mainly A1 (clay laminated clayey shale), A2 (clay laminated felsic shale), A3 (silty laminated felsic shale), B (blocky compacted), C (silty compacted and argillaceous shale) and D (siltstone). The A3 type is due to the high content of silty lamina. It has a high brittle mineral content, and the proportion of pore size in different lithofacies is different.
- Sedimentation mainly controls the development of reservoir pore structure through the brittle mineral content, organic matter abundance, and degree of thermal evolution. In terms of the mineral content, the lithofacies with a high brittle mineral content have a stronger anti-compaction effect and more retained primary pores. Therefore, the pore throat structure of type A3 lithofacies with a high quartz feldspar content is better. The influence of organic matter on reservoir quality manifests in two ways. An appropriate organic matter content produces organic acid in the process of thermal evolution to promote the formation of secondary dissolution pores in mudstone and sandstone near the mudstone section and, at the same time, provides a material basis for later organic matter pores. However, an excessive organic matter content will block the pores and reduce the compressive strength of the rock, which is not conducive to the pore preservation of the rock.
- The A3 (silty laminated felsic shale) shale reservoir has the most favourable lithofacies in the study area and experienced a pore evolution process characterised by “two drops and two rises”: compaction, cementation and pore reduction; dissolution and pore increase; and organic matter cracking and pore increase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, C.; Tao, S.; Yang, Z.; Yuan, X.; Zhu, R.; Hou, L.; Jia, J.; Wang, L.; Wu, S.; Bai, B.; et al. New Advance in Unconventional Petroleum Exploration and Research in China. Bull. Mineral. Petrol. Geochem. 2012, 31, 312–322. [Google Scholar]
- Wei, Y.; Ran, Q.; Tong, M.; Wang, Z. A full cycle productivity prediction model of fractured horizontal well in tight oil reservoirs. J. Southwest Pet. Univ. (Sci. Technol. Ed.) 2016, 38, 99–106. [Google Scholar]
- Zhao, W.; Jia, A.; Wei, Y.; Wang, J.; Zhu, H. Progress in shale gas exploration in China and prospects for future development. China Pet. Explor. 2020, 25, 31–44. [Google Scholar]
- Zou, C.; Zhao, Q.; Cong, L.; Wang, H.; Shi, Z.; Wu, J.; Pan, S. Development progress, potential and prospect of shale gas in China. Nat. Gas Ind. 2021, 41, 1–14. [Google Scholar]
- Jin, Z.; Zhu, R.; Liang, X.; Shen, Y. Several issues worthy of attention in current lacustrine shale oil exploration and development. Pet. Explor. Dev. 2021, 48, 1471–1484. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Fu, X.; Bai, Y.; Bai, L.; Jia, M.; He, B. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bull. 2019, 103, 405–432. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Song, G.; Wang, X.; Teng, J.; Wang, M. Effect of shale diagenesis on pores and storage capacity in the paleogene Shahejie Formation, dongying depression, Bohai Bay Basin, east China. Mar. Pet. Geol. 2019, 103, 738–752. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Bai, B.; Yang, Z.; Wu, S.; Su, L.; Dong, D.; Li, X. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Pet. Sin. 2011, 27, 1857–1864. [Google Scholar]
- Loucks, R.; Reed, R.; Ruppel, S.; And, D.; Jarvie, D. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian Barnett shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Kirchofer, A.; Firouzi, M.; Psarras, P.; Wilcox, J. Modeling CO2 transport and sorption in carbon slit pores. J. Phys. Chem. C 2017, 121, 21018–21028. [Google Scholar] [CrossRef]
- Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.; Horsfield, B. Formation of nanoporous pyrobitumen residues during maturation of the Barnett shale (fort worth basin). Int. J. Coal Geol. 2012, 103, 3–11. [Google Scholar] [CrossRef]
- Jie, X.; Yan, Z.; Yang, W.; Chen, S.; Jiang, Z. Structural deformation and its pore-fracture system response of the Wufeng-Longmaxi shale in the Northeast Chongqing area, using FE-SEM, gas adsorption, and SAXS. J. Pet. Sci. Eng. 2022, 209, 109877. [Google Scholar]
- Xie, X.; Deng, H.; Fu, M.; Hu, L.; He, J. Evaluation of pore structure characteristics of four types of continental shales with the aid of low-pressure nitrogen adsorption and an improved FE-SEM technique in Ordos Basin, China. J. Pet. Sci. Eng. 2020, 197, 108018. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, T.; Loucks, R.; James, S. Application of mercury injection capillary pressure to mudrocks: Conformance and compression corrections. Mar. Pet. Geol. 2017, 88, 30–40. [Google Scholar] [CrossRef]
- Han, H.; Guo, C.; Zhong, N.; Pang, P.; Gao, Y. A study on fractal characteristics of lacustrine shales of Qingshankou Formation in the Songliao Basin, northeast China using nitrogen adsorption and mercury injection methods. J. Pet. Sci. Eng. 2020, 193, 107378. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Z.; Sun, W.; Li, Y.; Zhang, X.; Zhu, L.; Wen, M. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test. Mar. Pet. Geol. 2019, 109, 208–222. [Google Scholar] [CrossRef]
- Mastalerz, M.; He, L.; Melnichenko, Y.; Rupp, J. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques. Energy Fuels 2012, 26, 5109–5120. [Google Scholar] [CrossRef]
- Clarkson, C.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.; Mastalerz, M.; Bustin, R.; Radlinski, A.; Blach, T. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, J.; Wang, Y.; Deng, C.; Xue, H. Pore Distribution of Source Rocks as Reavealed by Gas Adsorption and Mercury Injection Methods: A Case Study on the First Member of the Cretaceous Qingshankou Formation in the Songliao Basin. Geol. Rev. 2013, 59, 587–594. [Google Scholar]
- Kuang, L.; Hou, L.; Wu, S.; Cui, J.; Tian, H.; Zhang, L. Organic matter occurrence and pore-forming mechanisms in lacustrine shales in China. Pet. Sci. 2022, 19, 1460–1472. [Google Scholar] [CrossRef]
- Curtis, M.; Ambrose, R.; Sondergeld, C.; Rai, C. Transmission and Scanning Electron Microscopy Investigation of Pore Connectivity of Gas Shales on the Nanoscale. In Proceedings of the North American Unconventional Gas Conference and Exhibition, The Woodlands, TX, USA, 14–16 June 2011; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 2011; Volume 6. [Google Scholar]
- Milliken, K.; Rudnicki, M.; Awwiller, D.; Zhang, T. Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Curtis, M.; Cardott, B.; Sondergeld, C.; Rai, C. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- He, W.; Zhu, R.; Cui, B.; Zhang, S.; Meng, Q.; Bai, B.; Feng, Z.; Lei, Z.; Wu, S.; He, K.; et al. The geoscience frontier of Gulong shale oil: Revealing the role of continental shale from oil generation to production. Engineering 2023, 28, 79–92. [Google Scholar] [CrossRef]
- Hart, B.; Schieber, J.; Kalinec, J. Clay diagenesis and overpressure development in upper cretaceous and tertiary shales of south Texas. Mar. Pet. Geol. 2023, 147, 105978. [Google Scholar] [CrossRef]
- Liang, C.; Cao, Y.; Liu, K.; Jiang, Z.; Wu, J.; Hao, F. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation. Geochim. Cosmochim. Acta 2018, 229, 112–128. [Google Scholar] [CrossRef]
- Teng, J.; Qiu, L.; Zhang, S.; Ma, C. Origin and diagenetic evolution of dolomites in Paleogene Shahejie Formation lacustrine organic shale of Jiyang Depression, Bohai Bay Basin, East China. Pet. Explor. Dev. 2022, 49, 1251–1265. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Liang, J.; Zhu, H.; Zheng, Y. Effect of burial processes on the evolution of organic acids and implications for acidic dissolution from a case study of the Nanpu Sag, Bohai Bay Basin, China. J. Nat. Gas Sci. Eng. 2017, 39, 173–187. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, X.; Wang, S.; Li, W.; He, S.; Yang, H. Dissolution pores in shale and their influence on reservoir quality in Damintun Depression, Bohai Bay Basin, East China: Insights from SEM images, N2 adsorption and fluid-rock interaction experiments. Mar. Pet. Geol. 2020, 117, 104394. [Google Scholar] [CrossRef]
- Sun, N.; Chen, T.; Gao, J.; Zhong, J.; Huo, Z.; Qu, J. Lithofacies and reservoir characteristics of saline lacustrine fine-grained sedimentary rocks in the northern Dongpu Sag, Bohai Bay Basin: Implications for shale oil exploration. Asian Earth Sci. 2023, 252, 105686. [Google Scholar] [CrossRef]
- Loucks, R.; Reed, R.; Ruppel, S.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Zhou, Y.; Ji, Y.; Zhang, S.; Wan, L. Controls on reservoir quality of Lower Cretaceous tight sandstones in the Laiyang Sag, Jiaolai Basin, eastern China: Integrated sedimentologic, diagenetic and microfracturing data. Mar. Pet. Geol. 2016, 76, 26–50. [Google Scholar] [CrossRef]
- Xiao, D.; Zheng, L.; Xing, J.; Wang, M.; Wang, R.; Guan, X.; Guo, X. Coupling control of organic and inorganic rock components on porosity and pore structure of lacustrine shale with medium maturity: A case study of the Qingshankou Formation in the southern Songliao Basin. Mar. Pet. Geol. 2024, 164, 106844. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Li, J.; Shao, H.; Deng, Z.; Wu, Y. Thermal maturity: The controlling factor of wettability, pore structure, and oil content in the lacustrine Qingshankou shale, Songliao Basin. J. Pet. Sci. Eng. 2022, 215, 110618. [Google Scholar] [CrossRef]
- Shen, R.; Xu, R.; Li, Y. Microscopic pore structure and solid-liquid force of Chang 73 shale in Ordos basi. J. Cent. South Univ. (Sci. Technol.) 2024, 55, 2208–2221. [Google Scholar]
- Lin, T.F.; Fu, X.L.; Ai, X. Lithofacies types and cycle patterns of shale layers of Qingshankou Formation in Gulong Sag, Songliao Basin. World Geol. 2024, 43, 378–389. [Google Scholar]
- Zhang, H.; Feng, Y.L.; Yang, Z. Shale oil reservoir characteristics and its formation mechanism within alkline lacustrine basins: A case study of the Fengcheng Formation in Mahu sag, Junggar basin, China. Acta Geol. Sin. 2024, 1–16. [Google Scholar]
- Sun, L.; Liu, H.; He, W.; Li, G.; Zhang, S.; Zhu, R. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Pet. Explor. Dev. 2021, 48, 527–540. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X.; Liu, K.; Bai, J.; Liu, W.; Chen, S. Pore-scale oil distribution in shales of the Qingshankou Formation in the changling sag, Songliao Basin, NE China. Mar. Pet. Geol. 2020, 120, 104553. [Google Scholar] [CrossRef]
- Bruce, C.H. Smectite dehydration—Its relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico basin. AAPG Bull. 1984, 68, 673–683. [Google Scholar]
- Schmitt, M.; Fernandes, C.; Cunha Neto, J.; Wolf, F.; Dos Santos, V. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Mar. Pet. Geol. 2013, 39, 138–149. [Google Scholar] [CrossRef]
- Feng, Z.; Jia, C.; Xie, X.; Zhang, S.; Feng, Z.; Cross, T. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin. Basin Res. 2010, 22, 79–95. [Google Scholar]
- Wang, X.; Sun, Y.; Liu, R.; Li, Z. Research progress into fine-grained sedimentary rock characteristics and formation in a continental lake basin. Acta Sedimentol. Sin. 2023, 41, 349–377. [Google Scholar]
- Li, Z.; Chen, J.; Zou, H.; Wang, C.; Meng, Q.; Liu, H.; Wang, S. Mesozoic–Cenozoic tectonic evolution and dynamics of the Songliao Basin, NE Asia: Implications for the closure of the Paleo-Asian Ocean and Mongol-Okhotsk Ocean and subduction of the Paleo-Pacific Ocean. Earth-Sci. Rev. 2021, 218, 103471. [Google Scholar] [CrossRef]
- Liu, R.; Sun, Y.; Wang, X.; Yan, B.; Yu, L.; Li, Z. Production Capacity Variations of Horizontal Wells in Tight Reservoirs Controlled by the Structural Characteristics of Composite Sand Bodies: Fuyu Formation in the Qian’an Area of the Songliao Basin as an Example. Processes 2023, 11, 1824. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, S.; Jiang, G.; Huang, Q. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth Planet. Sci. Lett. 2009, 278, 308–323. [Google Scholar] [CrossRef]
- Hazra, B.; Varma, K.; Bandopadhyay, K. FTIR, XRF, XRD and SEM characteristics of Permian shales, India. J. Nat. Gas Sci. Eng. 2016, 32, 239–255. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, M.; Li, Y.; Jiang, Z.; Deng, Y.; Qin, J. Multi-scale pore structure characterization of lacustrine fine-grained mixed sedimentary rocks and its controlling factors: A case study of Lucaogou Formation in Jimusar Sag. Energy Fuels 2023, 37, 977–992. [Google Scholar] [CrossRef]
- Ross, D.J.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- He, H.; Liu, P.; Xu, L.; Hao, S.; Qiu, X.; Shan, C.; Zhou, Y. Pore structure representations based on nitrogen adsorption experiments and an FHH fractal model: Case study of the block Z shales in the Ordos Basin, China. J. Pet. Sci. Eng. 2021, 203, 108661. [Google Scholar] [CrossRef]
- Lastoskie, C.; Gubbins, K.E.; Quirke, N. Pore size distribution analysis of microporous carbons: A density functional theory approach. J. Phys. Chem. 1993, 97, 4786–4796. [Google Scholar] [CrossRef]
- Jin, Z.; Liang, X.; Bai, Z. Exploration breakthrough and its significance of Gulong lacustrine shale oil in the Songliao Basin, Northeastern China. Energy Geosci. 2022, 3, 120–125. [Google Scholar] [CrossRef]
- Loucks, R.; Ruppel, S. Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.; Ruppel, S.; Milliken, K.; Yang, R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, L.; Liang, C. Lithofacies and sedimentary characteristics of the silurian longmaxi shale in the southeastern Sichuan Basin, China. J. Palaeogeogr. 2013, 2, 238–251. [Google Scholar]
Sample Number Depth (m) | Lithofacies Types | Quartz | Feldspar | Clay Minerals | Mineral Characteristics | Sedimentary Structure Characteristics | |
---|---|---|---|---|---|---|---|
A | A1 | Clay laminated clayey shale | 17.4–33.2 22.55 | 9.5–18.5 15.47 | 34.1–46.3 39.12 | felsic laminae < clayey laminae | Laminated Single lamina thickness < 1 cm Interbedding of felsic laminae and clayey laminae |
A2 | Clay laminated felsic shale | 21.7–33.4 28.25 | 12.9–23.5 18.62 | 28.4–40.4 36.01 | felsic laminae > clayey laminae | ||
A3 | Silty laminated felsic shale | 27.6–35.6 31.78 | 18.5–26.4 25.3 | 8.4–39.4 28.29 | felsic laminae > 50% | ||
B | B | Blocky mudstone | 25.4–34.1 31.4 | 15.25–25.7 21.24 | 20.24–36.1 28.91 | Clayey content > 50% Silt-sized particles < 25% | Massive |
C | C | Silty mudstone and argillaceous sandstone | 31.4–41.1 35.21 | 24.5–42.7 36.85 | 10.27–15.1 12.57 | Felsic content > 50% | Layered or massive With internal deformation structures present in some parts |
D | D | Siltstone | 34.7–42.4 38.25 | 33.2–64.5 51.2 | 8.4–12.1 11.4 | Felsic content > 50% Silt-sized particles > 75% | Layered or massive |
Lithofacies (Quantity) | Pore (wt.%) | Intercrystalline Pore Percentage (%) | Dissolved Pore Percentage (%) | Intergranular Pore Percentage (%) | Organic Pore Percentage (%) |
---|---|---|---|---|---|
A1 | 2.7–4.05 3.21 | 14.2–22.1 18.6 | 28.2–48.1 37.3 | 22.7–31.2 27.1 | 8.4–12.2 10.1 |
A2 | 3.35–5.21 4.21 | 13.7–23.7 18.1 | 36.4–51.2 44.2 | 30.1–39.2 35.2 | 8.2–10.4 9.4 |
A3 | 4.02–6.21 5.27 | 19.2–24.2 21.1 | 25.4–43.2 33.1 | 32.7–49.2 39.4 | 4.2–8.1 6.4 |
Lithofacies (Quantity) | TOC (wt.%) | Micropore Percentage (%) | Small Pore Percentage (%) | Medium Pore Percentage (%) | Macropore Percentage (%) |
---|---|---|---|---|---|
A1 | 0.45–5.7 2.14 | 35.2–42.2 40.3 | 28.2–48.1 40.8 | 10.5–18.4 14.9 | 1.4–7.4 4.0 |
A2 | 0.42–5.1 1.74 | 26.2–38.4 34.5 | 36.4–53.2 44.1 | 10.2–21.5 17.0 | 1.6–8.4 4.4 |
A3 | 0.35–2.9 1.41 | 17.4–41.2 24.9 | 37.4–52.1 43.9 | 24.2–38.7 21.1 | 7.2–15.1 10.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Sun, Y.; Wang, T.; Yan, B.; Liu, R. Analysis of Controlling Factors of Pore Structure in Different Lithofacies Types of Continental Shale—Taking the Daqingzi Area in the Southern Songliao Basin as an Example. Minerals 2024, 14, 1025. https://doi.org/10.3390/min14101025
Wang X, Sun Y, Wang T, Yan B, Liu R. Analysis of Controlling Factors of Pore Structure in Different Lithofacies Types of Continental Shale—Taking the Daqingzi Area in the Southern Songliao Basin as an Example. Minerals. 2024; 14(10):1025. https://doi.org/10.3390/min14101025
Chicago/Turabian StyleWang, Xinrui, Yu Sun, Tianxu Wang, Baiquan Yan, and Ruhao Liu. 2024. "Analysis of Controlling Factors of Pore Structure in Different Lithofacies Types of Continental Shale—Taking the Daqingzi Area in the Southern Songliao Basin as an Example" Minerals 14, no. 10: 1025. https://doi.org/10.3390/min14101025
APA StyleWang, X., Sun, Y., Wang, T., Yan, B., & Liu, R. (2024). Analysis of Controlling Factors of Pore Structure in Different Lithofacies Types of Continental Shale—Taking the Daqingzi Area in the Southern Songliao Basin as an Example. Minerals, 14(10), 1025. https://doi.org/10.3390/min14101025