Flotation of Copper Sulfide Ore Using Ultra-Low Dosage of Combined Collectors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Process Mineralogy
3.1.1. Multi-Element Chemical and Phase Analysis
3.1.2. Mineral Composition and Liberation Characteristics of the Ore
3.1.3. Characteristics of Particle Size Distribution and Liberation Degree
3.2. Flotation Experiments
3.2.1. Effect of Grinding Fineness
3.2.2. Effect of Reagent Dosage and Type
3.2.3. Application of Combined Collectors
3.2.4. Analysis of Depressant Dosage during Cleaning
3.2.5. Open-Circuit Flotation Experiment
3.2.6. Closed-Circuit Flotation Experiment
4. Conclusions
- Process mineralogy research indicates that the ore is a sulfide copper ore with high sulfur content (α = 11.64%). The symbiotic relationship of the target metal minerals is complex, and the degree of dissociation is poor. In the ore, the Cu content is 0.79%, and the associated precious metals’ contents Au and Ag are 0.233 g/t and 5.83 g/t;
- The combined inhibitor of lime and hydrogen peroxide (pH = 11.33) inhibited pyrite better than lime and sodium sulfite. This may be attributed to the Fenton reaction of hydrogen peroxide on the surface of pyrite, which promotes the formation of hydrophilic iron hydroxides and prevents the adsorption of collectors on the surface of pyrite;
- Using the ADD-BX-EX (1:0.5:0.5) ternary collector resulted in better flotation performance compared to a single collector. This is attributed to the synergistic effects of ADD and BX, while EX, with weaker collectability, intensifies the synergistic effects between each component. Under the condition that the dosage of combined collector was only 10 g/t, the copper grade of the copper concentrate was 20.08% and the copper recovery was 87.73%. The associated metal grades of gold and silver were 0.740 g/t and 42.90 g/t, while the recoveries of gold and silver were 9.22% and 26.66%. Therefore, the present work achieved the recovery of copper sulfide flotation under the condition of an ultra-low dosage of combined collector, which not only obtained better copper flotation indexes, but also reduced the dosage of reagents, and lowered the production costs.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khoso, S.A.; Gao, Z.; Tian, M.; Hu, Y.; Sun, W. The synergistic depression phenomenon of an organic and inorganic reagent on FeS2 in CuS flotation scheme. J. Mol. Liq. 2020, 299, 112198. [Google Scholar] [CrossRef]
- Peng, Y.; Grano, S.; Fornasiero, D.; Ralston, J. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int. J. Miner. Process. 2003, 69, 87–100. [Google Scholar] [CrossRef]
- Bruckard, W.J.; Sparrow, G.J.; Woodcock, J.T. A review of the effects of the grinding environment on the flotation of copper sulphides. Int. J. Miner. Process. 2011, 100, 1–13. [Google Scholar] [CrossRef]
- Peng, Y.; Grano, S. Effect of grinding media on the activation of pyrite flotation. Miner. Eng. 2010, 23, 600–605. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Kang, D.; Guo, J. Depression of pyrite in alkaline medium and its subsequent activation by copper. Miner. Eng. 2012, 26, 64–69. [Google Scholar] [CrossRef]
- Fuchida, S.; Xue, J.; Ishida, S.; Tokoro, C. Kinetic investigation of initial oxidative dissolution of pyrite in alkaline media (pH 9–12) and influence of Ca and Mg: A fundamental study for pyrite depression in froth flotation. J. Sustain. Metall. 2022, 8, 732–741. [Google Scholar] [CrossRef]
- Jacques, S.; Greet, C.J.; Bastin, D. Oxidative weathering of a copper sulphide ore and its influence on pulp chemistry and flotation. Miner. Eng. 2016, 99, 52–59. [Google Scholar] [CrossRef]
- Yin, W.; Xue, J.; Li, D.; Sun, Q.; Yao, J.; Huang, S. Flotation of heavily oxidized pyrite in the presence of fine digenite particles. Miner. Eng. 2018, 115, 142–149. [Google Scholar] [CrossRef]
- Rimstidt, J.D.; Vaughan, D.J. Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 2003, 67, 873–880. [Google Scholar] [CrossRef]
- Niu, X.; Ruan, R.; Xia, L.; Li, L.; Sun, H.; Jia, Y.; Tan, Q. Correlation of surface adsorption and oxidation with a floatability difference of galena and pyrite in high-alkaline lime systems. Langmuir 2018, 34, 2716–2724. [Google Scholar] [CrossRef]
- Chen, J. The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry. Miner. Eng. 2021, 171, 107067. [Google Scholar] [CrossRef]
- Mu, Y.; Peng, Y.; Lauten, R.A. The depression of pyrite in selective flotation by different reagent systems—A Literature review. Miner. Eng. 2016, 96, 143–156. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Shi, Q.; Yang, S.; Liu, D.; Wang, M. Utilization of trisodium phosphate to eliminate the adverse effect of Mg2+ on the flotation of pyrite. Miner. Eng. 2020, 150, 106281. [Google Scholar] [CrossRef]
- Hu, Y.H.; Zhang, S.L.; Qiu, G.Z. Surface chemistry of activation of lime-depressed pyrite in flotation. Trans. Nonferrous Met. Soc. China 2000, 10, 798–803. [Google Scholar]
- Yin, Q.; Vaughan, D.J.; England, K.E.R.; Kelsall, G.H.; Brandon, N.P. Surface oxidation of chalcopyrite (CuFeS2) in alkaline solutions. J. Electrochem. Soc. 2000, 147, 2945–2951. [Google Scholar] [CrossRef]
- Cilek, E.C.; Tuzci, G. Flotation behavior of native gold and gold-bearing sulfide minerals in a polymetallic gold ore. Part. Sci. Technol. 2022, 40, 558–566. [Google Scholar] [CrossRef]
- Lee, R.L.J.; Peng, Y. Assessing the depression of high-concentration pyrite in copper flotation by high pH. Miner. Eng. 2024, 209, 108651. [Google Scholar]
- Chandra, A.P.; Gerson, A.R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv. Colloid Interface Sci. 2009, 145, 97–110. [Google Scholar] [CrossRef]
- Owusu, C.; e Abreu, S.B.; Skinner, W.; Addai-Mensah, J.; Zanin, M. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Miner. Eng. 2014, 55, 87–95. [Google Scholar] [CrossRef]
- He, S.; Skinner, W.; Fornasiero, D. Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite. Int. J. Miner. Process. 2006, 80, 169–176. [Google Scholar] [CrossRef]
- Owusu, C.; Fornasiero, D.; Addai-Mensah, J.; Zanin, M. Influence of pulp aeration on the flotation of chalcopyrite with xanthate in chalcopyrite/pyrite mixtures. Int. J. Miner. Process. 2015, 134, 50–57. [Google Scholar] [CrossRef]
- Schoonen, M.A.; Harrington, A.D.; Laffers, R.; Strongin, D.R. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen. Geochim. Et Cosmochim. Acta 2010, 74, 4971–4987. [Google Scholar] [CrossRef]
- Yin, W.; Yang, B.; Fu, Y.; Chu, F.; Yao, J.; Cao, S.; Zhu, Z. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technol. 2019, 343, 578–585. [Google Scholar] [CrossRef]
- Shen, W.Z.; Fornasiero, D.; Ralston, J. Flotation of sphalerite and pyrite in the presence of sodium sulfite. Int. J. Miner. Process. 2001, 63, 17–28. [Google Scholar] [CrossRef]
- Suyantara, G.P.W.; Hirajima, T.; Miki, H.; Sasaki, K.; Yamane, M.; Takida, E.; Kuroiwa, S.; Imaizumi, Y. Selective flotation of chalcopyrite and molybdenite using H2O2 oxidation method with the addition of ferrous sulfate. Miner. Eng. 2018, 122, 312–326. [Google Scholar] [CrossRef]
- Fairthorne, G.; Fornasiero, D.; Ralston, J. Effect of oxidation on the collectorless flotation of chalcopyrite. Int. J. Miner. Process. 1997, 49, 31–48. [Google Scholar] [CrossRef]
- Khoso, S.A.; Hu, Y.H.; Lv, F.; Gao, Y.; Liu, R.Q.; Sun, W. Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite. Trans. Nonferrous Met. Soc. China 2019, 29, 2604–2614. [Google Scholar] [CrossRef]
- Lotter, N.O.; Bradshaw, D.J. The formulation and use of mixed collectors in sulphide flotation. Miner. Eng. 2010, 23, 945–951. [Google Scholar] [CrossRef]
- Huang, X.; Huang, K.; Jia, Y.; Wang, S.; Cao, Z.; Zhong, H. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite. Chem. Eng. Sci. 2019, 205, 220–229. [Google Scholar] [CrossRef]
- Zou, S.; Wang, S.; Ma, X.; Zhong, H. Underlying synergistic collection mechanism of an emerging mixed reagent scheme in chalcopyrite flotation. J. Mol. Liq. 2022, 364, 119948. [Google Scholar] [CrossRef]
- Dhar, P.; Thornhill, M.; Kota, H.R. Investigation of Copper Recovery from a New Copper Ore Deposit (Nussir) in Northern Norway: Dithiophosphates and Xanthate-Dithiophosphate Blend as Collectors. Minerals 2019, 9, 146. [Google Scholar] [CrossRef]
- Dhar, P.; Thornhill, M.; Kota, H.R. Comparison of single and mixed reagent systems for flotation of copper sulphides from Nussir ore. Miner. Eng. 2019, 142, 105930. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Chang, M.; Wen, S.; Liu, D.; Han, G. Advances in depressants for flotation separation of Cu-Fe sulfide minerals at low alkalinity: A critical review. Int. J. Miner. Metall. Mater. 2024, 31, 1–17. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Liu, J.; Sun, Y.; Sun, W. Flotation and adsorption of muscovite using mixed cationic-nonionic surfactants as collector. Powder Technol. 2015, 276, 26–33. [Google Scholar] [CrossRef]
- Liao, R.; Wen, S.; Bai, S.; Liu, J.; Zhang, Q.; Feng, Q. Co-adsorption mechanism of isoamyl potassium xanthate and ammonium dibutyl dithiophosphate on sulfidized smithsonite in dodecylamine flotation system. Sep. Purif. Technol. 2024, 333, 125788. [Google Scholar] [CrossRef]
- Güler, T.; Hiçyilmaz, C.; Gökagǎç, G.; Ekmeçi, Z. Adsorption of dithiophosphate and dithiophosphinate on chalcopyrite. Miner. Eng. 2006, 19, 62–71. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, J.; Zhou, D.; Zhong, H.; Choi, P.; Xu, Z. A DFT study on the structure-reactivity relationship of thiophosphorus acids as flotation collectors with sulfide minerals: Implication of surface adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2013, 434, 243–252. [Google Scholar] [CrossRef]
- Zhang, T.; Qin, W.-Q.; Yang, C.-R.; Huang, S.-P. Floc flotation of marmatite fines in aqueous suspensions induced by butyl xanthate and ammonium dibutyl dithiophosphate. Trans. Nonferrous Met. Soc. China 2014, 24, 1578–1586. [Google Scholar] [CrossRef]
Inhibitor | Dosage (g/t) | Collector | Dosage (g/t) |
---|---|---|---|
Lime | 300–3000 | Ammonium dibutyl dithiophosphate | 1.5–50 |
Hydrogen peroxide | 0–600 | Butyl xanthate | 1.5–90 |
Sodium sulphite | 300–700 | Ethyl xanthate | 1.5–90 |
Element | Cu | Pb | Zn | Fe | S | SiO2 |
---|---|---|---|---|---|---|
Content/% | 0.79 | 0.028 | 0.25 | 11.64 | 11.64 | 61.92 |
Element | CaO | MgO | Al2O3 | As | Au * | Ag * |
Content/% | 4.91 | 1.12 | 8.20 | 0.025 | 0.233 | 5.83 |
Phase | Free Copper Oxide | Bonded Copper Oxide | Secondary Copper Sulfide | Primary Copper Sulfide | Total Copper |
---|---|---|---|---|---|
Content/% | 0.055 | 0.035 | 0.16 | 0.54 | 0.79 |
Distribution/% | 6.96 | 4.43 | 20.25 | 68.35 | 100 |
Target Minerals | Particle Size/mm | Liberation Degree/% | |||||
---|---|---|---|---|---|---|---|
[0–20) | [20–40) | [40–60) | [60–80) | [80–100) | 100 | ||
Chalcopyrite | 0.0037–0.0795 | 44.62 | 32.57 | 10.12 | 3.6 | 0.72 | 8.37 |
Cubanite | 0.0026–0.1036 | 32.9 | 29.9 | 12.37 | 15.24 | 3.12 | 6.47 |
Digenite | 0.0079–0.0118 | 13.62 | 37.91 | 48.47 | 0 | 0 | 0 |
Covellite | 0.0059–0.0950 | 8.83 | 35.35 | 37.91 | 0 | 0 | 17.9 |
Bornite | 0.0051–0.0408 | 82.16 | 17.84 | 0 | 0 | 0 | 0 |
Tetrahedrite | 0.0053–0.0447 | 54.57 | 5.78 | 4.82 | 11.46 | 0 | 23.37 |
Pyrite | 0.0026–0.3015 | 2.19 | 7.1 | 17.25 | 30.77 | 24.89 | 17.8 |
Product | Yield/% | Grade/% | Recovery/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Au * | Ag * | Fe | S | Cu | Au * | Ag * | Fe | S | ||
Copper concentrate | 2.84 | 20.08 | 0.740 | 42.90 | 29.50 | 35.00 | 87.73 | 9.22 | 26.66 | 7.27 | 8.86 |
Tailing | 97.16 | 0.084 | 0.213 | 3.45 | 10.99 | 10.52 | 12.27 | 90.78 | 73.34 | 92.73 | 91.14 |
Raw ore | 100 | 0.65 | 0.228 | 4.57 | 11.52 | 11.22 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Q.; Han, G.; Wen, S. Flotation of Copper Sulfide Ore Using Ultra-Low Dosage of Combined Collectors. Minerals 2024, 14, 1026. https://doi.org/10.3390/min14101026
Geng Q, Han G, Wen S. Flotation of Copper Sulfide Ore Using Ultra-Low Dosage of Combined Collectors. Minerals. 2024; 14(10):1026. https://doi.org/10.3390/min14101026
Chicago/Turabian StyleGeng, Qing, Guang Han, and Shuming Wen. 2024. "Flotation of Copper Sulfide Ore Using Ultra-Low Dosage of Combined Collectors" Minerals 14, no. 10: 1026. https://doi.org/10.3390/min14101026
APA StyleGeng, Q., Han, G., & Wen, S. (2024). Flotation of Copper Sulfide Ore Using Ultra-Low Dosage of Combined Collectors. Minerals, 14(10), 1026. https://doi.org/10.3390/min14101026