Spectroscopic Identification of Mineral Pigments in White Decorated Prehistoric Pottery from Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pottery Fragments
2.2. LIBS
2.3. ATR-FTIR
2.4. PCA
3. Results
3.1. Elemental Composition
3.2. Mineral Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunt, A.M.W. (Ed.) The Oxford Handbook of Archaeological Ceramic Analysis, 1st ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Eramo, G.; Mangone, A. Archaeometry of ceramic materials. In Chemical Analysis in Cultural Heritage; Sabbatini, L., van der Werf, I.D., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020; pp. 331–356. [Google Scholar] [CrossRef]
- Todorova, H.; Vajsov, I. Neolithic Period in Bulgaria (End of the Seventh-Sixth Millennium BC), Original Title: Novokamennata Epoha v Balgaria (Kraja Na Sedmoto-Sestoto Heljadoletie Predi Novata Era); Nauka i Izkustvo: Sofia, Bulgaria, 1993; ISBN 954-02-0075-X. [Google Scholar]
- Pirovska, A. White Pigments Used for Inlay and Painting on Pottery Dated Back to the Neolithic and Chalcolithic Period (Archaeometric Study). Bulg. E-J. Archaeol. Suppl. 2021, 8, 19–32. [Google Scholar]
- Jones, R. The Decoration and Firing of Ancient Greek Pottery: A Review of Recent Investigations. Adv. Archaeomater. 2021, 2, 67–127. [Google Scholar] [CrossRef]
- Elezi, G. Sociocultural Dimensions of Production, Use, and Circulation of Late Neolithic Pottery from Southern Balkans. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2020. [Google Scholar]
- Sakalis, A.J.; Kazakis, N.A.; Merousis, N.; Tsirliganis, N.C. Study of Neolithic pottery from Polyplatanos (Imathia) using micro X-ray fluorescence spectroscopy, stereoscopic microscopy and multivariate statistical analysis. J. Cult. Herit. 2013, 14, 485–498. [Google Scholar] [CrossRef]
- Papadopoulou, D.; Sakalis, A.; Merousis, N.; Tsirliganis, N.C. Study of decorated archeological ceramics by micro X-ray fluorescence spectroscopy. Nucl. Instrum. Methods A 2007, 580, 743–746. [Google Scholar] [CrossRef]
- Ion, R.M.; Diaconu, V.; Vasilievici, G.; Iancu, L.; Grigorescu, R.M.; Mîrț, L.A.; Alexandrescu, E.; Gheboianu, A.I.; Slamnoiu-Teodorescu, S. Archaeometric Investigations of the Chalcolithic Pottery from Topolița—Neamț County, Romania. Coatings 2023, 13, 488. [Google Scholar] [CrossRef]
- Secu, M.; Matei, E.; Secu, C.; Bartha, C.; Buruiană, T.; Rostas, A.M.; Popescu, A.D.; Boroneanţ, A.; Băjenaru, R. Multi-analytical characterization of the white inlaid decoration on the prehistoric pottery from southern Romania. Solid State Sci. 2023, 140, 107193. [Google Scholar] [CrossRef]
- Buzgar, N.; Bodi, G.; Astefanei, D.; Buzatu, A. The Raman Study of White, Red and Black Pigments Used in Cucuteni Neolithic Painted Ceramics. Analele Ştiint. Ale Univ. Al. I. Cuza Iaşi Geol. 2010, 56, 5–14. [Google Scholar]
- Oancea, A.V.; Bodi, G.; Nica, V.; Ursu, L.E.; Drobota, M.; Cotofana, C.; Vasiliu, A.L.; Simionescu, B.C.; Olaru, M. Multi-analytical characterization of Cucuteni pottery. J. Eur. Ceram. Soc. 2017, 37, 5079–5098. [Google Scholar] [CrossRef]
- Opriș, V.; Mirea, D.A.; Andrei, R.F.; Straticiuc, M.; Simion, C.A.; Stănculescu, I.; Miu, L.; Dincă, L. Archaeometric Studies of Boian Pottery from Nanov–‘Vistireasa 3’ (Teleorman County, Romania, c. 4800-4500 cal BC). In Bridging Science and Heritage in the Balkans: Studies in Archaeometry, Cultural Heritage and Conservation; Palincaş, N., Ponta, C.C., Eds.; Archaeopress: Oxford, UK, 2019; pp. 92–102. [Google Scholar]
- Opriș, V.; Velea, A.; Secu, M.; Rostas, A.; Buruiană, A.; Simion, C.; Mirea, D.; Matei, E.; Bartha, C.; Dimache, M.; et al. ‘Put variety in White’: Multi-analytical investigation of the white pigments inlaid on Early Chalcolithic pottery from Southern Romania. Archaeol. Sci. Rep. 2022, 42, 103402. [Google Scholar] [CrossRef]
- Mihály, J.; Komlósi, V.; Tóth, A.; Tóth, Z.; Ilon, G. Vibrational spectroscopic study of pigment raw materials and painted ceramics excavated at Szombathely-Oladi plató, Hungary. In Vessels: Inside and Outside, Proceedings of the EMAC’07 9th European Meeting on Ancient Ceramics, Budapest, Hungary, 24–27 October 2007; Hungarian National Museum: Budapest, Hungary, 2009. [Google Scholar]
- Sziki, G.Á.; Biró, K.T.; Uzonyi, I.; Dobos, E.; Kiss, Á.Z. Investigation of Incrusted Pottery Found in the Territory of Hungary by Micro-PIXE Method. Nucl. Instrum. Methods Phys. Res. B 2003, 210, 478–482. [Google Scholar] [CrossRef]
- Parkinson, W.A.; Peacock, E.; Palmer, R.A.; Xia, Y.; Carlock, B.; Gyucha, A.; Yerkes, R.W.; Galaty, M.L. Elemental analysis of ceramic incrustation indicates long-term cultural continuity in the prehistoric Carpathian basin. Archaeol. Ethnol. Anthropol. Eurasia 2010, 38, 64–70. [Google Scholar] [CrossRef]
- Perisic, N.; Maric-Stojanovic, M.; Andric, V.; Mioc, U.; Damjanovic, L. Physicochemical Characterisation of Pottery from the Vinca Culture, Serbia, Regarding the Firing Temperature and Decoration Techniques. J. Serbian Chem. Soc. 2016, 81, 1415–1426. [Google Scholar] [CrossRef]
- Petrović, V.B.; Bajuk-Bogdanović, D.; Koturović, N.M.; Svilar, M.; Marić Stojanović, M.; Damjanović-Vasilić, L. Use of resources in Vinča culture: A spectroscopic study of pigments for pottery decoration. In Proceedings of the Eight Balkan Symposium on Archaeometry, Belgrade, Serbia, 3–6 October 2022; Vinča Institute of Nuclear Sciences, National Museum in Belgrade: Belgrade, Serbia, 2022; pp. 79–80. [Google Scholar]
- Ndreçka, E.; Civici, N.; Gjipali, I.; Niccolai, F.; Ridolfi, S. Investigation of Pottery from Different Neolithic Sites in Southeast Albania Using Various Analytical Techniques. J. Mater. Sci. Chem. Eng. 2017, 5, 71–89. [Google Scholar] [CrossRef]
- Elezi, G. Manufacture and Use of the Late Neolithic Pottery in SE Albania. Illiria 2022, XLV, 107–126. [Google Scholar]
- Kos, K.; Posilović, H.; Durman, A.; Ristić, M.; Krehula, S. White Encrustation Produced from Deer Antler Phosphate on Prehistoric Ceramics from Podunavlje. Archaeometry 2015, 57, 636–652. [Google Scholar] [CrossRef]
- Sofaer, J.; Roberts, S. Technical Innovation and Practice in Eneolithic and Bronze Age Encrusted Ceramics in the Carpathian Basin, Middle and Lower Danube. Archäol. Korresp. 2016, 46, 479–496. [Google Scholar] [CrossRef]
- Krauß, R.; Elenski, N.; Weninger, B.; Clare, L.; Çakırlar, C.; Zidarov, P. Beginnings of the Neolithic in Southeast Europe: The Early Neolithic sequence and absolute dates from Džuljunica-Smărdeš (Bulgaria). Doc. Praehist. 2014, XLI, 51–77. [Google Scholar] [CrossRef]
- Grębska-Kulow, M.; Zidarov, P. The Routes of Neolithisation: The Middle Struma Valley from a Regional Perspective. Open Archaeol. 2021, 7, 1000–1014. [Google Scholar] [CrossRef]
- Samichkova, G. Late Neolithic white-painted pottery from the ritual complexes of Kapitan Andreevo and Lyubimets-Dana bunar 2, Southeastern Bulgaria. Pap. BAS Humanit. Soc. Sci. 2022, 9, 3–16. [Google Scholar]
- Alpagut, C. White-on-red painted pottery in the Early Neolithic: A comparative analysis. Analele Banat. S.N. Arheol.-Istor. 2021, XXIX, 35–48. [Google Scholar] [CrossRef]
- Ivanov, G.; Hristova, T.; Zaneva, M.; Alexandrov, S. Encrusted Pottery Culture ceramic imports in northwest Bulgaria. Stud. Praehist. 2023, 17, 217–242. [Google Scholar] [CrossRef]
- Atanassova, V.; Ghervase, L.; Cortea, I.M.; Mihailov, V.; Tankova, V.; Nikolov, V. Multi-Analytical Approach for Characterization of Archaeological Pottery Excavated in the Early-Neolithic Settlement of Chavdar, Bulgaria. Spectrosc. Lett. 2021, 54, 549–559. [Google Scholar] [CrossRef]
- Dzhanfezova, T.; Doherty, C.; Elenski, N. Shaping a Future of Painting: The Early Neolithic Pottery from Dzhulyunitsa, North Central Bulgaria. Bulg. E-J. Archaeol. 2014, 4, 137–159. [Google Scholar]
- Dzhanfezova, T.; Doherty, C.; Grębska-Kulow, M. Understanding Diversity in Early Neolithic Pottery Production: A study case from Southwest Bulgaria. Doc. Praehist. 2020, 47, 110–125. [Google Scholar] [CrossRef]
- Atanassova, V.; Tankova, V.; Mihailov, V.; Pirovska, A. Spectroscopic Study of White Pigments in the Decoration of Neolithic Pottery in the Region of the Thracian Valley, Bulgaria. Minerals 2024, 14, 152. [Google Scholar] [CrossRef]
- Boyadzhiev, Y. The transition between Neolithic and Chalcolithic on the territory of Bulgaria. In The Neolithic and Eneolithic in Southeast Europe. New Approaches to Dating and Cultural Dynamics in the 6th to 4th Millennium BC. Prähistorische Archäologie in Südost Europa, Band 28; Schier, W., Draşovean, F., Eds.; Verlag Marie Leidorf GmbH: Rahden/Westfalen, Germany, 2014; pp. 49–68. [Google Scholar]
- Singh, J.P.; Thakur, S.N. Laser Induced Breakdown Spectroscopy, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Cortea, I.M.; Ghervase, L.; Radvan, R.; Seritan, G. Assessment of Easily Accessible Spectroscopic Techniques Coupled with Multivariate Analysis for the Qualitative Characterization and Differentiation of Earth Pigments of Various Provenance. Minerals 2022, 12, 755. [Google Scholar] [CrossRef]
- Erdem, A.; Çilingiroğlu, A.; Giakoumaki, A.; Castanys, M.; Kartsonaki, E.; Fotakis, C.; Anglos, D. Characterization of Iron age pottery from eastern Turkey by laser-induced breakdown spectroscopy (LIBS). J. Archaeol. Sci. 2008, 35, 2486–2494. [Google Scholar] [CrossRef]
- Smith, L.A. A Tutorial on Principal Components Analysis; Computer Science Technical Report OUCS-2002-12; University of Otago: Dunedin, New Zealand, 2002. [Google Scholar]
- Body, D.; Chadwick, B.L. Optimization of the Spectral Data Processing in a LIBS Simultaneous Elemental Analysis System. Spectrochim. Acta Part B Spectrosc. 2001, 56, 725–736. [Google Scholar] [CrossRef]
- Cubillas, P.; Hu, X.; Higgins, S.R. Strontium incorporation during calcite growth: Implications for chemical mapping using friction force microscopy. Chem. Geol. 2015, 411, 274–282. [Google Scholar] [CrossRef]
- Lerouge, C.; Gaucher, E.C.; Tournassat, C.; Negrel, P.; Crouzet, C.; Guerrot, C.; Gautier, A.; Michel, P.; Vinsot, A.; Buschaert, S. Strontium distribution and origins in a natural clayey formation (Callovian-Oxfordian, Paris Basin, France): A new sequential extraction procedure. Geochim. Cosmochim. Acta 2010, 74, 2926–2942. [Google Scholar] [CrossRef]
- Lindroos, A.-J.; Aro, L. Natural factors influencing strontium concentrations in bulk and throughfall deposition, soil solution and litterfall in forest ecosystems on Olkiluoto Island, southwestern Finland. Boreal Environ. Res. 2019, 24, 233–242. [Google Scholar]
- Neal, C.; Jarvie, H.; Rowland, P.; Lawler, A.; Sleep, D.; Scholefield, P. Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention. Sci. Total Environ. 2011, 409, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Skrabal, S.A.; Terry, C.M. Distributions of dissolved titanium in porewaters of estuarine and coastal marine sediments. Mar. Chem. 2002, 77, 109–122. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 3rd ed.; Mineralogical Society of Great Britain and Ireland: London, UK, 2013. [Google Scholar]
- Middleton, A.P.; Edwards, H.G.M.; Middleton, P.S.; Ambers, J. Identification of anatase in archaeological materials by Raman spectroscopy: Implications and interpretation. J. Raman Spectrosc. 2005, 36, 984–987. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Wang, Q.; Correia, A. Can the Raman spectrum of anatase in artwork and archaeology be used for dating purposes? Identification by Raman microscopy of anatase in decorative coatings on Neolithic (Yangshao) pottery from Henan, China. J. Archaeol. Sci. 2007, 34, 1787–1793. [Google Scholar] [CrossRef]
- Chrysochoou, M.; Theologou, E.; Bompoti, N.; Dermatas, D.; Panagiotakis, I. Occurrence, Origin and Transformation Processes of Geogenic Chromium in Soils and Sediments. Curr. Pollut. Rep. 2016, 2, 224–235. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Anbalagan, G. Spectroscopic Characterization of Natural Calcite Minerals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 68, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Shoval, S. The firing temperature of a Persian-period pottery kiln at Tel Michal, Israel, estimated from the composition of its pottery. J. Therm. Anal. Calorim. 1994, 42, 175–185. [Google Scholar] [CrossRef]
- Loftus, E.; Rogers, K.; Lee-Thorp, J. A simple method to establish calcite: Aragonite ratios in archaeological mollusc shells. J. Quat. Sci. 2015, 30, 731–735. [Google Scholar] [CrossRef]
- Sunagawa, I.; Takahashi, Y.; Imai, H. Strontium and aragonite-calcite precipitation. J. Miner. Pet. Sci. 2007, 102, 174–181. [Google Scholar] [CrossRef]
- Anbalagan, G.; Mukundakumari, S.; Sakthi Murugesan, K.; Gunasekaran, S. Infrared, optical absorption, and EPR spectroscopic studies on natural gypsum. Vib. Spectrosc. 2009, 50, 226–230. [Google Scholar] [CrossRef]
- Ahmed, Y.M.Z.; El-Sheikh, S.M.; Zaki, Z.I. Changes in hydroxyapatite powder properties via heat treatment. Bull. Mater. Sci. 2015, 38, 1807–1819. [Google Scholar] [CrossRef]
- Suchanek, W.L.; Byrappa, K.; Shuk, P.; Riman, R.E.; Janas, V.F.; TenHuisen, K.S. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials 2004, 25, 4647–4657. [Google Scholar] [CrossRef] [PubMed]
- Madejová, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. In Developments in Clay Science; Gates, W.P., Kloprogge, J.T., Madejová, J., Bergaya, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 8, pp. 107–149. [Google Scholar]
- De Benedetto, G.E.; Laviano, R.; Sabbatini, L.; Zambonin, P.G. Infrared Spectroscopy in the Mineralogical Characterization of Ancient Pottery. J. Cult. Herit. 2002, 3, 177–186. [Google Scholar] [CrossRef]
- Ricci, G. Archaeometric Studies of Historical Ceramic Materials. Ph.D. Thesis, Universita Ca’ Foscari Venezia, Venice, Italy, 2017. [Google Scholar]
- Jovanovski, G.; Makreski, P. Minerals from Macedonia. XXX. Complementary Use of Vibrational Spectroscopy and X-ray Powder Diffraction for Spectra-Structural Study of Some Cyclo-, Phyllo- and Tectosilicate Minerals. A Review. Maced. J. Chem. Chem. Eng. 2016, 35, 125. [Google Scholar] [CrossRef]
- Shepard, A.O. Ceramics for the Archaeologist; Carnegie Institution of Washington: Washington, DC, USA, 1956; Volume 609. [Google Scholar]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium—A Dictionary of Historical Pigments, 1st ed.; Routledge: Oxfordshire, UK, 2008. [Google Scholar]
- Gasik, M. Technology of Titanium Ferroalloys. In Handbook of Ferroalloys: Theory and Technology, 1st ed.; Gasik, M., Ed.; Butterworth-Heinemann: Oxford, UK, 2013; pp. 421–433. [Google Scholar]
- Kostov, I.; Breskovska, V.; Mincheva-Stefanova, J.; Kirov, G. Minerals of Bulgaria, Original Title: Mineralite v Bulgaria; Professor Marin Drinov Publishing House of BAS: Sofia, Bulgaria, 1964. [Google Scholar]
- Buzgar, N.; Bodi, G.; Buzatu, A.; Ionuț Apopei, A. The Raman study of the white pigment used in Cucuteni pottery. Analele Stiintifice Ale Univ. “Al. I. Cuza” Din Iasi Ser. Geol. 2013, 59, 41–50. [Google Scholar]
- Rondiri, V.; Asderaki-Tzoumerkioti, E. The ‘management’ of painted and monochrome pottery of Neolithic Thessaly, Central Greece: Technology and provenance. In Proceedings of the 6th Symposium of the Hellenic Society for Archaeometry, Athens, Greece, 16–18 May 2013. [Google Scholar]
- Mihály, J.; Berthold, C.; Szilágyi, V.; Leno, V.; Zöldföldi, J.; Csengeri, P.; Biró Katalin, T. A bükki kerámia inkrusztált díszítéseinek vizsgálata mikroanalitikai módszerekkel. Archeometriai Műhely 2010, 4, 249–257. [Google Scholar]
- Kostov, I. Mineralogy, Original Title: Mineralogiya; Tehnika: Sofia, Bulgaria, 1993; pp. 652–661. [Google Scholar]
Element | Wavelengths (nm) |
---|---|
Ca I | 457.85, 458.14, 458.59, 487.82, 527.03 *, 671.77 |
Ca II | 315.89, 317.93, 393.36, 396.85 |
Si I | 250.69 *, 251.61, 252.41, 252.85, 288.16 |
Al I | 308.22 *, 309.27, 394.40, 396.15 |
Mg I | 285.21, 382.93, 383.23, 516.73 * |
Mg II | 279.55, 280.27 |
Fe I | 271.90, 275.01, 293.69 *, 302.06, 344.10, 356.54, 357.01, 358.12, 374.55 |
Ti I | 498.17, 499.10 |
Ti I | 323.45, 328.77, 334.19, 334.90, 336.12, 337.75 *, 338.38 |
Sr I | 460.73 |
Sr II | 407.77, 421.55 * |
Ba I | 553.55 |
Ba II | 455.40, 493.41 * |
Na I | 449.42 *, 589.00, 589.59 |
K I | 404.41 *, 693.88 |
Mn I | 403.08, 403.31, 403.45 |
Mn II | 259.37 * |
Cr I | 357.87, 359.35, 425.43, 427.48 * |
Sample ID | Type of Decoration | Epoch | Culture | Archaeological Site | Mineral Content of the White Pigment |
---|---|---|---|---|---|
U2 | paint | EN | Kremenik—Anzabegovo | Ilindentsi | Qz, Hem, Fsp, Cal |
U3 | paint | EN | Kremenik—Anzabegovo | Ilindentsi | Qz, Hem, Fsp, Cal |
U4 | paint | EN | Anzabegovo—Vrushnik | Drenkovo | Qz, Hem, Fsp, Cal (tr) |
U5 | paint | EN | Anzabegovo—Vrushnik | Drenkovo | Qz, Mag, Fsp, Cal (tr) |
P23 | paint | EN | Galabnik I | Galabnik | Qz, Hem, Fsp |
P24 | paint | EN | Galabnik I | Galabnik | Qz, Hem, Fsp, Cal (tr) |
P25 | paint | EN | Galabnik I | Galabnik | Qz, Hem, Fsp, Cal (tr) |
P26 | paint | EN | Galabnik I | Galabnik | Gp, Qz, Fsp |
P27 | paint | EN | Galabnik I | Galabnik | Qz, Hem, Fsp, Cal (min) |
P28 | paint | EN | Galabnik I | Galabnik | Qz, Hem, Fsp, Cal (tr) |
P29 | paint | EN | Galabnik I | Galabnik | Qz, Hem, Fsp, Cal (tr) |
P30 | paint | EN | Galabnik I | Galabnik | Qz, Hem, Fsp, Cal (tr) |
P32 | paint | EN | Galabnik I | Galabnik | Cal, Qz, Fsp |
P33 | paint | EN | Galabnik I | Galabnik | Cal, Gp (tr), Qz, Hem, Fsp |
P34 | paint | EN | Galabnik I | Galabnik | Cal, Qz, Fsp |
P35 | paint | EN | Galabnik I | Galabnik | Cal, Qz, Hem, Fsp |
B2 | paint | EN | Gradeshnitsa | Gradeshnitsa—Malo pole | Qz, Hem, Fsp, Cal (min) |
B12 | inlay | EC | Gradeshnitsa | Gradeshnitsa—Malo pole | Cal, Qz, Fsp |
B13 | inlay | EC | Gradeshnitsa | Gradeshnitsa—Malo pole | Cal, Qz, Fsp |
B14 | inlay | EC | Gradeshnitsa | Gradeshnitsa—Malo pole | Cal, Fsp |
B15 | inlay | EC | Vadastra IV | Brenitsa | Cal, Fsp |
B17 | inlay | EC | Vadastra IV | Brenitsa | Cal, Hap, Fsp |
B18 | inlay | EC | Vadastra IV | Brenitsa | Cal, Fsp |
B19 | inlay | EC | Vadastra IV | Brenitsa | Gp, Cal (min), Fsp |
B21 | inlay | EC | Vadastra IV | Brenitsa | Cal, Fsp |
S12 | inlay | EC | Karanovo V | Mogilovo | Qz, Cal, Hem, Kln, Fsp |
S18 | inlay | LC | Karanovo VI | StZ Bani | Qz, Cal, Hem, Fsp |
S22 | inlay | LC | Karanovo VI | StZ Bani | Qz, Cal, Hem, Kln (tr), Fsp |
S25 | inlay | LC | Karanovo VI | StZ Bani | Cal, Qz, Hem, Fsp |
S29 | inlay | LC | Karanovo VI | StZ Bani | Cal, Qz, Hem, Fsp |
S32 | inlay | EC | Maritza I | StZ Bani | Cal, Hem, Qz, Fsp |
S33 | inlay | EC | Maritza I | StZ Bani | Cal, Hem, Qz, Fsp |
R1 | inlay | EC | Boyan III-Vidra and Polyanitsa II, III | Buzovets | Hap, Fsp |
R2 | inlay | EC | Boyan III-Vidra and Polyanitsa II, III | Buzovets | Cal, Fsp |
R4 | inlay | EC | Boyan III-Vidra and Polyanitsa II, III | Buzovets | Hap, Fsp |
R5 | inlay | MC | Boyan IV-Spantsov and Polyanitsa IV | Buzovets | Cal, Fsp |
Bu3 | inlay | C | Mirolyubovo | Gp, Cal, Hem, Qz, Fsp | |
Bu4 | inlay | C | Mirolyubovo | Cal, Hem, Qz, Fsp | |
K1 | inlay | C | Poroy | Cal, Mag, Arg, Fsp | |
K5 | inlay | LC | Kozarevo mound | Qz, carbonate (tr), Hem, Mag, Fsp, Cal | |
K6 | inlay | LC | Kozarevo mound | Arg, Qz, Fsp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tankova, V.; Atanassova, V.; Mihailov, V.; Pirovska, A. Spectroscopic Identification of Mineral Pigments in White Decorated Prehistoric Pottery from Bulgaria. Minerals 2024, 14, 683. https://doi.org/10.3390/min14070683
Tankova V, Atanassova V, Mihailov V, Pirovska A. Spectroscopic Identification of Mineral Pigments in White Decorated Prehistoric Pottery from Bulgaria. Minerals. 2024; 14(7):683. https://doi.org/10.3390/min14070683
Chicago/Turabian StyleTankova, Vani, Victoria Atanassova, Valentin Mihailov, and Angelina Pirovska. 2024. "Spectroscopic Identification of Mineral Pigments in White Decorated Prehistoric Pottery from Bulgaria" Minerals 14, no. 7: 683. https://doi.org/10.3390/min14070683
APA StyleTankova, V., Atanassova, V., Mihailov, V., & Pirovska, A. (2024). Spectroscopic Identification of Mineral Pigments in White Decorated Prehistoric Pottery from Bulgaria. Minerals, 14(7), 683. https://doi.org/10.3390/min14070683