Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere
Abstract
:1. Introduction
2. Geological Background
3. Sample Description and Petrography
4. Analytical Methods and Results
4.1. Zircon U–Pb Geochronology Results
4.2. In Situ Zircon Hf Isotope Results
4.3. Whole-Rock Major- and Trace-Element Results
5. Discussion
5.1. Explanation of Zircon U-Pb Ages
5.2. Assessment of Element Mobility of the Burshulaling Granites
5.3. Petrogenesis of the Burshulaling Granites
5.3.1. An A2-Type Affinity of the Burshulaling Granites
5.3.2. Magma Source of the A-Type Granite
5.4. The A-Type Acidic Magmatic Belt in the Northern Lhasa Block
5.5. Implications for Southward Subduction of BNO or Orogenic Collapse of Lhasa Block
6. Conclusions
- (1)
- Geochemical data show that the Burshulaling Granites are peraluminous high-K calc-alkaline, A-type granites formed in a high temperature–low pressure post-collision environment and underwent a moderately to highly fractionated process.
- (2)
- The 115–113 Ma Burshulaling Granites were formed by the mixing of upwelling of the asthenosphere and the melting of the lower crust due to slab break-off or orogenic root detachment.
- (3)
- There is an A-type acidic magmatic belt along the northern margin of the Lhasa Block, which indicates that the BNO subducted to the south or that an Andean-type orogen collapsed.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. GSA Bull. 1979, 11, 468. [Google Scholar]
- Zhang, Q.; Ran, H.; Li, C.D. A-type granite: What is the essence? Acta Petrol. Mineral. 2012, 31, 621–626. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. J. Petrol. 2011, 52, 39–53. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; de Oliveira, D.C. Oxidized, magnetite-series rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos 2007, 93, 215–233. [Google Scholar] [CrossRef]
- Collins, W.J.; Huang, H.Q.; Bowden, P.; Kemp, A.I.S. Repeated S–I–A-type granite trilogy in the Lachlan Orogen, and geochemical contrasts with A-type granites in Nigeria: Implications for petrogenesis and tectonic discrimination. Geol. Soc. London 2020, 491, 53–76. [Google Scholar] [CrossRef]
- Whalen, J.; Currie, K.; Chappell, B. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- King, P.L.; Chappell, B.W.; Allen, C.M.; White, A.J.R. Are A-type granites the high temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci. 2001, 48, 501–514. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geological evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Zhu, D.C.; Li, S.M.; Cawood, P.A.; Wang, Q.; Zhao, Z.D.; Liu, S.A.; Wang, L.O. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 2016, 245, 7–17. [Google Scholar] [CrossRef]
- Zhang, K.J.; Zhang, Y.X.; Tang, X.C.; Xia, B. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Sci. Rev. 2012, 114, 236–249. [Google Scholar] [CrossRef]
- Zhang, K.J.; Xia, B.; Zhang, Y.X.; Liu, W.L.; Zeng, L.; Li, J.F.; Xu, L.F. Central Tibetan Meso-Tethyan oceanic plateau. Lithos 2014, 210, 278–288. [Google Scholar] [CrossRef]
- Song, Y.; Tang, J.X.; Lin, B.; Yang, C.; Sun, H. Metallogeny in the Bangong–Nujiang belt, central Tibet, China: A review. Front. Earth Sci. 2023, 11, 2296–6463. [Google Scholar] [CrossRef]
- Kapp, P.; Murphy, M.A.; Yin, A.; Harrison, T.M.; Ding, L.; Guo, J.H. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 2003, 22, 1029. [Google Scholar] [CrossRef]
- Kapp, P.; Yin, A.; Harrison, T.M.; Ding, L. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bull. 2005, 117, 865–878. [Google Scholar] [CrossRef]
- Chen, W.Y.; Hu, X.C.; Zhong, Y.; Fu, Y.B.; Li, F.; Wang, Y.G. Comment on “Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing” by A. Ma et al. J. Geophys. Res. Solid Earth 2018, 123, 7338–7342. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.L.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.O.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Van Lente, B.; Ashwal, L.; Pandit, M.; Bowring, S.; Torsvik, T. Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton. Precambrian Res. 2009, 170, 202–222. [Google Scholar] [CrossRef]
- Coulon, C.; Megartsi, M.; Fourcade, S.; Maury, R.; Bellon, H.; Louni-Hacini, A.; Cotton, J.; Coutelle, A.; Hermitte, D. Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): Magmatic expression of a slab breakoff. Lithos 2002, 62, 87–110. [Google Scholar] [CrossRef]
- Van Hunen, J.; Allen, M.B. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett. 2011, 302, 27–37. [Google Scholar] [CrossRef]
- Zeng, Y.C.; Chen, J.L.; Xu, J.F.; Wang, B.D.; Huang, F. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite mélange, central Tibet. Geochem. Geophys. Geosyst. 2016, 17, 4859–4877. [Google Scholar] [CrossRef]
- Peng, Y.B.; Yu, S.Y.; Li, S.Z.; Liu, Y.J.; Dai, L.M.; Lv, P.; Guo, R.H.; Liu, Y.M.; Wang, Y.H.; Xie, W.M. Early Jurassic and Late Cretaceous granites in the Tongka micro-block, Central Tibet: Implications for the evolution of the Bangong-Nujiang ocean. J. Asian Earth Sci. 2020, 194, 1367–9120. [Google Scholar] [CrossRef]
- Xie, L.; Dun, D.; Zhu, L.D.; Nima, C.; Yang, W.G.; Tao, G.; Li, C.; He, B.; He, Y. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in northern Gangdese, Tibet. Geol. China 2015, 42, 1214–1227. [Google Scholar] [CrossRef]
- Fan, J.J.; Li, C.; Sun, Z.M.; Xu, W.; Wang, M.; Xie, C.M. Early cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean. J. Asian Earth Sci. 2018, 154, 187–201. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Zeng, X.W.; Luo, A.B.; Yu, Y.P.; Zeng, X.J. Slab break-off origin of 105 Ma A-type porphyritic granites in the Asa area of Tibet. Geol. Mag. 2020, 157, 1281–1298. [Google Scholar] [CrossRef]
- Kang, Z.Q.; Xu, J.F.; Wang, B.D.; Dong, Y.H.; Wang, S.Q.; Chen, J.L. Geochemistry of Cretaceous volcanic rocks of Duoni formation in Northern Lhasa Block: Discussion of Tectonic setting. Earth Sci. China Univ. Geosci. 2009, 34, 89–104. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, D.C.; Zhao, Z.D.; Meng, F.Y.; Wang, Q.; Santosh, M.; Wang, L.Q.; Dong, G.C.; Mo, X.X. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Res. 2014, 26, 449–463. [Google Scholar] [CrossRef]
- Qu, X.M.; Wang, R.J.; Xin, H.B.; Jiang, J.H.; Chen, H. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau. Lithos 2012, 146, 264–275. [Google Scholar] [CrossRef]
- Zhang, K.J.; Zhang, Y.X.; Tang, X.C.; Xie, Y.W.; Sha, S.L.; Peng, X.J. First report of eclogites from central Tibet, China: Evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision. Terra Nova 2008, 20, 302–308. [Google Scholar] [CrossRef]
- Hu, X.M.; Ma, A.L.; Xue, W.W.; Garzanti, E.; Cao, Y.; Li, S.M.; Sun, G.Y.; Lai, W. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Sci. Rev. 2022, 229, 104031. [Google Scholar] [CrossRef]
- Liu, W.B.; Qian, Q.; Yue, G.L.; Li, Q.S.; Zhang, Q.; Zhou, M.F. The geochemical characteristics of fore-arc ophiolite from Dingqing area. Tibet. Acta Petrol. Sin. 2020, 18, 392–400. [Google Scholar] [CrossRef]
- Guynn, J.H.; Kapp, P.; Pullen, A.; Heizler, M.; Gehrels, G.; Ding, L. Tibetan basement rocks near Amdo reveal “missing Mesozoic tectonism along the Bangong suture, central Tibet. Geology 2006, 34, 505–508. [Google Scholar] [CrossRef]
- Tang, Y.; Zhai, O.G.; Hu, P.Y.; Xiao, X.C.; Wang, H.T.; Wang, W.; Zhu, Z.C.; Wu, H. Jurassic high-Mg andesitic rocks in the middle part of the Bangong-Nujiang suture zone. Tibet: New constraints for the tectonic evolution of the Meso-Tethys Ocean. Acta Petrol. Sin. 2019, 35, 3097–3114. [Google Scholar] [CrossRef]
- Wang, X.C.; Xia, B.; Liu, W.L.; Zhong, Y.; Hu, X.C.; Guan, Y.; Huang, W.; Yin, Z.X. Geochronology, geochemistry and petrogenesis of the Pungco ophiolite, Tibet. Geotecton. Metallog. 2018, 42, 550–569. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, X.; Cao, H.; Ettensohn, F.R.; Chen, W.; Lang, X. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Oiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Res. 2014, 28, 147–157. [Google Scholar] [CrossRef]
- Li, S.; Ding, L.; Guilmette, C.; Fu, J.; Xu, O.; Yue, Y.; Henrique-Pinto, R. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet. Tectonophysics 2017, 702, 42–60. [Google Scholar] [CrossRef]
- Ji, C.; Yan, L.L.; Lu, L.; Jin, X.; Huang, Q.T.; Zhang, K.J. Anduo Late Cretaceous high-K calc-alkaline and shoshonitic volcanic rocks in central Tibet, western China: Relamination of the subducted Meso-Tethyan oceanic plateau. Lithos 2021, 400, 106345. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Liu, C.Z.; Liu, T.; Zhang, C.; Zhang, Z.Y. Subduction initiation triggered by accretion of a Jurassic oceanic plateau along the Bangong–Nujiang Suture in central Tibet. Terra Nova 2021, 33, 150–158. [Google Scholar] [CrossRef]
- Baxter, A.T.; Aitchison, J.C.; Zyabrev, S.V. Radiolarian age constraints on Meso-Tethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet. J. Geol. Soc. 2009, 166, 689–694. [Google Scholar] [CrossRef]
- Shi, R.D.; Griffin, W.L.; O’Reilly, S.Y.; Huang, Q.T.; Zhang, X.R.; Liu, D.L. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet. Gondwana Res. 2012, 21, 194–206. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Z.F. Origin of continental arc andesites: The composition of source rocks is the key. J. Asian Earth Sci. 2017, 145, 217–232. [Google Scholar] [CrossRef]
- Fan, S.Y.; Ding, L.; Murphy, M.A.; Yao, W.; Yin, A. Late Paleozoic and Mesozoic evolution of the Lhasa Terrane in the Xainza area of southern Tibet. Tectonophysics 2017, 721, 415–434. [Google Scholar] [CrossRef]
- Huang, T.T.; Xu, J.F.; Chen, J.L.; Wu, J.B.; Zeng, Y.C. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean: Insights from detrital zircons. Int. Geol. Rev. 2017, 59, 166–184. [Google Scholar] [CrossRef]
- Li, Q.H.; Lu, L.; Zhang, K.J.; Yan, L.L.; Huangfu, P.; Hui, J.; Ji, C. Late Cretaceous post-orogenic delamination in the western Gangdese arc: Evidence from geochronology, petrology, geochemistry, and Sr–Nd–Hf isotopes of intermediate–acidic igneous rocks. Lithos 2022, 424, 106763. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Li, Z.W.; Yang, W.G.; Zhu, L.D.; Jin, S.; Zhou, X.Y.; Tao, G.; Zhang, K.J. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China. J. Asian Earth Sci. 2017, 135, 212–242. [Google Scholar] [CrossRef]
- Pan, G.T.; Ding, J.; Yao, D.S.; Wang, L.Q. Guidebook of 1:1,500,000 Geologic Map of the Qinghai–Xizang (Tibet) Plateau and Adjacent Areas; Cartographic Publishing House: Chengdu, China, 2004; pp. 1–148. [Google Scholar]
- Ding, L.; Kapp, P.; Wan, X. Paleocene–Eocene record of ophiolite obduction and initial India–Asia collision, south-central Tibet. Tectonics 2005, 24, TC3001. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.W.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Xu, W.C.; Zhang, H.F.; Parrish, R.; Harris, N.; Guo, L.; Yuan, H.L. Timing of granulite-facies metamorphism in the eastern himalayan syntaxis and its tectonic implications. Tectonophysics 2010, 485, 231–244. [Google Scholar] [CrossRef]
- Guo, L.; Wang, C.; Zhang, H.F.; Harris, N.; Pan, F.B. Detrital zircon u-pb geochronology, trace-element and hf isotope geochemistry of the metasedimentary rocks in the eastern himalayan syntaxis: Tectonic and paleogeographic implications. Gondwana Res. 2017, 41, 207–221. [Google Scholar] [CrossRef]
- Hu, P.; Zhai, Q.; Tang, Y.; Wang, H.; Wu, H. The middle Neoproterozoic meta-gabbro from the north Lhasa terrane of Tibet and its geological implications. Geol. Bull. China 2016, 37, 1400–1405. [Google Scholar]
- Guynn, J.H.; Kapp, P.; Gehrels, G.E.; Ding, L. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. J. Asian Earth Sci. 2012, 43, 23–50. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Dong, X.; Liu, F.; Lin, Y.H.; Yan, R.; Santosh, M. Tectonic Evolution of the Amdo Terrane, Central Tibet: Petrochemistry and Zircon U-Pb Geochronology. J. Geology 2012, 120, 431–451. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, S.; Santosh, M.; Yu, S. Neoproterozoic amdo and jiayuqiao microblocks in the tibetan plateau: Implications for rodinia reconstruction. GSA Bull. 2020, 133, 663–678. [Google Scholar] [CrossRef]
- Polat, A.; Hofmann, A.W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res. 2003, 126, 197–218. [Google Scholar] [CrossRef]
- Ordóñez-Calderón, J.C.; Polat, A.; Fryer, B.J.; Gagnon, J.E.; Raith, J.G.; Appel, P.W.U. Evidence for HFSE and REE mobility during calc-silicate metasomatism, Mesoarchean (~3075 Ma) Ivisaartoq greenstone belt, southern West Greenland. Precambrian Res. 2008, 161, 317–340. [Google Scholar] [CrossRef]
- Pearce, J.A.; Deng, W. The ophiolites of the Tibet geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philos. Trans. R. Soc. A 1988, 327, 215–238. [Google Scholar] [CrossRef]
- Condie, K.C.; Pisarevsky, S.A.; Puetz, S.J.; Roberts, N.M.W.; Spencer, C.J. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events. Earth Planet. Sci. Lett. 2023, 610, 118125. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.P. Generation of metaluminous A-type granites by low pressure melting of calc-alkaline granitoids. Geology 1997, 25, 743–746. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr\Nd\Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Wang, C.Y.; Zhou, M.F.; Yang, Y.H. Zircon Lu–Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): Constraints on the mantle source. J. Asian Earth Sci. 2009, 35, 45–55. [Google Scholar] [CrossRef]
- Douce, P. Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Córdoba, Argentina. J. Metamorph. Geol. 1999, 17, 415–434. [Google Scholar] [CrossRef]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Wang, W.; Pandit, M.K.; Zhao, J.H.; Chen, W.T.; Zheng, J.P. Slab break-off triggered lithosphere-asthenosphere interaction at a convergent margin: The Neoproterozoic bimodal magmatism in NW India. Lithos 2018, 296, 281–296. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 2017, 60, 1201–1219. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ji, W.Q.; Liu, C.Z.; Chung, S.L. Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chem. Geol. 2010, 271, 13–25. [Google Scholar] [CrossRef]
- Zhang, K.J.; Xia, B.D.; Wang, G.M.; Li, Y.T.; Ye, H.F. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. GSA Bull. 2004, 116, 1202–1222. [Google Scholar] [CrossRef]
- Kapp, P.; DeCelles, P.G.; Gehrels, G.E.; Heizler, M.; Ding, L. Geological records of the Lhasa Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bull. 2007, 119, 917–933. [Google Scholar] [CrossRef]
- Liang, H.D.; Fang, H.; Xiao, D.; Zhong, Q.; He, M.X.; Pei, F.G.; Wang, G.; Zhang, X.B.; Bai, D.W.; Lü, Q.Y. Divergent double subduction of Bangong-Nujiang Ocean revealed by high-resolution magnetotelluric data at 86° E in the northern Tibetan Plateau. Tectonophysics 2023, 862, 229960. [Google Scholar] [CrossRef]
- Otofuji, Y.I.; Mu, C.L.; Tanaka, K.; Miura, D.; Inokuchi, H.; Kamei, R.; Tamai Takemoto, K.; Zaman, H.; Yokoyama, M. Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data. Earth Planet. Sci. Lett. 2007, 262, 581–593. [Google Scholar] [CrossRef]
Point | Content (ppm) | Th/U | Isotopic Ratios | Isotopic Ages (Ma) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 206Pb/238U | 1σ | ||
D2363-02 | 47.2 | 889 | 2256 | 0.4 | 0.1262 | 0.0032 | 0.0185 | 0.0002 | 118 | 1.2 |
D2363-05 | 14.0 | 406 | 654 | 0.6 | 0.1140 | 0.0054 | 0.0179 | 0.0002 | 114 | 1.3 |
D2363-06 | 14.7 | 513 | 647 | 0.8 | 0.1246 | 0.0051 | 0.0179 | 0.0002 | 115 | 1.5 |
D2363-07 | 16.1 | 401 | 742 | 0.5 | 0.1226 | 0.0061 | 0.0188 | 0.0003 | 120 | 2.1 |
D2363-08 | 11.4 | 330 | 531 | 0.6 | 0.1143 | 0.0049 | 0.0178 | 0.0002 | 114 | 1.4 |
D2363-09 | 48.1 | 1632 | 2119 | 0.8 | 0.1264 | 0.0035 | 0.0185 | 0.0002 | 118 | 1.1 |
D2363-11 | 135.6 | 3702 | 6447 | 0.6 | 0.1267 | 0.0031 | 0.0183 | 0.0002 | 117 | 1.4 |
D2363-12 | 23.2 | 530 | 1131 | 0.5 | 0.1162 | 0.0040 | 0.0177 | 0.0002 | 113 | 1.1 |
D2363-13 | 93.6 | 1418 | 4579 | 0.3 | 0.1193 | 0.0028 | 0.0184 | 0.0002 | 117 | 1.0 |
D2363-14 | 5.3 | 159 | 245 | 0.6 | 0.1217 | 0.0075 | 0.0182 | 0.0003 | 116 | 1.8 |
D2363-15 | 11.1 | 286 | 510 | 0.6 | 0.1239 | 0.0065 | 0.0185 | 0.0002 | 118 | 1.5 |
D2363-16 | 9.5 | 252 | 445 | 0.6 | 0.1158 | 0.0059 | 0.0179 | 0.0003 | 115 | 1.7 |
D2363-17 | 3.2 | 100 | 139 | 0.7 | 0.1247 | 0.0085 | 0.0182 | 0.0004 | 116 | 2.4 |
D2363-19 | 16.4 | 440 | 777 | 0.6 | 0.1199 | 0.0059 | 0.0180 | 0.0003 | 115 | 1.7 |
D2363-20 | 11.3 | 492 | 477 | 1.0 | 0.1242 | 0.0064 | 0.0179 | 0.0002 | 114 | 1.6 |
D2363-21 | 69.0 | 1080 | 3466 | 0.3 | 0.1270 | 0.0033 | 0.0177 | 0.0001 | 113 | 0.9 |
D2363-22 | 74.1 | 1105 | 3747 | 0.3 | 0.1225 | 0.0030 | 0.0178 | 0.0001 | 114 | 0.9 |
D2363-23 | 16.7 | 486 | 793 | 0.6 | 0.1117 | 0.0045 | 0.0175 | 0.0002 | 112 | 1.3 |
D2363-24 | 19.3 | 922 | 791 | 1.2 | 0.1248 | 0.0049 | 0.0178 | 0.0002 | 114 | 1.3 |
D2363-25 | 39.3 | 143 | 227 | 0.6 | 1.4943 | 0.0561 | 0.1550 | 0.0033 | 929 | 18.6 |
D2363-26 | 10.4 | 69 | 555 | 0.1 | 0.1217 | 0.0048 | 0.0178 | 0.0002 | 114 | 1.2 |
D2363-27 | 8.7 | 250 | 401 | 0.6 | 0.1255 | 0.0062 | 0.0181 | 0.0002 | 115 | 1.6 |
D2363-30 | 43.4 | 811 | 2144 | 0.4 | 0.1232 | 0.0035 | 0.0178 | 0.0002 | 114 | 1.0 |
D2366-01 | 26.9 | 686 | 1280 | 0.5 | 0.1196 | 0.0041 | 0.0175 | 0.0002 | 112 | 1.1 |
D2366-02 | 37.4 | 772 | 1816 | 0.4 | 0.1176 | 0.0037 | 0.0178 | 0.0002 | 114 | 1.1 |
D2366-04 | 14.1 | 780 | 529 | 1.5 | 0.1196 | 0.0056 | 0.0176 | 0.0002 | 112 | 1.3 |
D2366-05 | 25.1 | 590 | 1194 | 0.5 | 0.1150 | 0.0042 | 0.0176 | 0.0002 | 112 | 1.2 |
D2366-06 | 4.0 | 116 | 174 | 0.7 | 0.1212 | 0.0087 | 0.0180 | 0.0003 | 115 | 2.1 |
D2366-07 | 12.1 | 320 | 556 | 0.6 | 0.1244 | 0.0061 | 0.0176 | 0.0002 | 112 | 1.5 |
D2366-09 | 15.7 | 424 | 721 | 0.6 | 0.1132 | 0.0051 | 0.0177 | 0.0002 | 113 | 1.2 |
D2366-10 | 2.7 | 97 | 115 | 0.8 | 0.1081 | 0.0100 | 0.0175 | 0.0004 | 112 | 2.5 |
D2366-11 | 29.7 | 594 | 1433 | 0.4 | 0.1209 | 0.0042 | 0.0176 | 0.0002 | 112 | 1.0 |
D2366-12 | 26.8 | 1312 | 1082 | 1.2 | 0.1184 | 0.0047 | 0.0178 | 0.0002 | 114 | 1.4 |
D2366-13 | 3.4 | 104 | 154 | 0.7 | 0.1213 | 0.0113 | 0.0175 | 0.0004 | 112 | 2.2 |
D2366-14 | 16.2 | 517 | 718 | 0.7 | 0.1245 | 0.0051 | 0.0181 | 0.0002 | 115 | 1.3 |
D2366-15 | 5.2 | 162 | 223 | 0.7 | 0.1298 | 0.0082 | 0.0180 | 0.0003 | 115 | 1.8 |
D2366-17 | 11.7 | 364 | 534 | 0.7 | 0.1146 | 0.0054 | 0.0179 | 0.0002 | 114 | 1.4 |
D2366-18 | 2.5 | 65 | 117 | 0.6 | 0.1272 | 0.0087 | 0.0177 | 0.0004 | 113 | 2.3 |
D2366-19 | 16.7 | 406 | 797 | 0.5 | 0.1241 | 0.0049 | 0.0178 | 0.0003 | 114 | 1.7 |
D2366-21 | 5.8 | 196 | 264 | 0.7 | 0.1129 | 0.0061 | 0.0177 | 0.0003 | 113 | 1.8 |
D2366-22 | 6.0 | 201 | 267 | 0.8 | 0.1250 | 0.0079 | 0.0178 | 0.0003 | 114 | 1.9 |
D2366-25 | 9.6 | 299 | 441 | 0.7 | 0.1153 | 0.0060 | 0.0176 | 0.0002 | 113 | 1.5 |
D2366-26 | 9.8 | 277 | 463 | 0.6 | 0.1284 | 0.0066 | 0.0176 | 0.0003 | 112 | 1.6 |
D2366-28 | 8.4 | 450 | 319 | 1.4 | 0.1219 | 0.0064 | 0.0178 | 0.0002 | 114 | 1.6 |
D2366-30 | 11.2 | 317 | 522 | 0.6 | 0.1230 | 0.0055 | 0.0176 | 0.0002 | 112 | 1.5 |
Point | Ages (Ma) | 176Yb/177Hf | 1σ | 176Hf/177Hf | 1σ | 176Lu/177Hf | 1σ | εHf(0) | εHf(t) | TDM (Ma) | (Ma) | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D2363-02 | 118 | 0.054295 | 0.002399 | 0.282628 | 0.000013 | 0.001721 | 0.000089 | −5.1 | −2.6 | 900 | 1339 | −0.95 |
D2363-05 | 114 | 0.031156 | 0.000223 | 0.282669 | 0.000014 | 0.001003 | 0.000013 | −3.7 | −1.2 | 826 | 1247 | −0.97 |
D2363-06 | 115 | 0.030894 | 0.000336 | 0.282635 | 0.000014 | 0.000965 | 0.000009 | −4.8 | −2.4 | 873 | 1322 | −0.97 |
D2363-07 | 120 | 0.042053 | 0.000644 | 0.282649 | 0.000014 | 0.001332 | 0.000025 | −4.3 | −1.8 | 861 | 1289 | −0.96 |
D2363-08 | 114 | 0.021805 | 0.000176 | 0.282645 | 0.000013 | 0.000695 | 0.000004 | −4.5 | −2.1 | 853 | 1300 | −0.98 |
D2363-09 | 118 | 0.074151 | 0.000446 | 0.282618 | 0.000014 | 0.002355 | 0.000013 | −5.4 | −3 | 930 | 1364 | −0.93 |
D2363-11 | 117 | 0.142634 | 0.004410 | 0.282666 | 0.000016 | 0.004224 | 0.000139 | −3.8 | −1.5 | 908 | 1267 | −0.87 |
D2363-12 | 113 | 0.032751 | 0.000446 | 0.282656 | 0.000013 | 0.000978 | 0.000007 | −4.1 | −1.7 | 844 | 1277 | −0.97 |
D2363-13 | 117 | 0.074383 | 0.000179 | 0.28262 | 0.000015 | 0.002285 | 0.000004 | −5.4 | −3 | 926 | 1361 | −0.93 |
D2363-14 | 116 | 0.030295 | 0.000452 | 0.282679 | 0.000014 | 0.000946 | 0.000016 | −3.3 | −0.8 | 810 | 1222 | −0.97 |
D2363-15 | 118 | 0.027974 | 0.000274 | 0.282624 | 0.000012 | 0.000915 | 0.000006 | −5.2 | −2.7 | 887 | 1344 | −0.97 |
D2363-16 | 115 | 0.023157 | 0.000307 | 0.282683 | 0.000014 | 0.000753 | 0.000009 | −3.1 | −0.7 | 800 | 1213 | −0.98 |
D2363-17 | 116 | 0.019409 | 0.000077 | 0.282719 | 0.000012 | 0.000638 | 0.000002 | −1.9 | 0.6 | 747 | 1130 | −0.98 |
D2363-19 | 115 | 0.025402 | 0.000372 | 0.282686 | 0.000013 | 0.000838 | 0.00001 | −3.0 | −0.6 | 798 | 1206 | −0.97 |
D2363-20 | 114 | 0.034504 | 0.001628 | 0.282706 | 0.000015 | 0.001101 | 0.000048 | −2.3 | 0.1 | 775 | 1163 | −0.97 |
D2363-21 | 113 | 0.050703 | 0.000466 | 0.282622 | 0.000011 | 0.001596 | 0.000013 | −5.3 | −2.9 | 906 | 1355 | −0.95 |
D2363-23 | 112 | 0.030186 | 0.000099 | 0.282629 | 0.000014 | 0.000988 | 0.000004 | −5.0 | −2.7 | 881 | 1337 | −0.97 |
D2363-24 | 114 | 0.084543 | 0.001134 | 0.28265 | 0.000016 | 0.002557 | 0.000025 | −4.3 | −2 | 889 | 1296 | −0.92 |
D2363-26 | 114 | 0.006518 | 0.000067 | 0.282527 | 0.000012 | 0.000205 | 0.000003 | −8.7 | −6.2 | 1005 | 1562 | −0.99 |
D2366-01 | 112 | 0.052516 | 0.002292 | 0.282638 | 0.000013 | 0.001724 | 0.000079 | −6.0 | −2.4 | 887 | 1396 | −0.97 |
D2366-02 | 114 | 0.048036 | 0.000440 | 0.282603 | 0.000013 | 0.001559 | 0.000015 | −2.8 | −3.6 | 932 | 1194 | −0.98 |
D2366-04 | 112 | 0.095200 | 0.001723 | 0.282695 | 0.000018 | 0.002916 | 0.000045 | −4.8 | −0.5 | 831 | 1323 | −0.97 |
D2366-05 | 112 | 0.032529 | 0.000143 | 0.282603 | 0.000011 | 0.001018 | 0.000002 | −4.9 | −3.6 | 919 | 1327 | −0.95 |
D2366-06 | 115 | 0.022135 | 0.000141 | 0.282692 | 0.000011 | 0.000687 | 0.000004 | −3.9 | −0.4 | 787 | 1266 | −0.97 |
D2366-07 | 112 | 0.031263 | 0.000801 | 0.282635 | 0.000012 | 0.000964 | 0.000024 | −3.8 | −2.4 | 872 | 1260 | −0.96 |
D2366-09 | 113 | 0.051599 | 0.000991 | 0.282635 | 0.000012 | 0.00159 | 0.000041 | −4.8 | −2.5 | 888 | 1320 | −0.97 |
D2366-10 | 112 | 0.033289 | 0.000407 | 0.282661 | 0.000015 | 0.001048 | 0.000012 | −2.2 | −1.5 | 838 | 1156 | −0.97 |
D2366-11 | 112 | 0.037606 | 0.000103 | 0.282664 | 0.000012 | 0.001181 | 0.000006 | −5.1 | −1.4 | 837 | 1338 | −0.98 |
D2366-12 | 114 | 0.032850 | 0.001036 | 0.282636 | 0.000013 | 0.001016 | 0.000028 | −4.3 | −2.4 | 872 | 1285 | −0.98 |
D2366-13 | 112 | 0.032916 | 0.001992 | 0.28271 | 0.000013 | 0.001038 | 0.000065 | −4.3 | 0.2 | 768 | 1285 | −0.97 |
D2366-14 | 115 | 0.026127 | 0.000310 | 0.282628 | 0.000012 | 0.000812 | 0.000004 | −2.9 | −2.6 | 880 | 1201 | −0.97 |
D2366-15 | 115 | 0.021164 | 0.000087 | 0.282651 | 0.000013 | 0.000701 | 0.000003 | −4.2 | −1.8 | 844 | 1280 | −0.97 |
D2366-17 | 114 | 0.028872 | 0.000122 | 0.282652 | 0.000013 | 0.000961 | 0.000004 | −5.0 | −1.8 | 849 | 1334 | −0.98 |
D2366-18 | 113 | 0.034857 | 0.000852 | 0.28269 | 0.000013 | 0.001104 | 0.00003 | −2.9 | −0.5 | 799 | 1197 | −0.98 |
D2366-19 | 114 | 0.025911 | 0.000147 | 0.282654 | 0.000013 | 0.000834 | 0.000002 | −3.6 | −1.8 | 844 | 1243 | −0.98 |
D2366-21 | 113 | 0.023946 | 0.000129 | 0.28263 | 0.000012 | 0.000724 | 0.000004 | −5.2 | −2.6 | 874 | 1348 | −0.98 |
D2366-22 | 114 | 0.023801 | 0.000090 | 0.28269 | 0.000013 | 0.00073 | 0.000004 | −6.9 | −0.4 | 790 | 1316 | −0.97 |
D2366-25 | 113 | 0.023172 | 0.000209 | 0.28267 | 0.000013 | 0.00075 | 0.000003 | −8.5 | −1.2 | 818 | 1330 | −0.97 |
D2366-26 | 112 | 0.025076 | 0.000142 | 0.282624 | 0.000011 | 0.00082 | 0.000002 | −10.2 | −2.8 | 885 | 1343 | −0.97 |
Sample | D2360 | D2361 | D2362 | D2363 | D2364 | D2365 | D2366 |
---|---|---|---|---|---|---|---|
SiO2 | 74.50 | 73.97 | 74.65 | 74.18 | 72.60 | 76.44 | 74.12 |
Al2O3 | 13.24 | 13.46 | 13.09 | 13.11 | 13.22 | 12.24 | 13.19 |
FeO | 0.33 | 1.19 | 1.13 | 1.45 | 1.95 | 0.94 | 0.69 |
Fe2O3 | 0.75 | 0.36 | 0.50 | 0.18 | 0.96 | 0.29 | 0.96 |
Na2O | 2.80 | 3.19 | 3.26 | 3.58 | 3.24 | 2.92 | 3.19 |
K2O | 5.89 | 5.26 | 4.85 | 4.11 | 4.35 | 5.03 | 4.92 |
MgO | 0.15 | 0.24 | 0.23 | 0.30 | 0.43 | 0.16 | 0.31 |
CaO | 0.48 | 1.11 | 1.09 | 1.07 | 1.37 | 0.74 | 1.19 |
MnO | 0.03 | 0.04 | 0.04 | 0.04 | 0.06 | 0.03 | 0.04 |
P2O5 | 0.05 | 0.08 | 0.07 | 0.08 | 0.13 | 0.06 | 0.08 |
TiO2 | 0.11 | 0.18 | 0.18 | 0.19 | 0.32 | 0.13 | 0.18 |
LOI | 0.93 | 0.57 | 1.01 | 1.07 | 0.46 | 0.39 | 0.61 |
Total | 99.27 | 99.66 | 100.11 | 99.36 | 99.09 | 99.37 | 99.46 |
Zr | 116.7 | 133.7 | 131.3 | 144.2 | 208.8 | 102.8 | 126.0 |
Hf | 5.59 | 4.46 | 5.04 | 5.77 | 7.33 | 3.71 | 4.99 |
La | 35.60 | 38.60 | 46.50 | 47.70 | 72.50 | 33.10 | 39.10 |
Ce | 77.70 | 81.00 | 97.50 | 101.00 | 164.00 | 72.50 | 80.60 |
Pr | 9.62 | 9.87 | 11.80 | 12.30 | 18.70 | 8.58 | 10.20 |
Nd | 35.10 | 35.50 | 45.30 | 46.20 | 66.90 | 30.60 | 37.10 |
Sm | 9.57 | 8.12 | 10.70 | 11.30 | 14.50 | 7.16 | 9.49 |
Eu | 0.25 | 0.53 | 0.46 | 0.46 | 0.47 | 0.35 | 0.54 |
Gd | 9.33 | 7.78 | 10.00 | 10.50 | 12.50 | 6.19 | 8.86 |
Tb | 1.94 | 1.53 | 1.99 | 2.08 | 2.14 | 1.15 | 1.81 |
Dy | 13.00 | 9.48 | 12.80 | 13.40 | 12.40 | 6.73 | 11.80 |
Ho | 2.50 | 1.86 | 2.46 | 2.57 | 2.20 | 1.27 | 2.20 |
Er | 7.57 | 5.69 | 7.47 | 7.69 | 6.41 | 3.68 | 6.85 |
Tm | 1.28 | 0.93 | 1.24 | 1.29 | 0.98 | 0.63 | 1.11 |
Yb | 8.20 | 5.87 | 7.82 | 7.96 | 6.06 | 3.81 | 6.91 |
Lu | 1.20 | 0.85 | 1.19 | 1.19 | 0.89 | 0.57 | 1.03 |
Be | 8.16 | 6.12 | 6.11 | 10.30 | 7.10 | 6.07 | 6.58 |
V | 4.70 | 8.09 | 7.53 | 9.72 | 14.90 | 5.23 | 9.67 |
Cr | 10.70 | 17.50 | 14.30 | 10.00 | 13.70 | 8.68 | 11.40 |
Ni | 0.71 | 1.93 | 1.34 | 1.98 | 2.33 | 1.44 | 2.85 |
Ga | 18.30 | 21.10 | 21.90 | 21.90 | 24.30 | 19.60 | 21.20 |
Rb | 772 | 510 | 538 | 420 | 492 | 530 | 550 |
Sr | 24.5 | 49 | 36.4 | 47.4 | 46.1 | 32.2 | 60.4 |
Nb | 26.3 | 20.2 | 22.6 | 24.2 | 31.2 | 16.3 | 21.3 |
Cd | 0.038 | 0.031 | 0.028 | 0.098 | 0.039 | 0.036 | 0.029 |
Cs | 21 | 12.6 | 19.5 | 28.4 | 40.5 | 13.4 | 20.1 |
Ba | 114 | 171 | 134 | 130 | 128 | 99.4 | 179 |
Ta | 5.88 | 2.9 | 3.6 | 4.42 | 2.78 | 2.33 | 3.52 |
Ti | 3.65 | 2.19 | 2.47 | 2.4 | 2.33 | 2.26 | 2.44 |
Pb | 49.1 | 51.4 | 54.7 | 49.2 | 47.5 | 52.3 | 55.5 |
Th | 43.7 | 37.7 | 50.4 | 33.2 | 91 | 38.8 | 42.2 |
U | 15.2 | 7.47 | 14.4 | 14.1 | 12.5 | 9.18 | 13.2 |
Y | 78 | 59.8 | 74.1 | 43.8 | 66.1 | 36.9 | 68 |
Zr/Hf | 20.9 | 30.0 | 26.1 | 25.0 | 28.5 | 27.7 | 25.3 |
Nb/Ta | 4.5 | 6.9 | 6.3 | 5.5 | 11.2 | 7.0 | 6.1 |
M | 1.37 | 1.33 | 1.26 | 1.38 | 1.36 | 1.37 | 1.31 |
T (°C) | 1042.4 | 1045.3 | 1044.9 | 1055.5 | 1085.0 | 1028.6 | 1040.6 |
Ga/Al | 2.61 | 2.96 | 3.16 | 3.15 | 3.47 | 3.02 | 3.04 |
δEu | 0.08 | 0.20 | 0.14 | 0.13 | 0.11 | 0.16 | 0.18 |
δCe | 1.03 | 1.02 | 1.02 | 1.02 | 1.09 | 1.05 | 0.99 |
A/CNK | 1.12 | 1.04 | 1.04 | 1.07 | 1.05 | 1.06 | 1.04 |
A/NK | 1.21 | 1.23 | 1.23 | 1.27 | 1.32 | 1.19 | 1.25 |
La/Yb | 4.34 | 6.58 | 5.95 | 5.99 | 11.96 | 8.69 | 5.66 |
Sr/Y | 0.31 | 0.82 | 0.49 | 1.08 | 0.70 | 0.87 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; Yang, X.; Teng, C.; Cheng, T.; Zhu, N.; Cao, J. Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere. Minerals 2024, 14, 681. https://doi.org/10.3390/min14070681
Xiao D, Yang X, Teng C, Cheng T, Zhu N, Cao J. Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere. Minerals. 2024; 14(7):681. https://doi.org/10.3390/min14070681
Chicago/Turabian StyleXiao, Deng, Xinjie Yang, Chao Teng, Tianshe Cheng, Ning Zhu, and Jun Cao. 2024. "Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere" Minerals 14, no. 7: 681. https://doi.org/10.3390/min14070681
APA StyleXiao, D., Yang, X., Teng, C., Cheng, T., Zhu, N., & Cao, J. (2024). Early Cretaceous A-Type Acidic Magmatic Belt in Northern Lhasa Block: Implications for the Evolution of the Bangong–Nujiang Ocean Lithosphere. Minerals, 14(7), 681. https://doi.org/10.3390/min14070681