Distribution and Enrichment Mechanisms of Selenium in Stibnite from the Xujiashan Sb Deposit, Hubei Province, China
Abstract
:1. Introduction
2. Ore Deposit Geology
3. Analytical Methods
4. Results
4.1. Morphology and Structure of Ore
4.2. EPMA Analysis
4.3. Trace Elements
4.4. C-H-O Isotope Composition
Samples | Lithology | δDV-SMOW | δ18OV-SMOW | δ18OV-PDB | δ13CV-PDB | Temperature | δ18OH2O |
---|---|---|---|---|---|---|---|
(‰) | (‰) | (‰) | (‰) | (°C) | (‰) | ||
21XJS-3001 | Quartz | −67.9 | 22.6 | −8.02 | −12.8 | 170 | 8.78 |
21XJS-3002 | Quartz | −67.4 | 24.0 | −6.66 | −8.10 | 170 | 10.2 |
21XJS-3001-Ca | Calcite | −57.8 | 20.7 | −9.90 | −0.80 | 170 | 9.42 |
21XJS-3003-Ca | Calcite | −86.9 | 20.4 | −10.2 | 5.50 | 170 | 9.12 |
5. Discussion
5.1. Sources of Ore-forming Fluid
5.2. Genesis and Growth Modeling of Selenium Stibnite
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, J.B. Basic characteristics of global antimony ore deposits and the background of mega antimony deposits. Geotecton. Metallog. 1994, 18, 199–208, (In Chinese with English Abstract). [Google Scholar]
- Zhang, G.L.; Yao, J.Y.; Gu, X.P. Time and spatial distribution regularities and deposit types of antimony in China. Miner. Resour. Geol. 1998, 12, 19–25, (In Chinese with English Abstract). [Google Scholar]
- Xiao, Q.M.; Zeng, D.R.; Jin, F.Q.; Yang, M.Y.; Yang, Z.F. Time-Space Distribution Feature and Exploration Guide of China’s Sb-Deposits. Geol. Explor. 1992, 12, 9–14, (In Chinese with English Abstract). [Google Scholar]
- Zhang, G.; Jiang, X.; Fan, H.F.; Wen, H.J. Selenium Enrichment in the Ediacaran Doushantuo Formation from Yichang Region, South China and Its Geology Implications. Acta Miner. Sin. 2017, 37, 258–268, (In Chinese with English Abstract). [Google Scholar]
- Chen, B.H.; Ding, J.H.; Ye, H.S.; Yin, J.N.; Liu, J.N. Metallogenic regularity of selenium ore in China. Miner. Deposits. 2020, 39, 1063–1077, (In Chinese with English Abstract). [Google Scholar]
- Li, J.X.; Liu, J.J. Advances in selenium resource study. Resour. Ind. 2014, 16, 90–97, (In Chinese with English Abstract). [Google Scholar]
- Heropoulos, C.; Seeley, J.L.; Radtke, A.S. Spectrographic Determination of Selenium in Stibnite. Appl. Spectrosc. 1984, 38, 451–454. [Google Scholar] [CrossRef]
- Liu, J.J.; Li, Z.M.; Liu, J.M.; Wang, J.P.; Feng, C.X.; Lu, W.Q. Mineralogy of the Stibnite-Antimonselite Series in the Nature. J. Jilin Univ. (Earth Sci. Ed.) 2005, 35, 545–553, (In Chinese with English Abstract). [Google Scholar]
- Shen, N.P.; Peng, J.T.; Yuan, S.D.; Zhang, D.L.; Hu, R.Z.; Wang, G.Q. Characteristics of fluid inclusions in Xujiashan antimony deposit of Hubei Province and its implications. Miner. Dep. 2008, 27, 570–578, (In Chinese with English Abstract). [Google Scholar]
- Zhang, D.; Wang, S.J. Mineralogical Characteristics and Geological Significance of Se, Te-Rich Stibnite in Sb Ore Belt, Southern Anhui Province. Earth Sci. J. Chn. Univ. Geosci. 1994, 19, 169–173, (In Chinese with English Abstract). [Google Scholar]
- Yu, H.L.; Cao, W. The geological characteristics and stable isotope composition of the xujiashan antimony deposit in Hubei province and its mechanism of ore formation. Geol. Rev. 1986, 32, 264–275+322, (In Chinese with English Abstract). [Google Scholar]
- Shen, N.P.; Peng, J.T.; Yuan, S.D.; Zhang, D.L.; Fu, Y.Z.; Hu, R.Z. Carbon, oxygen and strontium isotope geochemistry of calcites from Xujiashan antimony deposit, Hubei Province. Geochimica 2007, 36, 479–485, (In Chinese with English Abstract). [Google Scholar]
- Shen, N.P.; Peng, J.T.; Yuan, S.D.; Zhang, D.L.; Hu, R.Z.; Wang, G.Q. Sm-Nd isotope system of calcite from Xujiashan antimony deposit, Hubei, China-Possibility of its Caledonian mineralization. In Proceedings of the 12th Annual Conference of Mineralogy, Petrology and Geochemistry Society of China, Guiyang, China, 2009. (In Chinese with English Abstract). [Google Scholar]
- Shen, N.P.; Peng, J.T.; Yuan, S.D.; Zhang, D.L.; Hu, R.Z. Lead isotope compositions and its significance for ore-form ingmaterial of the xujiashan antimony deposit, Hubei province. Acta Mneral. Sin. 2008, 02, 169–176, (In Chinese with English Abstract). [Google Scholar]
- Yu, H.L. The material source of and the properties of ore-forming solutions responsible for strata bound Sb deposits in carbonate rocks at xujiashan, Hubei province. Geochimica 1987, 2, 167–175, (In Chinese with English Abstract). [Google Scholar]
- Sun, H.Z.; Lei, L. Geological characteristics of the xujiashan stratified antimony deposit in Hubei province. Miner. Depos. 1988, 7, 49–54, (In Chinese with English Abstract). [Google Scholar]
- Yu, H.L. Typomorphic characteristics of stibnite from Xujiashan. Hubei province with a discussion on its genesis. Acta Petrol. Miner. 1988, 7, 361–367, (In Chinese with English Abstract). [Google Scholar]
- Shen, N.P.; Peng, J.T.; Hu, R.Z.; Liu, S.; Coulson, I.M. Strontium and Lead Isotopic Study of the Carbonate-hosted Xujiashan Antimony Deposit from Hubei Province, South China: Implications for its Origin. Resour. Geol. 2011, 61, 52–62. [Google Scholar] [CrossRef]
- The fourth geological Brigade, Hubei Geological Bureau. (Tongshan County, Hubei Province, China). Personal communication, 2023.
- Shen, Q.W.; Wang, D.Z.; Leng, C.B.; Yu, H.J.; Zhang, C.Y.; Su, X.Y.; Mao, J.W.; Liang, F. Discovery of Telluride and Selenide in the Giant Pulang Porphyry Cu-Au Deposit, Yunnan Province. Rock Min. Anal. 2023, 42, 643–646, (In Chinese with English abstract). [Google Scholar]
- Guo, G.L.; Xu, X.Z.; Li, J.Y. The character and genesis of anorthite as inclusions in spinel of mantle peridotites from the Purang ophiolite (Southwestern Tibetan Plateau). Acta. Petrol. Sin. 2011, 27, 3197–3206, (In Chinese with English abstract). [Google Scholar]
- Liu, C.Z.; Wu, F.Y.; Wilde, S.A.; Yu, L.J.; Li, J.L. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos 2010, 114, 413–422. [Google Scholar] [CrossRef]
- Xu, X.Z.; Yang, J.S.; Guo, G.L.; Li, J.Y. Lithological research on the Purang mantle peridotite in western Yarlung-Zangbo suture zone in Tibet. Acta. Petrol. Sin. 2011, 27, 3179–3196, (In Chinese with English abstract). [Google Scholar]
- Hu, H.; Wang, R.C.; Xie, L.; Zhang, W.L.; Tian, E.R.; Xu, Y.T.; Fan, H.R. High Precision Analysis of Chemical Composition of SPI Monazite Standard on Large Spectrometer of 140 mm Rowland Circle. Geol. J. Chn. Uni. 2021, 27, 317–326, (In Chinese with English Abstract). [Google Scholar]
- Coleman, M.L.; Sheppard, T.J.; Durham, J.J.; Rouse, J.E.; Moore, G.R. Reduction of water with zinc for hydrogen isotope analysis. Anal. Chem. 1982, 54, 993–995. [Google Scholar] [CrossRef]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Li, J.J. Analysis of a series of artificially synthesized Sb2S3 (pyroxene)-Sb2Se3 (selenoantimonite) solid solutions. In Proceedings of the 9th National X-ray Diffraction Conference and International Centre for Diffraction Data (ICDD) Symposium, Hangzhou, China, 15–17 October 2006. (In Chinese with English Abstract). [Google Scholar]
- Liu, J.J.; Liu, J.M.; Xie, H.; Feng, C.X.; Wang, J.P.; Zhang, N.; Li, J.L.; Oi, F. An experimental study on the synthesis ofstibnite-antimonselite series. Miner. Petrol. 2006, 26, 16–23, (In Chinese with English Abstract). [Google Scholar]
- Liu, J.J.; Zheng, M.H. First discovery of a selenium-sulfur compound series of antimony. Chn. Sci. Bull. 1992, 37, 864, (In Chinese with English Abstract). [Google Scholar]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. GSA Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Large, R.R.; Gregory, D.D.; Steadman, J.A.; Tomkins, A.G.; Lounejeva, E.; Danyushevsky, L.V.; Halpin, J.A.; Maslennikov, V.; Sack, P.J.; Mukherjee, I.; et al. Gold in the oceans through time. Earth Planet. Sci. Lett. 2015, 428, 139–150. [Google Scholar] [CrossRef]
- Liu, J.M.; Liu, J.J. Basin fluid genetic model of sediment-hosted micro disseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan. Mineral. Sin. 1997, 17, 448–456, (In Chinese with English Abstract). [Google Scholar]
- Sun, J.G.; Hu, S.X.; Liu, J.M.; Shen, K.; Ling, H.F. Nd, Sr, O isotope study of potassium-rich dark-coloured dyke swarms in the Late Mesozoic gold-mining area, Jiaodong, China. Acta Geol. Sin. 2001, 75, 553, (In Chinese with English Abstract). [Google Scholar]
- Taylor, H. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Sheppard, S. Identification of the origin of oreforming solutions by the use of stable isotopes. Geol. Soc. Lond. Spec. Publ. 1977, 7, 25–41. [Google Scholar] [CrossRef]
- Sheppard, S.M.F. Stable isotope geochemistry of fluids. Phys. Chem. Earth 1981, 13–14, 419–445. [Google Scholar] [CrossRef]
- Zhang, H.P. The background values of the precipitation stable isotopes of China. Site Investig. Sci. Technol. 1989, 6, 6–13. [Google Scholar]
- Clayton, R.N.; O’neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- O’neil, J.R.; Clayton, R.N.; Mayeda, T.K. Oxygen isotope fractionation in divalent metal carbonates. Chem. Phys. 1969, 51, 5547–5558. [Google Scholar] [CrossRef]
- Luo, X.S. Geological characteristics, mineralisation and direction of searching for antimony ore in E’nan area. Resour. Environ. Eng. 2013, 27 (Suppl. S1), 69–75+80, (In Chinese with English Abstract). [Google Scholar]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Schirmer, T.; Koschinsky, A.; Bau, M. The ratio of tellurium and selenium in geological material as a possible paleo-redox proxy. Chem. Geol. 2014, 376, 44–51. [Google Scholar] [CrossRef]
- Wen, H.; Carignan, J. Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China. Geochim. Cosmochim. Acta 2011, 75, 1411–1427. [Google Scholar] [CrossRef]
- Guo, Q.; Shields, G.A.; Liu, C.Q.; Strauss, H.; Zhu, M.Y.; Pi, D.H.; Goldberg, T.; Yang, X.L. Trace element chemo stratigraphy of two Ediacaran–Cambrian successions in South China: Implications for organ sedimentary metal enrichment and silicification in the Early Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 194–216. [Google Scholar] [CrossRef]
- Lehmann, B.; Nagler, T.F.; Holland, H.D.; Wille, M.; Mao, J.W.; Pan, J.Y.; Ma, D.S.; Dulski, P. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology 2007, 35, 403–406. [Google Scholar] [CrossRef]
- Xu, L.G.; Lehmann, B.; Mao, J.W. Seawater contribution to polymetallic Ni–Mo–PGE–Au mineralization in Early Cambrian black shales of South China: Evidence from Mo isotope, PGE, trace element, and REE geochemistry. Ore Geol. Rev. 2013, 52, 66–84. [Google Scholar] [CrossRef]
- Liu, J.M.; Gu, X.X.; Liu, J.J.; Zhen, M.H. Giant metallogenic Sb belt in south China and its constraints. Acta. Geogr. Sin. 1998, 41 (Suppl. S1), 206–215, (In Chinese with English Abstract). [Google Scholar]
- Koc, H.; Mamedov, A.M.; Deligoz, E.; Ozisik, H. First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds. Solid State Sci. 2012, 14, 1211–1220. [Google Scholar] [CrossRef]
- Madelung, O. Semiconductors: Group IV Elements and III–V Compounds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Caracas, R.; Gonze, X. First-principles study of the electronic properties of A2B3 minerals, with A = Bi, Sb and B = S, Se. Phys. Chem. Miner. 2005, 32, 295–300. [Google Scholar] [CrossRef]
- Fu, M.S.; Chen, L.X.; Li, C.Y.; Xu, J.; Chai, D.; Li, Y.Q. Density Functional Theory Study on Crystal Structure and Properties of Arsenicbearing Pyrite. Conserv. Utili. Min. Resour. 2022, 42, 112–118, (In Chinese with English Abstract). [Google Scholar]
- Vavra, G.; Schmid, R.; Gebauer, D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petrol. 1999, 134, 380–404. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Wang, J.L.; Shen, K.; Shi, C. Paleozoic circum-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet. Acta Petrol. Sin. 2008, 24, 1627–1637, (In Chinese with English Abstract). [Google Scholar]
- Miller, C.F.; Hatcher, R.D., Jr.; Mark, H.T.; Coath, C.D.; Gorisch, E.B. Cryptic crustal events elucidated through zone imaging and ion microprobe studies of zircon, southern Appalachian Blue Ridge, North Carolina–Georgia. Geology 1998, 26, 419–422. [Google Scholar] [CrossRef]
- Schaltegger, U.; Fanning, C.M.; Gunther, D.; Maurin, J.C.; Schulmann, K.; Gebauer, D. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade meta morphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib. Mineral. Petrol. 1999, 134, 186–201. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Y.J. The characteristics and implication of the zonation in clinopyroxene phenocrysts from the Yaojiazhuang ultramafic-syenitic complex, northwestern Hebei Province. Acta Petro. Sin. 2018, 34, 3315–3326, (In Chinese with English Abstract). [Google Scholar]
- Nisbet, E.G.; Pearce, J.A. Clinopyroxene composition in mafic lavas from different tectonic settings. Contrib. Mineral. Petrol. 1977, 63, 149–160. [Google Scholar] [CrossRef]
- Dobosi, G. Clinopyroxene zoning patterns in the young alkali basalts of Hungary and their petrogenetic significance. Contrib. Mineral. Petrol. 1989, 101, 112–121. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wang, C.Z.; Sun, Y.C.; Qiu, Z.Z.; Cu, Y.B. Characteristics of zonal pyrite in Zijinshan Cu-Au Deposit. Nonferrous Met. (Min. Sec). 2014, 66, 36–42, (In Chinese with English Abstract). [Google Scholar]
- Zhang, D.Q.; Li, D.X.; Zhao, Y.M.; Chen, J.H.; Li, Z.L.; Zhang, K.Y. The Zijinshan deposit: The first example of quartz-alunite type epithrmal deposits in the continent of China. Geol. Rev. 1991, 37, 481–491, (In Chinese with English Abstract). [Google Scholar]
- Liu, H.P.; Zhang, Y.L.; Hu, W.Q. On the origin of the stibnite deposit of Shikuangshan mine, Hunan. Hunan Geol. 1985, 4, 28–39+83, (In Chinese with English Abstract). [Google Scholar]
- Simon, G.; Essene, E.J. Phase relations among selenides, sulfides, tellurides, and oxides; I, Thermodynamic properties and calculated equilibria. Eco. Geol. 1996, 91, 1183–1208. [Google Scholar] [CrossRef]
- Simon, G.; Kesler, S.E.; Essene, E.J. Phase relations among selenides, tellurides, and oxides; II, Applications to selenide-bearing ore deposits. Eco. Geol. 1997, 92, 468–484. [Google Scholar] [CrossRef]
Samples | Zn | Cu | Sb | S | Fe | Mo | Ag | W | As | Co | Pb | Se | Molecular Formulas | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ωt/% | ||||||||||||||
1004(16) | max | 1.06 | 0.05 | 73.11 | 27.64 | 0.05 | 0.35 | 0.05 | 0.18 | 0.47 | 0.04 | 0.08 | 0.04 | Sb 2.05–2.13 S 3.00 |
min | -- | -- | 71.27 | 26.84 | -- | 0.20 | -- | -- | 0.30 | -- | -- | -- | ||
median | 0.91 | 0.04 | 72.23 | 27.38 | 0.01 | 0.29 | 0.03 | 0.12 | 0.39 | 0.03 | 0.05 | 0.04 | ||
1013(10) | max | 0.05 | 0.03 | 71.08 | 28.27 | 0.03 | 0.24 | 0.01 | 0.17 | 0.41 | 0.02 | 0.08 | 0.10 | Sb 1.98–2.00 S 3.00 |
min | -- | -- | 70.34 | 27.90 | -- | 0.20 | -- | -- | 0.20 | -- | -- | -- | ||
median | 0.04 | 0.03 | 70.71 | 28.02 | 0.02 | 0.22 | 0.01 | 0.10 | 0.30 | 0.01 | 0.03 | 0.03 | ||
1019(10) | max | 0.07 | 0.06 | 70.49 | 27.95 | 0.02 | 0.23 | 0.03 | 0.01 | 0.40 | 0.01 | 0.11 | 0.08 | Sb 1.98–2.03 S 3.00 |
min | -- | -- | 69.05 | 27.21 | -- | 0.19 | -- | -- | 0.18 | -- | -- | -- | ||
median | 0.03 | 0.04 | 70.20 | 27.63 | 0.01 | 0.21 | 0.01 | 0.07 | 0.34 | 0.01 | 0.05 | 0.05 | ||
1028(21) | max | 0.945 | 0.07 | 72.63 | 27.18 | 0.07 | 0.40 | 0.06 | 0.13 | 0.60 | 0.03 | 0.11 | 2.26 | Sb 2.04–2.10 (S 2.90–2.97, Se 0.03–0.10) 3.00 |
min | -- | -- | 70.74 | 26.18 | -- | 0.20 | -- | -- | 0.40 | -- | -- | 0.74 | ||
median | 0.07 | 0.03 | 71.33 | 26.64 | 0.03 | 0.31 | 0.03 | 0.06 | 0.48 | 0.02 | 0.03 | 1.33 | ||
1030(19) | max | 0.99 | 0.08 | 71.61 | 26.66 | 0.05 | 0.38 | 0.05 | 0.10 | 0.62 | 0.03 | 0.11 | 2.44 | Sb 2.04–2.09 (S 2.90–2.94, Se 0.06–0.11) 3.00 |
min | -- | -- | 70.27 | 25.74 | -- | 0.21 | -- | -- | 0.37 | -- | -- | 1.35 | ||
median | 0.48 | 0.04 | 71.01 | 26.29 | 0.03 | 0.27 | 0.03 | 0.06 | 0.42 | 0.02 | 0.04 | 1.93 | ||
1032(10) | max | 0.07 | 0.06 | 70.97 | 28.03 | 0.01 | 0.26 | 0.03 | 0.12 | 0.34 | 0.02 | 0.15 | 0.18 | Sb 1.98–2.00 (S 2.99–3.00, Se 0.00–0.01) 3.00 |
min | -- | -- | 70.30 | 27.65 | -- | 0.18 | -- | -- | 0.23 | -- | -- | 0.06 | ||
median | 0.05 | 0.02 | 70.51 | 27.85 | 0.01 | 0.21 | 0.01 | 0.06 | 0.31 | 0.01 | 0.12 | 0.14 | ||
1035(16) | max | 1.06 | 0.08 | 74.06 | 27.90 | 0.06 | 0.36 | 0.09 | 0.14 | 0.60 | 0.04 | 0.07 | 0.31 | Sb 2.01–2.10 (S 2.99–3.00, Se 0.00–0.01) 3.00 |
min | -- | -- | 68.55 | 26.72 | -- | 0.21 | -- | -- | 0.30 | -- | -- | 0.01 | ||
median | 0.10 | 0.03 | 72.74 | 27.55 | 0.04 | 0.31 | 0.04 | 0.09 | 0.46 | 0.01 | 0.02 | 0.13 |
Samples | Detection Limit | XJS-2001 | XJS-2002 | XJS-2003 | XJS-2004 | XJS-2005 | XJS-2006 | Turekian and Wedepohl [30] | ||
---|---|---|---|---|---|---|---|---|---|---|
Wall Rock | Wall Rock | Wall Rock | Ore | Ore | Ore | Shales | Carbonates | Clay | ||
Li | 0.20 | 14.30 | 14.10 | 1.70 | 10.0 | 7.00 | 2.00 | 66.0 | 5.00 | 57 |
Be | 0.05 | 0.14 | 0.30 | 0.20 | 0.50 | 0.50 | 0.50 | 3.00 | -- | 2.60 |
Mg | 100 | 20,200 | 67,200 | 45,500 | 1000 | 1000 | 17,000 | 15,000 | 47,000 | 21,000 |
Al | 100 | 2600 | 2900 | 2200 | 1000 | 1000 | 1000 | 80,000 | 4200 | 84,000 |
P | 10.0 | 840 | 1260 | 460 | 100 | 200 | 1000 | 700 | 400 | 1500 |
K | 100 | 1000 | 1000 | 900 | 1000 | 1000 | 1000 | 26,600 | 2700 | 25,000 |
Ca | 100 | 215,000 | 191,000 | 230,000 | 3000 | 4000 | 37,000 | 22,100 | 302,300 | 29,000 |
Sc | 0.10 | 1.10 | 1.00 | 1.10 | 1.00 | 1.00 | 1.00 | 13.0 | 1.00 | 19.0 |
Ti | 50.0 | 150 | 100 | 70.0 | 500 | 500 | 500 | 4600 | 400 | 4600 |
V | 5.00 | 5.00 | 11.0 | 5.00 | 10.0 | 10.0 | 10.0 | 130 | 20.0 | 120 |
Cr | 1.00 | 10.0 | 18.0 | 10.0 | 10.0 | 10.0 | 10.0 | 90.0 | 11.0 | 90.0 |
Mn | 5.00 | 207 | 447 | 488 | 50.0 | 50.0 | 70.0 | 850 | 1100 | 6700 |
Co | 0.10 | 1.50 | 1.50 | 1.40 | -- | -- | -- | 19.0 | 0.10 | 74.0 |
Ni | 0.20 | 2.20 | 5.50 | 2.50 | 2.00 | 2.00 | 2.00 | 68.0 | 20.0 | 225 |
Cu | 0.20 | 7.30 | 6.90 | 9.60 | 88.0 | 30.0 | 37.0 | 45.0 | 4.00 | 250 |
Zn | 2.00 | 6.00 | 64.0 | 7.00 | 20.0 | 20.0 | 20.0 | 95.0 | 20.0 | 165 |
Ga | 0.05 | 1.16 | 1.04 | 0.72 | 0.50 | 1.00 | 0.60 | 19.0 | 4.00 | 20.0 |
Ge | 0.05 | 0.09 | 0.16 | 0.09 | 28.7 | 6.60 | 5.00 | 1.60 | 0.20 | 2.00 |
As | 0.20 | 6.80 | 31.5 | 11.4 | 730 | 720 | 640 | 13.0 | 1.00 | 13.0 |
Se | 1.00 | 1.00 | 6.00 | 3.00 | >1000 | >1000 | >1000 | 0.60 | 0.08 | 0.17 |
Rb | 0.20 | 3.10 | 3.00 | 2.60 | 1.00 | 2.00 | 1.00 | 140 | 3.00 | 110 |
Sr | 0.20 | 561 | 486 | 854 | 10.0 | 17.0 | 72.0 | 300 | 610 | 180 |
Y | 0.10 | 6.30 | 5.60 | 6.50 | 1.00 | 1.00 | 2.00 | 26.0 | 30.0 | 90.0 |
Zr | 2.00 | 4.00 | 4.00 | 3.00 | 5.00 | 5.00 | 5.00 | 160 | 19.0 | 150 |
Nb | 0.10 | 0.40 | 0.30 | 0.30 | 1.00 | 1.00 | 1.00 | 11.0 | 0.30 | 14.0 |
Mo | 0.05 | 0.72 | 1.59 | 0.61 | 1.20 | 0.70 | 1.20 | 2.60 | 0.40 | 27.0 |
Ag | 0.01 | 0.06 | 0.06 | 0.04 | 1.20 | 1.10 | 0.50 | 0.07 | -- | 0.11 |
Cd | 0.02 | 0.02 | 0.36 | 0.04 | 0.40 | 0.60 | 0.20 | 0.30 | 0.035 | 0.42 |
In | 0.005 | 0.005 | 0.005 | 0.011 | 0.08 | 0.05 | -- | 0.10 | -- | 0.08 |
Sn | 0.2 | -- | -- | -- | 2.00 | 2.00 | 2.00 | 6.00 | -- | 1.50 |
Sb | 0.05 | 59.3 | 2200 | 78 | >10,000 | >10,000 | >10,000 | 1.50 | 0.2 | 1.00 |
Cs | 0.05 | 0.63 | 0.66 | 0.32 | -- | -- | -- | 5.00 | -- | 6.00 |
Ba | 0.50 | 209 | 626 | 151.5 | 100.00 | 100.00 | 100.00 | 580 | 10.0 | 2300 |
La | 0.10 | 4.10 | 5.50 | 7.50 | 34.00 | 40.00 | 34.00 | 92.0 | -- | 115 |
Ce | 0.10 | 5.8 | 8.40 | 11.5 | 1.00 | 1.60 | 2.60 | 59.0 | 11.5 | 345 |
Pr | 0.02 | 0.98 | 1.26 | 1.46 | 0.30 | 0.30 | 0.60 | 5.60 | 1.10 | 33.0 |
Nd | 0.10 | 4.00 | 5.00 | 5.10 | 1.00 | 1.00 | 3.00 | 24.0 | 4.70 | 140 |
Sm | 0.03 | 0.87 | 1.01 | 0.96 | 0.30 | 0.30 | 0.60 | 6.40 | 1.30 | 38.0 |
Eu | 0.02 | 0.27 | 0.36 | 0.60 | 0.30 | 0.30 | 0.30 | 1.00 | 0.20 | 6.00 |
Gd | 0.05 | 0.82 | 0.97 | 0.89 | 0.50 | 0.50 | 0.70 | 6.40 | 1.30 | 38.0 |
Tb | 0.01 | 0.13 | 0.14 | 0.14 | 0.10 | 0.10 | 0.10 | 1.00 | 0.20 | 6.00 |
Dy | 0.05 | 0.78 | 0.77 | 0.84 | 0.50 | 0.50 | 0.50 | 4.60 | 0.90 | 27.0 |
Ho | 0.01 | 0.16 | 0.15 | 0.17 | 0.10 | 0.10 | 0.10 | 1.20 | 0.30 | 7.50 |
Er | 0.03 | 0.46 | 0.39 | 0.42 | 0.30 | 0.30 | 0.30 | 2.50 | 0.50 | 15.0 |
Tm | 0.01 | 0.07 | 0.05 | 0.06 | 0.10 | 0.10 | 0.10 | 0.20 | 0.04 | 1.20 |
Yb | 0.03 | 0.41 | 0.29 | 0.32 | 0.30 | 0.30 | 0.30 | 2.60 | 0.50 | 15.0 |
Lu | 0.01 | 0.06 | 0.04 | 0.05 | 0.10 | 0.10 | 0.10 | 0.70 | 0.20 | 4.50 |
Hf | 0.10 | 0.10 | 0.10 | 0.10 | 1.00 | 1.00 | 1.00 | 2.80 | 0.30 | 4.10 |
Ta | 0.05 | -- | -- | -- | -- | -- | -- | 0.80 | -- | -- |
W | 0.1 | 0.30 | 0.20 | 0.10 | 1.00 | 1.00 | 1.00 | 1.80 | 0.60 | -- |
Tl | 0.02 | 0.04 | 0.11 | 0.02 | 0.50 | 0.40 | 1.10 | 1.40 | -- | 0.80 |
Pb | 0.50 | 1.30 | 7.80 | 4.90 | 300 | 7.00 | 100 | 20.0 | 9.00 | 80.0 |
Th | 0.05 | 0.37 | 0.33 | 0.30 | 0.10 | 0.20 | 0.30 | 12.0 | 1.70 | 7.00 |
U | 0.05 | 1.12 | 1.79 | 1.11 | -- | -- | 1.00 | 3.70 | 2.20 | 1.30 |
Hf/Sm | -- | 0.11 | 0.10 | 0.10 | 3.33 | 3.33 | 1.67 | -- | -- | -- |
Nb/La | -- | 0.10 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | -- | -- | -- |
Th/La | -- | 0.09 | 0.06 | 0.04 | -- | 0.01 | 0.01 | -- | -- | -- |
ΣREE | -- | 18.8 | 24.5 | 30.1 | 39.9 | 46.8 | 44.1 | -- | -- | -- |
LREE | -- | 16.0 | 21.5 | 27.1 | 36.9 | 43.5 | 41.1 | -- | -- | -- |
HREE | -- | 2.78 | 2.93 | 2.93 | 2.99 | 3.32 | 3.03 | -- | -- | -- |
LREE/HREE | -- | 5.76 | 7.35 | 9.26 | 12.3 | 13.1 | 13.6 | -- | -- | -- |
LaN/YbN | -- | 9.80 | 9.39 | 14.9 | 18.9 | 17.7 | 21.6 | -- | -- | -- |
δEu | -- | 0.98 | 1.11 | 1.98 | 2.37 | 2.37 | 1.42 | -- | -- | -- |
δCe | -- | 0.71 | 0.78 | 0.85 | 0.08 | 0.11 | 0.14 | -- | -- | -- |
Position | Antimony Content | Crustal Antimony Abundance Value |
---|---|---|
Lengjiaxi Formation | 11 ppm | 0.2 ppm |
Nantuo Formation | 28 ppm | |
Liantuo Formation | 23 ppm | |
Doushantuo Formation | 47 ppm | |
Laobao Formation | 39 ppm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, D.; Huang, R.; Wang, G.; Wan, W.; Kong, Y. Distribution and Enrichment Mechanisms of Selenium in Stibnite from the Xujiashan Sb Deposit, Hubei Province, China. Minerals 2024, 14, 684. https://doi.org/10.3390/min14070684
Liu Y, Wang D, Huang R, Wang G, Wan W, Kong Y. Distribution and Enrichment Mechanisms of Selenium in Stibnite from the Xujiashan Sb Deposit, Hubei Province, China. Minerals. 2024; 14(7):684. https://doi.org/10.3390/min14070684
Chicago/Turabian StyleLiu, Yuhang, Dazhao Wang, Ruolong Huang, Guanzhi Wang, Wei Wan, and Yu Kong. 2024. "Distribution and Enrichment Mechanisms of Selenium in Stibnite from the Xujiashan Sb Deposit, Hubei Province, China" Minerals 14, no. 7: 684. https://doi.org/10.3390/min14070684
APA StyleLiu, Y., Wang, D., Huang, R., Wang, G., Wan, W., & Kong, Y. (2024). Distribution and Enrichment Mechanisms of Selenium in Stibnite from the Xujiashan Sb Deposit, Hubei Province, China. Minerals, 14(7), 684. https://doi.org/10.3390/min14070684