Palaeoclimatic Inferences from Clayey-Iron Palaeosols: A Weathering Event Recorded in the Middle–Upper Jurassic Unconformity (South Iberian Palaeomargin, Western Tethys)
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. X-ray Diffraction Study
3.2. Optical and Electron Microscopy Study
3.3. Geochemical Study
4. Results
4.1. Sedimentary Features
4.2. The Iron Crust Containing Iron-coated Grains
4.2.1. Mineralogical Composition
4.2.2. Textural Features
4.2.3. Geochemical Composition
4.3. The Iron-Coated Grains of the Ferruginous–carbonated Breccia and the Ferruginous Oolithic Limestones
4.3.1. Textural Features
4.3.2. Geochemical Composition
5. Discussion
5.1. Genesis of the Iron Crusts Containing Iron-Coated Grains
5.2. Provenance of the Iron-Coated Grains Included in the Ferruginous–Carbonated Breccia and the Ferruginous Oolithic Limestones
5.3. Palaeoclimatic Inferences from Clay Minerals and Geochemical Proxies
CIA | CIW | Ba/Sr | Rb/Sr | Sr/Cu | Ga/Rb | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Villas | RGCH | PC2 | Villas | RGCH | PC2 | Villas | RGCH | Villas | RGCH | Villas | RGCH | Villas | RGCH |
95.20 | 95.87 | 90.87 | 91.99 | 95.59 | 88.14 | 3.58 | 0.61 | 1.10 | 0.12 | 0.61 | 0.81 | 1.52 | 1.45 |
CIA or CIW value → Weathering intensity | Higher Ba/Sr and Rb/Sr ratios = Greater weathering | <5 | Warm/humid | <0.25 | Cold/dry | ||||||||
<65 | Low-moderate | 5–10 | Semi-arid/ Semi-humid | >0.25 | Warm/humid | ||||||||
>75 | High | >10 | Hot/dry |
6. Conclusions
- The mineralogical composition of the iron crust is mainly composed of clay minerals (kaolinite, illitic phases, and Ilt/Sme) and/or iron oxides (hematite and goethite), along with the presence of iron-coated grains, this indicates that they are plinthitic palaeosols, characteristic of tropical environments.
- The platy morphologies of the kaolinite crystals and the presence of book-type aggregates in the matrix of the iron crusts point to an authigenic origin for the kaolinite through chemical weathering processes during the palaeosols development. The kaolinite crystals growing on subhedral illitic phases plates indicate that the illitic phases are previous phases, probably detrital.
- The mineralogy and texture of the iron-coated grains included in the iron crusts (type A) reflect an in situ origin during the plinthites formation. Subsequent reworking processes caused the break of some of these iron-coated grains that eventually acted as a nucleus of new iron-coated grains. The reworking processes also led to the incorporation of these iron-coated grains into the above ferruginous oolithic limestones (RGCH, CHO, PC, and AF sections) and the ferruginous–carbonated breccia (Villas section). New iron-coated grains (type B) were later formed in the ferruginous oolithic limestones in a marine context.
- The CIA and CIW values and the Ba/Sr, Rb/Sr, Sr/Cu, and Ga/Rb ratios agree with an intense chemical weathering related to warm and humid conditions during the development of the palaeosols. The higher Ba/Sr ratio value of the iron crust from the Villas section comparted to that of the RGCH section reflects a higher chemical weathering intensity in the former.
- The similarity of the iron-coated grains from the equivalent ferruginous oolithic ironstone of the AF section in the Iberian Range suggests the same origin as those from the Central and Eastern External Prebetic. Therefore, the warm and humid conditions related to a tropical climate recorded in the South Iberian Palaeomargin during the Callovian–Oxfordian could have also taken place in the East Iberian Palaeomargin.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chamley, H. Clay Sedimentology; Springer: Berlin, Germany, 1989; 623p, ISBN 3-540-50889-9. [Google Scholar]
- Velde, B. Origin and Mineralogy of Clays: Clays and the Environment; Springer: Berlin, Germany, 1995; 334p, ISBN 978-3-540-58012-6. [Google Scholar]
- Mack, G.; Calvin, W.; Curtis, H. Classification of paleosols. Geol. Soc. Am. Bull. 1993, 105, 129–136. [Google Scholar] [CrossRef]
- Thiry, M. Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin. Earth-Sci. Rev. 2000, 49, 201–221. [Google Scholar] [CrossRef]
- Tabor, N.J.; Myers, T.S.; Michel, L.A. Sedimentologist’s Guide for Recognition, Description, and Classification of Paleosols. In Terrestrial Depositional Systems: Deciphering Complexities through Multiple Stratigraphic Methods; Zeigler, K.E., Parker, W.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 165–208. ISBN 9780128032435. [Google Scholar]
- Laita, E.; Bauluz, B.; Aurell, M.; Bádenas, B.; Yuste, A. Weathering events recorded in uppermost Hauterivian–lower Barremian clay-dominated continental successions from the NW Iberian Range: Climatic vs. tectonic controls. J. Iber. Geol. 2022, 48, 45–63. [Google Scholar] [CrossRef]
- Raucsik, B.; Varga, A. Climato-environmental controls on clay mineralogy of the Hettangian–Bajocian successions of the Mecsek Mountains, Hungary: An evidence for extreme continental weathering during the early Toarcian oceanic anoxic event. Palaeogeogr. Palaeoclim. Palaeoecol. 2008, 265, 1–13. [Google Scholar] [CrossRef]
- Bauluz, B.; Yuste, A.; Mayayo, M.J.; Canudo, J.I. Early kaolinization of detrital Weald facies in the Galve Sub-basin (Central Iberian Chain, north-east Spain) and its relationship to palaeoclimate. Cretac. Res. 2014, 50, 214–227. [Google Scholar] [CrossRef]
- Laita, E.; Bauluz, B.; Aurell, M.; Bádenas, B.; Canudo, J.I.; Yuste, A. A change from warm/humid to cold/dry climate conditions recorded in lower Barremian clay-dominated continental successions from the SE Iberian Chain (NE Spain). Sediment. Geol. 2020, 403, 105673. [Google Scholar] [CrossRef]
- Righi, D.; Meunier, A. Origin of Clays by Rick Weathering and Soil Formation. In Origin and Mineralogy of Clays. Clays and the Environment; Velde, B., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1995; pp. 43–161. ISBN 978-3-540-75633-0. [Google Scholar]
- Campo, M.D.; Bauluz, B.; del Papa, C.; White, T.; Yuste, A.; Mayayo, M.J. Evidence of cyclic climatic changes recorded in clay mineral assemblages from a continental Paleocene-Eocene sequence, northwestern Argentina. Sediment. Geol. 2018, 368, 44–57. [Google Scholar] [CrossRef]
- Wilson, M.J. The origin and formation of clay minerals in soils: Past, present and future perspectives. Clay Miner. 1999, 34, 7–25. [Google Scholar] [CrossRef]
- Galán, E. Genesis of clay minerals. In Developments in Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1129–1162. [Google Scholar]
- Dera, G.; Pellenard, P.; Neige, P.; Deconinck, J.-F.; Pucéat, E.; Dommergues, J.-L. Distribution of clay minerals in Early Jurassic Peritethyan seas: Palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr. Palaeoclim. Palaeoecol. 2009, 271, 39–51. [Google Scholar] [CrossRef]
- Cecca, F.; Garin, B.M.; Marchand, D.; Lathuiliere, B.; Bartolini, A. Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Palaeogeogr. Palaeoclim. Palaeoecol. 2005, 222, 10–32. [Google Scholar] [CrossRef]
- Bucur, I.I.; Reolid, M. Incidence of the early Toarcian global change on Dasycladales (Chlorophyta) and the subsequent recovery: Comparison with end-Triassic Mass Extinction. Earth-Sci. Rev. 2024, 249, 104666. [Google Scholar] [CrossRef]
- Aurell, M.; Bádenas, B.; Bello, J.; Delvene, G.; Meléndez, G.; Pérez-Urresti, I.; Ramajo, J. El Calloviense y el Jurásico Superior en la Cordillera Ibérica Nororiental y la zona de enlace con la Cordillera Costero Catalana, en los sectores de Sierra de Arcos, Calanda y Xerta-Paüls. Cuad. Geol. Ibér. 1999, 25, 73–110. [Google Scholar]
- Kadiri, K. Jurassic ferruginous hardgrounds of the “Dorsale Calcaire” and the Jbel Moussa Group (Internal Rif, Morocco): Stratigraphical context and paleoceanographic consequences of mineralization processes. Geol. Romana 2002, 36, 33–69. [Google Scholar]
- Ramajo, J.; Aurell, M.; Cepría, J. Análisis de facies de la Capa de oolitos ferruginosos de Arroyofrío en la Sierra de Arcos (Jurásico, Cordillera Ibérica septentrional). J. Iber. Geol. 2002, 28, 45–64. [Google Scholar]
- Reolid, M.; El Kadiri, K.; Abad, I.; Olóriz, F.; Jiménez-Millán, J. Jurassic microbial communities in hydrothermal manganese crust of the Rifian Calcareous Chain, Northern Morocco. Sediment. Geol. 2011, 233, 159–172. [Google Scholar] [CrossRef]
- Reolid, M.; Abad, I. The Middle-Upper Jurassic unconformity in the South Iberian Palaeomargin (Western Tethys): A history of carbonate platform fragmentation, emersion and subsequent drowning. J. Iber. Geol. 2019, 45, 87–110. [Google Scholar] [CrossRef]
- Picard, S.; Garcia, J.P.; Le’cuyer, C.; Sheppard, S.; Capetta, H.; Emig, C. δ18O values of co- existing brachiopods and fish temperature di¡erences and estimates of paleodepths. Geology 1998, 26, 975–978. [Google Scholar] [CrossRef]
- Podlaha, O.G.; Mutterlose, J.; Veizer, J. Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/early Cretaceous successions. Am. J. Sci. 1998, 298, 324–347. [Google Scholar] [CrossRef]
- Price, G.D. The evidence and implications of polar ice during the Mesozoic. Earth-Sci. Rev. 1999, 48, 183–210. [Google Scholar] [CrossRef]
- Dromart, G.; Garcia, J.-P.; Picard, S.; Atrops, F.; Lécuyer, C.; Sheppard, S. Ice age at the Middle–Late Jurassic transition? Earth Planet. Sci. Lett. 2003, 213, 205–220. [Google Scholar] [CrossRef]
- Norris, M.S.; Hallam, A. Facies variations across the Middle-Upper Jurassic boundary in Western Europe and the relationship to sea-level changes. Palaeogeogr. Palaeoclim. Palaeoecol. 1995, 116, 189–245. [Google Scholar] [CrossRef]
- Gygi, R.A.; Coe, A.L.; Vail, P.R. Sequence stratigraphy of the Oxfordian and Kimmeridgian stages (Late Jurassic) in northern Switzerland. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Spec. Publ. 1998, 60, 527–544. [Google Scholar]
- Leinfelder, R.R.; Wilson, R.C. Third-Order Sequences in an Upper Jurassic Rift-Related Second-Order Sequence, Central Lusitanian Basin, Portugal. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Spec. Publ. 1998, 60, 507–525. [Google Scholar]
- Aurell, M.; Fernandez-Lopez, S.; Melendez, G. The Middle-Upper Jurassic ooliticironstone level in the Iberian range (Spain). Eustatic implications. Geobios 1994, 27, 549–561. [Google Scholar] [CrossRef]
- Courville, P.; Collin, P.Y. La série du Callovien et de l’Oxfordien de Veuxhaulles (Châtillonnais, Côte d’Or): Problèmes de datation, de géométrie et de paléoenvironnements dans une série “condensée”. Bull. Sci. Bourgogne 1997, 49, 29–43. [Google Scholar]
- Olóriz, F.; Reolid, M.; Rodríguez-Tovar, F.J. Taphonomy of fossil macro-invertebrate assemblages as a tool for ecostratigraphic interpretation in Upper Jurassic shelf deposits (Prebetic Zone, southern Spain). Geobios 2008, 41, 31–42. [Google Scholar] [CrossRef]
- Reolid, M.; Abad, I.; Martín-García, J.M. Palaeoenvironmental implications of ferruginous deposits related to a Middle–Upper Jurassic discontinuity (Prebetic Zone, Betic Cordillera, Southern Spain). Sediment. Geol. 2008, 203, 1–16. [Google Scholar] [CrossRef]
- García-Hernández, M.; López-Garrido, A.C.; Rivas, P.; Sanz de Galdeano, C.; Vera, J.A. Mesozoic paleogeographic evolution in the external zones of the Betic Cordillera (Spain). Geol. Mijnbouw. 1980, 59, 155–168. [Google Scholar]
- Martín-Algarra, A.; Vera, J.A. La Cordillera Bética y las Baleares en el contexto del 996 Mediterráneo Occidental. In Geología de España; Vera, J.A., Ed.; Instituto Geológico y Minero de España: Madrid, Spain, 2004; 884p, ISBN 978-8478405466. [Google Scholar]
- Jerez-Mir, L. Geología de la Zona Prebética en la Transversal de Elche de la Sierra y Sectores Adyacentes (Provincias de Albacete y Murcia). Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1973. [Google Scholar]
- García-Hernández, M.; López-Garrido, A.C.; Martín-Algarra, A.; Molina, J.M.; Ruiz-Ortiz, P.A.; Vera, J.A. Las discontinuidades mayores del Jurásico de las Zonas Externas de las Cordilleras Béticas: Análisis e interpretación de los ciclos sedimentarios. Cuad. Geol. Ibérica. 1989, 13, 35–52. [Google Scholar]
- Reolid, M.; Molina, J.M.; Nieto, L.M.; Rodríguez-Tovar, F.J. The Toarcian Oceanic Anoxic Event in the South Iberian Palaeomargin; Springer Nature: Berlin, Germany, 2018. [Google Scholar]
- López-Garrido, A.C.; García-Hernández, M. Ciclos sedimentarios mayores en la primera fase carbonatada de la plataforma prebética (Lías-Valanginiense inferior). II Congr. Geol. España 1988, SGE 1, 107–110. [Google Scholar]
- Foucault, A. Etude Géologique des Environs des Sources du Guadalquivir (Provinces de Jaen et de Grenade, Espagne Méridionale). Ph.D. Thesis, University of Paris, Paris, France, 1971. [Google Scholar]
- Reolid, M. Dinámica Eco-Sedimentaria Durante el Oxfordiense Medio-Kimmeridgiense Temprano en la Zona Prebética: Interpretación Ecoestratigráfica y Secuencial. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2003. [Google Scholar]
- Pendas, F. Definición morfológica de los embalses subterráneos del alto sureste español. I Congr. Hisp. Luso-Am. Geol. Económica Sección Hidrogeol. 1971, 2, 529–550. [Google Scholar]
- Rodríguez-Estrella, T. Geología e Hidrogeología del Sector de Alcaraz-Lietor-Yeste (Prov. de Albacete). Síntesis Geológica de la Zona Prebética. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1978. [Google Scholar]
- Rodríguez-Tovar, F.J. Evolución Sedimentaria y Ecoestratigráfica en Plataformas Epicontinentales del Margen Subibérico Durante el Kimmeridgiense Inferior. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 1993. [Google Scholar]
- Olóriz, F.; Reolid, M.; Rodríguez-Tovar, F. Fossil assemblages, lithofacies, taphofacies and interpreting depositional dynamics in the epicontinental Oxfordian of the Prebetic Zone, Betic Cordillera, southern Spain. Palaeogeogr. Palaeoclim. Palaeoecol. 2002, 185, 53–75. [Google Scholar] [CrossRef]
- Olóriz, F.; Reolid, M.; Rodríguez-Tovar, F.J. A Late Jurassic carbonate ramp colonized by sponges and benthic microbial communities (External Prebetic, southern Spain). Palaios 2003, 18, 528–545. [Google Scholar] [CrossRef]
- Gómez, J.J.; Goy, A. Las unidades litoestratigráficas del Jurásico medio y superior, en facies carbonatadas del sector levantino de la Cordillera Ibérica. Estud. Geol. 1979, 35, 569–598. [Google Scholar]
- Linares-Girela, L. Datos sobre las series Jurásico-Cretácicas en el sector de Peñas de S. Pedro-Chinchilla de Montearagón (prov. de Albacete). Bol. Geol. Min. 1976, XXXVII-IV, 355–364. [Google Scholar]
- Martin-Islán, J.D. Using XPowder: A Software Package for Powder X-ray Diffraction Analysis. Available online: www.xpowder.com (accessed on 25 June 2024).
- Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Schultz, L.G. Quantitative Interpretation of Mineralogical Composition From X-ray and Chemical Data for the Pierre Shale; USGS Professional Paper 391-C; U.S. Government Publishing Office: Washington, DC, USA, 1964; pp. 1–30. [Google Scholar]
- Smith, D.K.; Johnson, G.G., Jr. Digitized database quantification, DDBQ, analysis of complex mixtures using fully digitized patterns. Adv. X-ray Anal. 2000, 42, 276–286. [Google Scholar]
- Hillier, S. Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). In Clay Mineral Cements in Sandstones; Worden, R.H., Morad, E., Eds.; Blackwell Publishing: Malden, MA, USA, 2003; pp. 213–251. ISBN 1-40510-587-9. [Google Scholar]
- Fitzpatrick, R.; Schwertmann, U. Al-substituted goethite—An indicator of pedogenic and other weathering environments in South Africa. Geoderma 1982, 27, 335–347. [Google Scholar] [CrossRef]
- Schulze, D.G. The Influence of Aluminum on Iron Oxides. VIII. Unit-Cell Dimensions of Al-Substituted Goethites and Estimation of Al from them. Clays Clay Miner. 1984, 32, 36–44. [Google Scholar] [CrossRef]
- Bárdossy, G. Karst Bauxites. In Developments in Economic Geology; Elsevier: Amsterdam, The Netherlands, 1982; 441p. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Harnois, L. The CIW index: A new chemical index of weathering. Sediment. Geol. 1988, 55, 319–322. [Google Scholar] [CrossRef]
- Sheldon, N.D.; Retallack, G.J.; Tanaka, S. Geochemical Climofunctions from North American Soils and Application to Paleosols across the Eocene-Oligocene Boundary in Oregon. J. Geol. 2002, 110, 687–696. [Google Scholar] [CrossRef]
- Guerrak, S. Metallogenesis of cratonic oolitic ironstone deposits in the Bled el Mass, Azzel Matti, Ahnet and Mouydir basins, Central Sahara, Algeria. Int. J. Earth Sci. 1987, 76, 903–922. [Google Scholar] [CrossRef]
- Aleva, G.J.J. Laterites: Concepts, Geology, Morphology and Chemistry; International Soil Reference and Information Centre (ISRIC): Wageningen, The Netherlands, 1994; 169p, ISBN 90.6672.053.0. [Google Scholar]
- Mitchell, R.L.; Sheldon, N.D. Sedimentary provenance and weathering processes in the 1.1 Ga Midcontinental Rift of the Keweenaw Peninsula, Michigan, USA. Precambrian Res. 2016, 275, 225–240. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; ISBN 0632011483. [Google Scholar]
- Yuste, A.; Camacho, I.; Bauluz, B.; Mayayo, M.J.; Laita, E. Palaeoweathering events recorded on siliciclastic continental deposits (Albian, Lower Cretaceous) in NE Spain. Appl. Clay Sci. 2020, 190, 105598. [Google Scholar] [CrossRef]
- Bauluz, B.; Mayayo, M.J.; Fernandez-Nieto, C.; Lopez, J.M.G. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range NE Spain: Implications for source-area weathering, sorting, provenance, and tectonic setting. Chem. Geol. 2000, 168, 135–150. [Google Scholar] [CrossRef]
- Lanson, B.; Beaufort, D.; Berger, G.; Bauer, A.; Cassagnabère, A.; Meunier, A. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Miner. 2002, 37, 1–22. [Google Scholar] [CrossRef]
- Brosse, E.; Margueron, T.; Cassou, C.; Sanjuan, B.; Canham, A.; Girad, J.P.; Lacharpahne, J.C.; Sommer, F. The formation and stability of kaolinite in Brent sandstone reservoirs: A modelling approach. In Clay Mineral Cements in Sandstones; Worden, R.H., Morad, S., Eds.; Blackwell Publishing: Malden, MA, USA, 2003; pp. 383–408. ISBN 1-40510-587-9. [Google Scholar]
- Jeong, G.Y.; Hillier, S.; Kemp, R.A. Changes in mineralogy of loess–paleosol sections across the Chinese Loess Plateau. Quat. Res. 2011, 75, 245–255. [Google Scholar] [CrossRef]
- Schaetzl, R.; Thompson, M.L. Soils: Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2015; 779p, ISBN 978-1-107-01693-4. [Google Scholar]
- Meenakshi; Shrivastava, J.; Chandra, R. Pedogenically degenerated illite and chlorite lattices aid to palaeoclimatic reconstruction for chronologically constrained (8–130 ka) loess-palaeosols of Dilpur Formation, Kashmir, India. Geosci. Front. 2020, 11, 1353–1367. [Google Scholar] [CrossRef]
- Entrena, A.; Fornós, J.J.; Auqué, L.F.; Gràcia, F.; Laita, E. Mineralogical and Sedimentological Characterization of the Clay-Rich Sediments from Ases Cave (Cova Dets Ases, Mallorca, Spain): Origin and Classification. Minerals 2022, 12, 1473. [Google Scholar] [CrossRef]
- Youssef, E.S.A. Sedimentological studies on the central Wadi Kalabsha kaolin deposits, Southwest of Aswan, Egypt. J. Miner. Pet. Econ. Geol. 1996, 91, 353–363. [Google Scholar] [CrossRef]
- Kenny, R.; Krinsley, D.H. Silicified Mississippian Paleosol Microstructures: Evidence for Ancient Microbial-Soil Associations. Scanning Microsc. 1992, 6, 359–366. [Google Scholar]
- Mahaney, W.; Krinsley, D.; Allen, C.; Ditto, J.; Langworthy, K.; Batchelor, A.; Lecompte, M.; Milner, M.; Hart, K.; O’Reilly, S.S.; et al. Reassessment of the Microbial Role in Mn-Fe Nodule Genesis in Andean Paleosols. Geomicrobiol. J. 2015, 32, 27–41. [Google Scholar] [CrossRef]
- Szamatek, K.; Barczuk, A.; Youssed, E.A.A. Genesis and mineralogy of lateritic kaolin at Aswan area (Sw Egypt). Arch. Mineral. (Wars.) 1993, 2, 81–97. [Google Scholar]
- Taylor, G.; Eggleton, R.A.; Foster, L.D.; Tilley, D.B.; Le Gleuher, M.; Morgan, C.M. Nature of the Weipa Bauxite deposit, northern Australia. Aust. J. Earth Sci. 2008, 55, S45–S70. [Google Scholar] [CrossRef]
- Retallack, G.J. Soils of the Past; Blackwell Science: Malden, MA, USA, 2001; 30p. [Google Scholar]
- Bhattacharyya, D.P.; Kakimoto, P.K. Origin of ferriferous ooids: An SEM study of ironstone ooids and bauxite pisoids. J. Sediment. Petrol. 1982, 53, 849–857. [Google Scholar]
- Mücke, A.; Badejoko, T.A.; Akande, S.O. Petrographic-microchemical studies and origin of the Agbaja Phanerozoic Ironstone Formation, Nupe Basin, Nigeria: A product of a ferruginized ooidal kaolin precursor not identical to the Minette-type. Miner. Depos. 1999, 34, 284–296. [Google Scholar] [CrossRef]
- Aurell, M.; Bádenas, B.; Castanera, D.; Gasca, J.; Canudo, J.; Laita, E.; Liesa, C. Latest Jurassic–Early Cretaceous synrift evolution of the Torrelapaja Subbasin (Cameros Basin): Implications for Northeast Iberia palaeogeography. Cretac. Res. 2021, 128, 104997. [Google Scholar] [CrossRef]
- Marques, B.; Olóriz, F.; Rodríguez-Tovar, F.J. Interactions between tectonics and eustasy during the Upper Jurassic and lowermost Cretaceous. Examples from the south ofIberia. Bull. Soc. Géol. Fr. 1991, 162, 1109–1124. [Google Scholar]
- Aurell, M.; Robles, S.; Bádenas, B.; Rosales, I.; Quesada, S.; Meléndez, G.; García-Ramos, J. Transgressive–regressive cycles and Jurassic palaeogeography of northeast Iberia. Sediment. Geol. 2003, 162, 239–271. [Google Scholar] [CrossRef]
- Legarreta, L. Evolution of a Callovian-Oxfordian carbonate margin in the Neuquén Basin of west-central Argentina: Facies, architecture, depositional sequences and global sea-level changes. Sediment. Geol. 1991, 70, 209–240. [Google Scholar] [CrossRef]
- Hallam, A. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr. Palaeoclim. Palaeoecol. 2001, 167, 23–37. [Google Scholar] [CrossRef]
- Olóriz, F.; Reolid, M.; Rodríguez-Tovar, F.J. Taphonomy of fossil macroinvertebrates for improving ecostratigraphy: Shifting eco-sedimentary conditions from carbonate to carbonate-siliciclastic shelf (Upper Jurassic, Prebetic Zone). Geobios 2005, 2, 123–124. [Google Scholar]
- Lechte, M.; Halverson, G.; Wallace, M.; Gibson, T.; van Smeerdijk Hood, A.; Wang, C.; Bui, T.H.; Maloney, K.; Millikin, A. Oolitic ironstones, continental iron flux and reverse weathering in the Proterozoic Eon: Insights from the Tonian Katherine Group, Yukon. Earth-Sci. Rev. 2024, 253. [Google Scholar] [CrossRef]
- Aurell, M. El Jurásico Superior de la Cordillera Ibérica Central (Provincias de Zaragoza y Teruel). Análisis de Cuenca. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 1990. [Google Scholar]
- Eze, P.; Udeigwe, T.; Meadows, M. Plinthite and Its Associated Evolutionary Forms in Soils and Landscapes: A Review. Pedosphere 2014, 24, 153–166. [Google Scholar] [CrossRef]
- Luko-Sulato, K.; Mounier, S.; Furlan, L.M.; Govone, J.S.; Bueno, G.T.; Rosolen, V. Spatial variation of soil organic matter and metal mobility in wetland soils: Implications for biogeochemical processes in lateritic landscape. Catena 2024, 237. [Google Scholar] [CrossRef]
- Duchaufour, P. Pedology. Pedogénesis and Classification; Springer: New York, NY, USA, 1982; 462p, ISBN 978-9401160056. [Google Scholar]
- Fookes, P.G. A Review: Genesis and classification of tropical residual soils for engineers. In Geotechnics in the African Environment; Blight, G.E., Fourie, A.B., Luker, I., Mouton, D.J., Scheurenberg, R.J., Eds.; CRC Press: Rotterdam, The Netherlands, 1994; pp. 423–442. ISBN 978-90-5410-007-2. [Google Scholar]
- Laita, E.; Bauluz, B.; Yuste, A. The role of clay minerals in the concentration and distribution of critical metals in lateritic palaeosols from NE Iberia. Appl. Clay Sci. 2024, 249, 107264. [Google Scholar] [CrossRef]
- McLaren, R.G.; Lawson, D.M.; Swift, R.S. Sorption and desorption of cobalt by soils and soil components. Eur. J. Soil Sci. 1986, 37, 413–426. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Price, J.R.; Velbel, M.A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem. Geol. 2003, 202, 397–416. [Google Scholar] [CrossRef]
- Bahlburg, H.; Dobrzinski, N. A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoproterozoic Glacial Deposits and Climate Transitions. In The Geological Record of Neoproterozoic Glaciations; Memoir 36; Arnaud, E., Halverson, G.P., ShieldsZhou, G.A., Eds.; Geological Society: London, UK, 2011; pp. 81–92. [Google Scholar]
- Fathy, D.; Abart, R.; Wagreich, M.; Gier, S.; Ahmed, M.S.; Sami, M. Late Campanian Climatic-Continental Weathering Assessment and Its Influence on Source Rocks Deposition in Southern Tethys, Egypt. Minerals 2023, 13, 160. [Google Scholar] [CrossRef]
- Lerman, A.; Imboden, D.M.; Gat, J.R. Physics and Chemistry of Lakes; Springer: Berlin, Germany, 1995; 334p, ISBN 978-3-642-85134-6. [Google Scholar]
- Xu, J.; Liu, Z.; Bechtel, A.; Meng, Q.; Sun, P.; Jia, J.; Cheng, L.; Song, Y. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao Basin (NE China): Implications from sequence stratigraphy and geochemistry. Int. J. Coal Geol. 2015, 149, 9–23. [Google Scholar] [CrossRef]
- Stampfli, G.; Borel, G. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 2002, 196, 17–33. [Google Scholar] [CrossRef]
- Dromart, G.; Garcia, J.-P.; Gaumet, F.; Picard, S.; Rousseau, M.; Atrops, F.; Lecuyer, C.; Sheppard, S.M.F. Perturbation of the carbon cycle at the Middle/Late Jurassic transition: Geological and geochemical evidence. Am. J. Sci. 2003, 303, 667–707. [Google Scholar] [CrossRef]
- Pellenard, P.; Fortwengler, D.; Marchand, D.; Thierry, J.; Bartolini, A.; Boulila, S.; Pierre-Yves Collin, P.-Y.; Enay, R.; Galbrun, B.; Gardin, S.; et al. Integrated stratigraphy of the Oxfordian global stratotype section and point (GSSP) candidate in the Subalpine Basin (SE France). Vol. Jurass. 2014, 12, 1–44. [Google Scholar]
- Carmeille, M.; Bourillot, R.; Pellenard, P.; Dupias, V.; Schnyder, J.; Riquier, L.; Mathieu, O.; Brunet, M.-F.; Enay, R.; Grossi, V.; et al. Formation of microbial organic carbonates during the Late Jurassic from the Northern Tethys (Amu Darya Basin, Uzbekistan): Implications for Jurassic anoxic events. Glob. Planet. Chang. 2020, 186, 103127. [Google Scholar] [CrossRef]
- Price, G.D.; Heszler, B.; Charlton, L.-M.T.; Cox, J. A climate perturbation at the Middle–Late Jurassic Transition? Evaluating the isotopic evidence from south-central England. Palaeogeogr. Palaeoclim. Palaeoecol. 2023, 628, 111755. [Google Scholar] [CrossRef]
- Lécuyer, C.; Picard, S.; Garcia, J.; Sheppard, S.M.F.; Grandjean, P.; Dromart, G. Thermal evolution of Tethyan surface waters during the Middle-Late Jurassic: Evidence from δ18O values of marine fish teeth. Paleoceanography 2003, 18. [Google Scholar] [CrossRef]
- Wierzbowski, H. Seawater temperatures and carbon isotope variations in central European basins at the Middle–Late Jurassic transition (Late Callovian–Early Kimmeridgian). Palaeogeogr. Palaeoclim. Palaeoecol. 2015, 440, 506–523. [Google Scholar] [CrossRef]
- Haq, B.U. Jurassic sea-level variations: A reappraisal. GSA Today 2018, 28, 4–10. [Google Scholar] [CrossRef]
- Azerêdo, A.C.; Wright, V.P.; Ramalho, M.M. The Middle–Late Jurassic forced regression and disconformity in central Portugal: Eustatic, tectonic and climatic effects on a carbonate ramp system. Sedimentology 2002, 49, 1339–1370. [Google Scholar] [CrossRef]
- Lorin, S.; Courville, P.; Collin, P.Y.; Thierry, J.; Tort, A. Modalités de réinstallation d’une plate-forme carbonatée après une crise sédimentaire: Exemple de la limite Oxfordien moyen—Oxfordien supérieur dans le Sud-Est du Bassin de Paris. Bull. Soc. Géol. Fr. 2004, 175, 289–302. [Google Scholar] [CrossRef]
- Dera, G.; Brigaud, B.; Monna, F.; Laffont, R.; Pucéat, E.; Deconinck, J.-F.; Pellenard, P.; Joachimski, M.M.; Durlet, C. Climatic ups and downs in a disturbed Jurassic world. Geology 2011, 39, 215–218. [Google Scholar] [CrossRef]
- Martire, L. Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies 1996, 35, 209–236. [Google Scholar] [CrossRef]
- Olóriz, F.; Marques, B.; Caracuel, J.E. The Middle-Upper Oxfordian of Central Sierra Norte (Mallorca, Spain), and progressing ecostratigraphic approach in Western Tethys. Geobios 1998, 31, 319–336. [Google Scholar] [CrossRef]
- Coimbra, R.; Immenhauser, A.; Olóriz, F.; Rodríguez-Galiano, V.; Chica-Olmo, M. New insights into geochemical behaviour in ancient marine carbonates (Upper Jurassic Ammonitico Rosso): Novel proxies for interpreting sea-level dynamics and palaeoceanography. Sedimentology 2015, 62, 266–302. [Google Scholar] [CrossRef]
- Collin, P.Y.; Loreau, J.P.; Courville, P. Depositional environments and iron ooid formation in condensed sections (Callovian–Oxfordian, south-eastern Paris basin, France). Sedimentology 2005, 52, 969–985. [Google Scholar] [CrossRef]
Iron Crust | Iron-Coated Grains | ||||
---|---|---|---|---|---|
Villas | RGCH | PC2 | Villas | RGCH | |
SiO2 | 39.33 | 3.84 | 11.95 | 11.70 | 5.39 |
Al2O3 | 12.91 | 2.52 | 5.41 | 7.32 | 6.47 |
Fe2O3 | 31.06 | 80.48 | 71.19 | 72.70 | 67.28 |
MnO | 0.07 | 0.03 | 0.04 | 0.08 | 0.05 |
MgO | 0.67 | 0.33 | 0.27 | 0.10 | 0.52 |
CaO | 2.19 | 2.31 | 1.89 | 0.25 | 4.69 |
Na2O | 0.06 | - | 0.12 | 0.03 | - |
K2O | 0.51 | 0.10 | 0.31 | 0.02 | 0.24 |
TiO2 | 0.88 | 0.14 | 0.56 | 0.62 | 0.53 |
P2O5 | 0.09 | 1.76 | 0.49 | 0.03 | 3.58 |
LOI | 12.15 | 10.88 | 7.45 | 5.78 | 6.45 |
CIA | 95.20 | 95.87 | 90.87 | - | - |
CIW | 91.99 | 93.59 | 88.14 | - | - |
PPR | 1380.20 | 1329.00 | 1325.06 | - | - |
Iron Crust | Iron-Coated Grains | |||
---|---|---|---|---|
Villas | RGCH | Villas | RGCH | |
Li | 67.00 | - | 35.12 | - |
Rb | 24.64 | 5.15 | 2.04 | 10.36 |
Cs | 2.49 | 0.41 | 0.40 | 0.81 |
Be | 5.44 | - | 6.79 | - |
Sr | 22.43 | 44.53 | 14.90 | 65.86 |
Ba | 80.4 | 27.29 | 34.50 | 51.69 |
Sc | 23.05 | 14.23 | 25.60 | 15.10 |
V | 424.02 | 1414.42 | 1067.87 | 1908.24 |
Cr | 154.44 | 186.09 | 280.63 | 1058.94 |
Co | 30.14 | 143.36 | 39.61 | 121.09 |
Ni | 65.4 | 384.68 | 72.49 | 369.06 |
Cu | 36.85 | 54.94 | 39.79 | 35.25 |
Zn | 20.78 | 289.60 | 9.44 | 311.37 |
Ga | 37.39 | 7.44 | 41.61 | 13.44 |
Y | 88.14 | 66.28 | 80.87 | 107.45 |
Nb | 14.87 | 9.57 | 11.72 | 40.42 |
Ta | 1.33 | 0.31 | 0.87 | 1.02 |
Zr | 168.66 | 62.52 | 125.25 | 147.71 |
Hf | 4.76 | 1.39 | 3.23 | 4.31 |
Mo | 2.69 | 56.07 | 8.18 | 10.18 |
Sn | 3.8 | 0.64 | 2.58 | 3.01 |
Tl | 0.18 | 0.13 | 0.06 | 0.56 |
Pb | 59.67 | 150.74 | 139.22 | 120.89 |
U | 2.87 | 13.17 | 4.74 | 8.02 |
Th | 22.4 | 6.97 | 26.54 | 27.87 |
La | 134.42 | 29.58 | 107.02 | 55.09 |
Ce | 211.29 | 13.79 | 146.33 | 31.30 |
Pr | 32.58 | 4.42 | 25.92 | 10.38 |
Nd | 128.71 | 19.03 | 104.25 | 43.83 |
Sm | 28.15 | 4.09 | 24.51 | 10.35 |
Eu | 6.49 | 0.95 | 5.98 | 2.30 |
Gd | 20.62 | 5.13 | 18.20 | 11.09 |
Tb | 2.88 | 0.87 | 2.52 | 1.81 |
Dy | 12.67 | 5.76 | 14.16 | 12.07 |
Ho | 2.86 | 1.41 | 2.84 | 2.67 |
Er | 6.45 | 4.01 | 6.95 | 7.14 |
Tm | 0.86 | 0.60 | 0.97 | 1.06 |
Yb | 4.87 | 3.47 | 5.39 | 6.02 |
Lu | 0.74 | 0.55 | 0.78 | 0.83 |
Ba/Sr | 3.58 | 0.61 | 0.67 | 0.23 |
Sr/Cu | 0.61 | 0.81 | 0.37 | 1.87 |
Rb/Sr | 1.10 | 0.12 | 0.14 | 0.16 |
Ga/Rb | 1.52 | 1.45 | 20.40 | 1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laita, E.; Abad, I.; Reolid, M. Palaeoclimatic Inferences from Clayey-Iron Palaeosols: A Weathering Event Recorded in the Middle–Upper Jurassic Unconformity (South Iberian Palaeomargin, Western Tethys). Minerals 2024, 14, 741. https://doi.org/10.3390/min14080741
Laita E, Abad I, Reolid M. Palaeoclimatic Inferences from Clayey-Iron Palaeosols: A Weathering Event Recorded in the Middle–Upper Jurassic Unconformity (South Iberian Palaeomargin, Western Tethys). Minerals. 2024; 14(8):741. https://doi.org/10.3390/min14080741
Chicago/Turabian StyleLaita, Elisa, Isabel Abad, and Matías Reolid. 2024. "Palaeoclimatic Inferences from Clayey-Iron Palaeosols: A Weathering Event Recorded in the Middle–Upper Jurassic Unconformity (South Iberian Palaeomargin, Western Tethys)" Minerals 14, no. 8: 741. https://doi.org/10.3390/min14080741
APA StyleLaita, E., Abad, I., & Reolid, M. (2024). Palaeoclimatic Inferences from Clayey-Iron Palaeosols: A Weathering Event Recorded in the Middle–Upper Jurassic Unconformity (South Iberian Palaeomargin, Western Tethys). Minerals, 14(8), 741. https://doi.org/10.3390/min14080741