Zircon Internal Deformation and Its Effect on U-Pb Geochronology: A Case Study from the Himalayan High-Pressure Eclogites
Abstract
:1. Introduction
2. Background
- (1)
- Isotope-Dilution Thermal Ionization Mass Spectrometry (ID-TIMS)
- (2)
- Ion Microprobes known as the Secondary Ion Mass Spectrometry (SIMS)
- (3)
- Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
3. Zircon Age-Dating and the Effect of Micro-Deformation on Age
3.1. Petrological, Textural, and Internal Structural Identifications of Zircons
3.2. Importance of Non-Destructive EBSD Method in Identifying Pristine Domains in Zircons
4. Materials and Methods
5. Results
5.1. Petrographic and Textural Features
5.2. EBSD Analyses
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, H.S. The elements of the geological time scale. J. Geol. 1893, 1, 283–295. [Google Scholar] [CrossRef]
- Rutherford, E.; Soddy, F. The cause and nature of radioactivity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1902, 4, 370–396. [Google Scholar] [CrossRef]
- Davis, D.W. U–Pb geochronology: Its development and importance in Canada. Can. J. Earth Sci. 2023, 60, 388–400. [Google Scholar] [CrossRef]
- Davis, D.W.; Williams, I.S.; Krogh, T.E. Historical development of zircon geochronology. Rev. Min. Geochem. 2003, 53, 145–181. [Google Scholar] [CrossRef]
- Tilton, G.R.; Patterson, C.; Brown, H.; Inghram, M.; Hayden, R.; Hess, D.; Larsen, E. Isotopic composition and distribution of lead, uranium and thorium in a Precambrian granite. Geol. Soc. Am. Bull. 1955, 66, 1131–1148. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M. Zircon tiny but timely. Elements 2007, 3, 13–18. [Google Scholar] [CrossRef]
- Scherer, E.E.; Whitehouse, M.J.; Münker, C. Zircon as a monitor of crustal growth. Elements 2007, 3, 19–24. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Min. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Parrish, R.R.; Parrish, R.R.; Noble, S.R. Zircon U-Th-Pb geochronology by isotope dilution—Thermal Ionization Mass Spectrometry (ID-TIMS). Rev. Min. Geochem. 2003, 53, 183–213. [Google Scholar] [CrossRef]
- Košler, J.; Sylvester, P.J. Present trends and the future of zircon in geochronology: Laser Ablation ICPMS. Rev. Min. Geochem. 2003, 53, 243–275. [Google Scholar] [CrossRef]
- Ewing, R.C.; Meldrum, A.; Wang, L.-M.; Weber, W.J.; Corrales, L.R. Radiation effects in zircon. Rev. Min. Geochem. 2003, 53, 387–425. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Min. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Sylvester, P.J.; Jackson, S.E. A brief history of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP–MS). Elements 2016, 12, 307–310. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Met. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Vavra, G. On the kinematics of zircon growth and its petrogenetic significance: A cathodoluminescence study. Contrib. Miner. Petrol. 1990, 106, 90–99. [Google Scholar] [CrossRef]
- Voice, P.J.; Kowalewski, M.; Eriksson, K.A. Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains. J. Geol. 2011, 119, 109–126. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, X.; Ji, K. A global zircon U–Th–Pb geochronological database. Earth Syst. Sci. Data 2023, 15, 5171–5181. [Google Scholar] [CrossRef]
- Puetz, S.J.; Spencer, C.J.; Condie, K.C.; Roberts, N.M.W. Enhanced U-Pb detrital zircon, Lu-Hf zircon, δ18O zircon, and Sm-Nd whole rock global databases. Sci. Data 2024, 11, 56. [Google Scholar] [CrossRef]
- Mattinson, J. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 2005, 220, 47–66. [Google Scholar] [CrossRef]
- Zhong, Y.-T.; Mundil, R.; Xu, Y.-G.; Wang, G.-Q.; Zhang, Z.-F.; Ma, J.-L. Development of CA-ID-TIMS zircon U-Pb dating technique at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. Solid Earth Sci. 2017, 2, 55–61. [Google Scholar] [CrossRef]
- Compston, W.; Williams, I.S.; Clement, S.W. U-Pb ages within single zircons using a sensitive high-resolution ion microprobe. In Proceedings of the 30th American Society for Mass Spectrometry Conference, Honolulu, HI, USA, 6–11 June 1982; pp. 593–595. [Google Scholar]
- Gehrels, G.E.; Valencia, V.A.; Ruiz, J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem. Geophys. Geosyst. 2008, 9, Q03017. [Google Scholar] [CrossRef]
- Vavra, G.; Schmid, R.; Gebauer, D. Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Miner. Petrol. 1999, 134, 380–404. [Google Scholar] [CrossRef]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Gerdes, A.; Zeh, A. Zircon formation versus zircon alteration—New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem. Geol. 2009, 261, 230–243. [Google Scholar] [CrossRef]
- Kunz, B.E.; Regis, D.; Engi, M. Zircon ages in granulite facies rocks: Decoupling from geochemistry above 850 °C? Contrib. Miner. Petrol. 2018, 173, 1–21. [Google Scholar] [CrossRef]
- Bell, E.A.; Boehnke, P.; Barboni, M.; Harrison, T.M. Tracking chemical alteration in magmatic zircon using rare earth element abundances. Chem. Geol. 2019, 510, 56–71. [Google Scholar] [CrossRef]
- Yan, W.; Casey, J.F. Synchronous formation of the ‘forearc’ Bay of Islands ophiolite and its basal high-temperature metamorphic sole constrained by U–Pb zircon ages. Geosci. Front. 2023, 14, 101649. [Google Scholar] [CrossRef]
- Resentini, A.; Andò, S.; Garzanti, E.; Malusà, M.G.; Pastore, G.; Vermeesch, P.; Chanvry, E.; Dall’Asta, M. Zircon as a provenance tracer: Coupling Raman spectroscopy and U-Pb geochronology in source-to-sink studies. Chem. Geol. 2020, 555, 119828. [Google Scholar] [CrossRef]
- Rehman, H.U.; Kobayashi, K.; Tsujimori, T.; Ota, T.; Yamamoto, H.; Nakamura, E.; Kaneko, Y.; Khan, T.; Terabayashi, M.; Yoshida, K.; et al. Ion microprobe U–Th–Pb geochronology and study of micro-inclusions in zircon from the Himalayan high and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. J. Asian Earth Sci. 2013, 63, 179–196. [Google Scholar] [CrossRef]
- Rehman, H.U.; Lee, H.Y.; Chung, S.L.; Khan, T.; O’Brien, P.J.; Yamamoto, H. Source and mode of the Permian Panjal Trap magmatism: Evidence from zircon U-Pb and Hf isotopes and trace element data from the Himalayan ultrahigh-pressure rocks. Lithos 2016, 260, 286–299. [Google Scholar] [CrossRef]
- Rehman, H.U.; Kagoshima, T.; Takahata, N.; Sano, Y.; Barou, F.; Mainprice, D.; Yamamoto, H. Electron backscatter diffraction analysis combined with NanoSIMS U-Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U-Pb age: Examples from Himalayan eclogites, Pakistan. Eur. J. Min. 2023, 35, 1079–1090. [Google Scholar] [CrossRef]
- Rehman, H.U.; Mainprice, D.; Barou, F.; Yamamoto, H.; Wei, C.J.; Zafar, T.; Khan, T. Crystallographic preferred orientations of the Himalayan eclogites revealing records of syn-deformation peak metamorphic stage and subsequent exhumation. J. Struct. Geol. 2023, 167, 104792. [Google Scholar] [CrossRef]
- Kawakami, T.; Yamaguchi, I.; Miyake, A.; Shibata, T.; Maki, K.; Yokoyama, T.D.; Hirata, T. Behavior of zircon in the upper-amphibolite to granulite facies schist/migmatite transition, Ryoke metamorphic belt, SW Japan: Constraints from the melt inclusions in zircon. Contrib. Mineral. Petrol. 2013, 165, 575–591. [Google Scholar] [CrossRef]
- Suga, K.; Yui, T.F.; Miyazaki, K.; Sakata, S.; Hirata, T.; Fukuyama, M. A revisit to the Higo terrane, Kyushu, Japan: The eastern extension of the North China–South China collision zone. J. Asian Earth Sci. 2017, 143, 218–235. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Johnson, T.E.; Kinny, P.D.; Kapitany, T. Modelling U-Pb discordance in the Acasta Gneiss: Implications for fluid–rock interaction in Earth’s oldest dated crust. Gondwana Res. 2020, 77, 223–237. [Google Scholar] [CrossRef]
- Degeling, H.S. Zircon Equilibria in Metamorphic Rocks. Ph.D. Thesis, The Australian National University, Canberra, ACT, Australia, 2002; pp. 1–230. [Google Scholar]
- Kröner, A.; Wan, Y.; Liu, X.; Liu, D. Dating of zircon from high-grade rocks: Which is the most reliable method? Geosci. Front. 2014, 5, 515–523. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Pb diffusion in zircon. Chem. Geol. 2000, 172, 5–24. [Google Scholar] [CrossRef]
- Reddy, S.M.; Timms, N.E.; Trimby, P.; Kinny, P.D.; Buchan, C.; Blake, K. Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness. Geology 2006, 34, 257–260. [Google Scholar] [CrossRef]
- Reddy, S.M.; Timms, N.E.; Pantleon, W.; Trimby, P. Quantitative characterization of plastic deformation of zircon and geological implications. Contrib. Mineral. Petrol. 2007, 153, 625–645. [Google Scholar] [CrossRef]
- Reddy, S.M.; Timms, N.E.; Hamilton, P.J.; Smyth, H.R. Deformation-related microstructures in magmatic zircon and implications for diffusion. Contrib. Mineral. Petrol. 2009, 157, 231–244. [Google Scholar] [CrossRef]
- Timms, N.E.; Reddy, S.M. Response of cathodoluminescence to crystal-plastic deformation in zircon. Chem. Geol. 2009, 261, 11–23. [Google Scholar] [CrossRef]
- Kaczmarek, M.A.; Reddy, S.M.; Timms, N.E. Evolution of zircon deformation mechanisms in a shear zone (Lanzo massif, Western-Alps). Lithos 2011, 127, 414–426. [Google Scholar] [CrossRef]
- Piazolo, S.; Austrheim, H.; Whitehouse, M. Brittle-ductile microfabrics in naturally deformed zircon: Deformation mechanisms and consequences for U-Pb dating. Am. Mineral. 2012, 97, 1544–1563. [Google Scholar] [CrossRef]
- Kusiak, M.A.; Whitehouse, M.J.; Wilde, S.A.; Nemchin, A.A.; Clark, C. Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology. Geology 2013, 41, 291–294. [Google Scholar] [CrossRef]
- Kovaleva, E.; Klötzli, U.; Habler, G.; Libowitzky, E. Finite lattice distortion patterns in plastically deformed zircon grains. Solid Earth 2014, 5, 1099–1122. [Google Scholar] [CrossRef]
- Kovaleva, E.; Klötzli, U.; Habler, G.; Huet, B.; Guan, Y.; Rhede, D. The effect of crystal-plastic deformation on isotope and trace element distribution in zircon: Combined BSE, CL, EBSD, FEG-EMPA and NanoSIMS study. Chem. Geol. 2017, 450, 183–198. [Google Scholar] [CrossRef]
- Kovaleva, E.; Klötzli, U.; Wheeler, J.; Habler, G. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism. J. Struc. Geol. 2018, 107, 12–24. [Google Scholar] [CrossRef]
- Kovaleva, E.; Kusiak, M.A.; Kenny, G.G.; Whitehouse, M.J.; Habler, G.; Schreiber, A.; Wirth, R. Nano-scale investigation of granular neoblastic zircon, Vredefort impact structure, South Africa: Evidence for complete shock melting. Earth Planet. Sci. Lett. 2021, 565, 116948. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.-M.; Bingen, B.; Paquette, J.-L.; Bosse, V. Nanoscale evidence for uranium mobility in zircon and the discordance of U–Pb chronometers. Earth Planet. Sci. Lett. 2015, 409, 43–48. [Google Scholar] [CrossRef]
- Spencer, D.A.; Gebauer, D. SHRIMP evidence for a Permian protolith age and a 44 Ma metamorphic age for the Himalayan eclogites (Upper Kaghan, Pakistan): Implication for the subduction of the Tethys and the subdivision terminology of the NW Himalaya. In Proceedings of the 11th Himalayan–Karakoram–Tibet Workshop, Flagstaff, AZ, USA, 29 April–1 May 1996; Abstract Volume. pp. 147–150. [Google Scholar]
- O’Brien, P.J.; Zotov, N.; Law, R.; Khan, M.A.; Jan, M.Q. Coesite in Himalayan eclogite and implications for models of India–Asia collision. Geology 2001, 29, 435–438. [Google Scholar] [CrossRef]
- Kaneko, Y.; Katayama, I.; Yamamoto, H.; Misawa, K.; Ishikawa, M.; Rehman, H.U.; Kausar, A.B.; Shiraishi, K. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. J. Met. Geol. 2003, 21, 589–599. [Google Scholar] [CrossRef]
- Rehman, H.U. Geochronological enigma of the HP–UHP rocks in the Himalayan orogen. In HP–UHP Metamorphism and Tectonic Evolution of Orogenic Belts; Zhang, L.F., Schertl, H.-P., Wei, C.J., Eds.; Geological Society of London: London, UK, 2019; Volume 474, pp. 183–207. [Google Scholar]
- Rehman, H.U.; Yamamoto, H.; Kaneko, Y.; Kausar, A.B.; Murata, M.; Ozawa, H. Thermobaric structure of the Himalayan metamorphic belt in Kaghan Valley, Pakistan. J. Asian Earth Sci. 2007, 29, 390–406. [Google Scholar] [CrossRef]
- Chaudhry, M.N.; Ghazanfar, M. Geology, structure and geomorphology of upper Kaghan Valley, Northwestern Himalaya, Pakistan. Geol. Bull. Univ. Punj. 1987, 22, 13–57. [Google Scholar]
- Greco, A.; Martinotti, G.; Papritz, K.; Ramsay, J.G.; Rey, R. The Himalayan crystalline rocks of the Kaghan Valley (NE-Pakistan). Eclo. Geol. Helve. 1989, 82, 603–627. [Google Scholar]
- Pognante, U.; Spencer, D.A. First record of eclogites from the High Himalayan belt, Kaghan Valley (northern Pakistan). Eur. J. Min. 1991, 3, 613–618. [Google Scholar] [CrossRef]
- Lombardo, B.; Rolfo, F. Two contrasting eclogite types in the Himalaya: Implications for the Himalayan orogeny. J. Geodyn. 2000, 30, 37–60. [Google Scholar] [CrossRef]
- Hielscher, R.; Schaeben, H. A novel pole figure inversion method: Specification of the MTEX algorithm. J. App. Cryst. 2008, 41, 1024–1037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, H.U. Zircon Internal Deformation and Its Effect on U-Pb Geochronology: A Case Study from the Himalayan High-Pressure Eclogites. Minerals 2024, 14, 742. https://doi.org/10.3390/min14080742
Rehman HU. Zircon Internal Deformation and Its Effect on U-Pb Geochronology: A Case Study from the Himalayan High-Pressure Eclogites. Minerals. 2024; 14(8):742. https://doi.org/10.3390/min14080742
Chicago/Turabian StyleRehman, Hafiz U. 2024. "Zircon Internal Deformation and Its Effect on U-Pb Geochronology: A Case Study from the Himalayan High-Pressure Eclogites" Minerals 14, no. 8: 742. https://doi.org/10.3390/min14080742
APA StyleRehman, H. U. (2024). Zircon Internal Deformation and Its Effect on U-Pb Geochronology: A Case Study from the Himalayan High-Pressure Eclogites. Minerals, 14(8), 742. https://doi.org/10.3390/min14080742