Primary and Secondary Geochemical Signals in the Chemical Composition of Exoskeleton of Corumbella werneri (Tamengo Formation, Corumbá Group, Brazil): A Pilot Study
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
3.1. Petrographic Analysis
3.2. Mineralogical Analyses
3.3. Electron Microprobe
3.4. Trace and Rare Earth Elements
3.5. C and O Isotopes
3.6. Sr Isotopes
4. Results
4.1. Petrography
4.2. Chemical Composition
4.3. Rare Earth Elements (REEs)
4.4. Sr, C, and O Stable Isotopes
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.X. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.M.; Strauss, H.; Kaufman, A.J. The abundance of 13 C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 1999, 161, 103–125. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Schrag, D.P. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 2002, 14, 129–155. [Google Scholar] [CrossRef]
- Halverson, G.P.; Hoffman, P.F.; Schrag, D.P.; Maloof, A.C.; Rice, A.H.N. Toward a Neoproterozoic composite carbon-isotope record. Bull. Geol. Soc. Am. 2005, 117, 1181–1207. [Google Scholar] [CrossRef]
- Halverson, G.P.; Shields-Zhou, G. Chapter 4: Chemostratigraphy and the Neoproterozoic glaciations. Geol. Soc. Mem. 2011, 36, 51–66. [Google Scholar] [CrossRef]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Grotzinger, J.P.; Fike, D.A.; Fischer, W.W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat. Geosci. 2011, 4, 285–292. [Google Scholar] [CrossRef]
- Catuneanu, O.; Eriksson, P.G. Sequence stratigraphy of the Precambrian. Gondwana Res. 2007, 12, 560–565. [Google Scholar] [CrossRef]
- Shieh, Y.N.; Taylor, H.P. Oxygen and Carbon Isotope Studies of Contact Metamorphism of Carbonate Rocks. J. Petrol. 1969, 10, 307–331. [Google Scholar] [CrossRef]
- Kaufman, A.J.; Knoll, A.H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res. 1995, 73, 27–49. [Google Scholar] [CrossRef]
- Almeida, F.F.M. Provincia Tocantins, Setor Sudoeste. In O Pré-Cambriano do Brasil; Hasui, Y., Ed.; Edgard Blucher: São Paulo, Brazil, 1984; pp. 265–281. [Google Scholar]
- Boggiani, P.C.; Fairchild, T.R.; Coimbra, A.M. O Grupo Corumbá (Neoproterozóico- Cambriano) na Região Central da Serra da Bodoquena (Faixa Paraguai), Mato Grosso do Sul. Rev. Bras. Geociências 1993, 23, 301–305. [Google Scholar] [CrossRef]
- Boggiani, P.C. Análise Estratigráfica da Bacia Corumbá (Neoproterozóico)–Mato Grosso do Sul. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 1998. [Google Scholar]
- Hahn, G.; Hahn, R.; Leonardos, O.H.; Pflug, H.D.; Walde, D.H.G. Körperlich erhaltene Scyphozoen-Reste aus dem Jungpräkambrium Brasiliens. Geol. Palaeontol. 1982, 16, 1–18. [Google Scholar]
- Beurlen, K.; Sommer, F.W. Observações estratigráficas e paleontológicas sobre o Calcário Corumbá. Serv. Graf. Inst. Bras. Geogr. Estat. Rio Jan. 1957, 168, 18. [Google Scholar]
- Adôrno, R.R.; Walde, D.H.G.; Erdtmann, B.D.; Denezine, M.; Cortijo, I.; Do Carmo, D.A.; Giorgioni, M.; Ramos, M.E.A.F.; Fazio, G. First occurrence of Cloudina carinata Cortijo et al., 2010 in South America, Tamengo Formation, Corumbá Group, upper Ediacaran of Midwestern. Estud. Geológicos 2019, 75, 95. [Google Scholar] [CrossRef]
- Adorno, R.R.; do Carmo, D.A.; Germs, G.; Walde, D.H.G.; Denezine, M.; Boggiani, P.C.; e Silva, S.C.S.; Vasconcelos, J.R.; Tobias, T.C.; Guimarães, E.M.; et al. Cloudina lucianoi (Beurlen & Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: Taxonomy, analysis of stratigraphic distribution and biostratigraphy. Precambrian Res. 2017, 301, 19–35. [Google Scholar]
- Almeida, F.F.M. Geologia da Serra da Bodoquena (Mato Grosso), Brasil. Boletim da Divisão de Geologia e Mineralogia. DNPM 1965, 117, 1–96. [Google Scholar]
- Boggiani, P.C.; Alvarenga, C.J.S. Faixa Paraguai. In Geologia do Continente Sul-Americano: Evolução da obra de Fernando Flávio Marques de Almeida Becca; Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R., Brito-Neves, B.B., Eds.; DNPM: Port Moresby, Papua New Guinea, 2004; pp. 113–121. [Google Scholar]
- Babinski, M.; Boggiani, P.C.; Trindade, R.I.F.; Fanning, C.M. Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictites and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana Res. 2013, 23, 988–997. [Google Scholar] [CrossRef]
- Boggiani, P.C. Sedimentação Autigênica Neoproterozóica e Mineralizações Associadas–Um Registro não Uniformitarista; Tese de Livre Dociência, Universidade de São Paulo: São Paulo, Brazil, 2010. [Google Scholar]
- Boggiani, P.C.; Gaucher, C.; Sial, A.N.; Babinski, M.; Simon, C.M.; Riccomini, C.; Ferreira, V.P.; Fairchild, T.R. Chemostratigraphy of the Tamengo Formation (Corumbá Group, Brazil): A contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Res. 2010, 182, 382–401. [Google Scholar] [CrossRef]
- Babinski, M.; Boggiani, P.C.; Fanning, C.M.; Fairchild, T.R.; Simon, C.M.; Sial, A.N. U-Pb Shrimp Geochronology and Isotope Chemostratigraphy (C, O, Sr) of the Tamengo Formation, Southern Paraguay Belt, Brazil. In VI South American Symposium on Isotope Geology; Sociedade Brasileira de Geologia: San Carlos de Bariloche, Argentina, 2008; p. 160. [Google Scholar]
- Parry, L.A.; Boggiani, P.C.; Condon, D.J.; Garwood, R.J.; Leme, J.D.M.; McIlroy, D.; Brasier, M.D.; Trindade, R.; Campanha, G.A.; Pacheco, M.L.; et al. Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nat. Ecol. Evol. 2017, 1, 1455–1464. [Google Scholar] [CrossRef]
- Ramos, M.E.A.F. Sedimentological, Petrographic and geochemical characterization of Ediacaran platform carbonates (Tamengo Formation, Corumbá Group). Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 2019. [Google Scholar]
- Ramos, M.E.A.F.; Giorgioni, M.; Walde, D.H.G.; do Carmo, D.A.; Fazio, G.; Vieira, L.C.; Denezine, M.; VSantos, R.; RAdôrno, R.; Lage Guida, L. New Facies Model and Carbon Isotope Stratigraphy for an Ediacaran Carbonate Platform From South America (Tamengo Formation—Corumbá Group, SW Brazil). Front. Earth Sci. 2022, 10, 749066. [Google Scholar] [CrossRef]
- de Oliveira, R.S.; Nogueira, A.C.R.; Romero, G.R.; Truckenbrodt, W.; da Silva Bandeira, J.C. Ediacaran ramp depositional model of the Tamengo Formation, Brazil. J. S. Am. Earth Sci. 2019, 96, 102348. [Google Scholar] [CrossRef]
- Amorim, K.B.; Afonso, J.W.L.; Leme, J.M.; Diniz, C.Q.C.; Rivera, L.C.M.; Gómez-Gutiérrez, J.C.; Boggiani, P.C.; Trindade, R.I.F. Sedimentary facies, fossil distribution and depositional settingof the late Ediacaran Tamengo Formation (Brazil). Sedimentology 2020, 67, 3422–3450. [Google Scholar] [CrossRef]
- Pacheco, M.L.A.F.; Sanchez, E.A.M.; Soares, L.P.C.M.; Leme, J.M.; Fairchild, T.R. Interferências sobre Paleoambiente e associações paleoecológicas de Corumbella werneri. In Anais do Congresso Brasileiro de Geologia; Sociedade Brasileira de Geologia: Santos, Brazil, 2012. [Google Scholar]
- Pacheco, M.L.F.; Galante, D.; Rodrigues, F.; de MLeme, J.; Bidola, P.; Hagadorn, W.; Stockmar, M.; Herzen, J.; Rudnitzki, I.D.; Pfeiffer, F.; et al. Insights into the Skeletonization, Lifestyle, and Affinity of the Unusual Ediacaran Fossil Corumbella. PLoS ONE 2015, 10, e0114219. [Google Scholar] [CrossRef] [PubMed]
- Van Iten, H.; Marques, A.C.; de Leme, J.M.; Pacheco, M.L.A.F.; Simões, M.G. Origin and early diversification of the phylum Cnidaria Verrill: Major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 2014, 57, 677–690. [Google Scholar] [CrossRef]
- Walde, D.H.G.; Weber, B.; Erdtmann, B.D.; Steiner, M. Taphonomy of Corumbella werneri from the Ediacaran of Brazil: Sinotubulitid tube or conulariid test? Alcheringa: An Australasian. J. Palaeontol. 2019, 43, 335–350. [Google Scholar]
- Walde, D.H.G.; Do Carmo, D.A.; Guimarães, E.M.; Vieira, L.C.; Erdtmann, B.D.; Sanchez, E.A.M.; Adorno, R.R.; Tobias, T.C. New aspects of Neoproterozoic-Cambrian transition in the Corumbá region (state of Mato Grosso do Sul, Brazil). Ann. Paleontol. 2015, 101, 213–224. [Google Scholar] [CrossRef]
- Delgado, F. Primary Textures in Dolostones and Recrystallized Limestones: A Technique for their Microscopic Study. J. Sediment. Res. 1977, 47, 1339–1341. [Google Scholar] [CrossRef]
- Chapman, S.K. Working with a Scanning Electron Microscope; Lodgemark Press: Orpington, UK, 1986. [Google Scholar]
- Jochum, K.P.; Weis, U.; Schwager, B.; Stoll, B.; Wilson, S.A.; Haug, G.H.; Andreae, M.O.; Enzweiler, J. Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials. Geostand. Geoanal. Res. 2016, 40, 333–350. [Google Scholar] [CrossRef]
- Gonçalves, G.O.; Lana, C.; Scholz, R.; Buick, I.S.; Gerdes, A.; Kamo, S.L.; Corfu, F.; Rubatto, D.; Wiedenbeck, M.; Nalini, H.A., Jr.; et al. The Diamantina Monazite: A New Low-Th Reference Material for Microanalysis. Geostand. Geoanal. Res. 2018, 42, 25–47. [Google Scholar] [CrossRef]
- Chew, D.M.; Babechuk, M.G.; Cogné, N.; Mark, C.; O’Sullivan, G.J.; Henrichs, I.A.; Doepke, D.; McKenna, C.A. (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem. Geol. 2016, 435, 35–48. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508. [Google Scholar] [CrossRef]
- Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 1957, 12, 133–149. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, F.Y.; Wilde, S.A.; Liu, X.M.; Zhang, Y.B.; Xie, L.W.; Yang, J.H. In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chem. Geol. 2009, 264, 24–42. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, F.Y.; Li, Y.; Yang, J.H.; Xie, L.W.; Liu, Y.; Zhang, Y.B.; Huang, C. In situ U–Pb dating of bastnaesite by, L.A.-I.C.P.-M.S. J. Anal. At. Spectrom. 2014, 29, 1017–1023. [Google Scholar] [CrossRef]
- DePaolo, D.J.; Ingram, B.L. High-Resolution Stratigraphy with Strontium Isotopes. Science 1985, 227, 938–941. [Google Scholar] [CrossRef] [PubMed]
- El Meknassi, S.; Dera, G.; Cardone, T.; De Rafélis, M.; Brahmi, C.; Chavagnac, V. Sr isotope ratios of modern carbonate shells: Good and bad news for chemostratigraphy. Geology 2018, 46, 1003–1006. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Rasbury, E.T.; Parrish, R.R.; Smith, C.J.; Horstwood, M.S.A.; Condon, D.J. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosystems 2017, 18, 2807–2814. [Google Scholar] [CrossRef]
- Mulder, J.; Hagen-Peter, G.; Ubide, T.; Andreasen, R.; Kooijman, E.; Kielman-Schmitt, M.; Feng, Y.X.; Paul, B.; Karlsson, A.; Tegner, C.; et al. New Reference Materials, Analytical Procedures and Data Reduction Strategies for Sr Isotope Measurements in Geological Materials by LA-MC-ICP-MS. Geostand. Geoanal. Res. 2023, 47, 311–336. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of Carbonate Rocks According to Depositional Textures. In Classification of Carbonate Rocks; Ham, W.E., Ed.; AAPG: Tulsa, OK, USA, 1962; pp. 108–121. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks, 2nd ed.; Munnecke, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1, pp. 1–984. [Google Scholar]
- Tostevin, R.; Wood, R.A.; Shields, G.A.; Poulton, S.W.; Guilbaud, R.; Bowyer, F.; Penny, A.M.; He, T.; Curtis, A.; Hoffmann, K.H.; et al. Low-oxygen waters limited habitable space for early animals. Nat. Commun. 2016, 7, 12818. [Google Scholar] [CrossRef] [PubMed]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- Rasbury, E.T.; Present, T.M.; Northrup, P.; Tappero, R.V.; Lanzirotti, A.; Cole, J.M.; Wooton, K.M.; Hatton, K. Tools for uranium characterization in carbonate samples: Case studies of natural U–Pb geochronology reference materials. Geochronology 2021, 3, 103–122. [Google Scholar] [CrossRef]
- Brand, U.; Veizer, J. Chemical Diagenesis of a Multicomponent Carbonate System -2: Stable Isotopes. SEPM J. Sediment. Res. 1981, 51, 987–997. [Google Scholar]
- Jacobsen, S.B.; Kaufman, A.J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol. 1999, 161, 37–57. [Google Scholar] [CrossRef]
- Kaufman, A.J.; Jacobsen, S.B.; Knoll, A.H. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth Planet Sci. Lett. 1993, 120, 409–430. [Google Scholar] [CrossRef]
- Frimmel, H.E.; Fölling, P.G. Late Vendian Closure of the Adamastor Ocean: Timing of Tectonic Inversion and Syn-orogenic Sedimentation in the Gariep Basin. Gondwana Res. 2004, 7, 685–699. [Google Scholar] [CrossRef]
- Halverson, G.P.; Dudás, F.Ö.; Maloof, A.C.; Bowring, S.A. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 256, 103–129. [Google Scholar] [CrossRef]
- Chang, H.K.; Kawashita, K.; Zaine, M.F. Isotopic Composition of carbonates from late proterozoic sucessions in Brazil and their stratigraphic variation. In Proceedings of the 14th International Sedimentological Congress, Recife, Brazil, 24–25 August 1994. [Google Scholar]
- Sial, A.N.; Boggiani, P.C.; Babinski, M.; Ferreira, M.; Fairchild, T. Negative C-Isotope Anomaly in the Ediacaran Tamengo Formation (Corumbá Group, Southern Paraguay Belt) (Abstract); International Geological Congress: Washington, DC, USA, 2008. [Google Scholar]
- Gomez, G.J.C.; Paula-Santos, G.M.; Borges, A.K.; Guacaneme, C.; Caetano-Filho, S.; Babinski, M.; Trindade, R.I.F.D. C-O-Sr Isotopes in Tamengo Formation (Corumbá Group) at Laginha Mine section, southern Paraguay Belt, Brazil. In 49º Congresso Brasileiro de Geologia; Sociedade Brasileira de Geologia: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Warren, L.V.; Freitas, B.T.; Riccomini, C.; Boggiani, P.C.; Quaglio, F.; Simões, M.G.; Fairchild, T.R.; Giorgioni, M.; Gaucher, C.; Poire, D.G.; et al. Sedimentary evolution and tectonic setting of the Itapucumi Group, Ediacaran, northern Paraguay: From Rodinia break-up to West Gondwana amalgamation. Precambrian Res. 2019, 322, 99–121. [Google Scholar] [CrossRef]
- Babcock, L.E.; Grunow, A.M.; Sadowski, G.R.; Leslie, S.A. Corumbella, an Ediacaran-grade organism from the Late Neoproterozoic of Brazil. Palaeogeogr. Palaeoclim. Palaeoecol. 2005, 220, 7–18. [Google Scholar] [CrossRef]
- Jiang, G.; Kaufman, A.J.; Christie-Blick, N.; Zhang, S.; Wu, H. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci. Lett. 2007, 261, 303–320. [Google Scholar] [CrossRef]
- Knauth, L.P.; Kennedy, M.J. The late Precambrian greening of the Earth. Nature 2009, 460, 728–732. [Google Scholar] [CrossRef]
- Macdonald, F.A.; Strauss, J.V.; Sperling, E.A.; Halverson, G.P.; Narbonne, G.M.; Johnston, D.T.; Kunzmann, M.; Schrag, D.P.; Higgins, J.A. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chem. Geol. 2013, 362, 250–272. [Google Scholar] [CrossRef]
- Husson, J.M.; Higgins, J.A.; Maloof, A.C.; Schoene, B. Ca and Mg isotope constraints on the origin of Earth’s deepest δ13C excursion. Geochim. Cosmochim. Acta 2015, 160, 243–266. [Google Scholar] [CrossRef]
- Caxito, F.A.; Sperling, E.; Fazio, G.; Adorno, R.R.; Denezine, M.; Do Carmo, D.A.; Giorgioni, M.; Uhlein, G.J.; Sial, A.N. A shift in redox conditions near the Ediacaran/Cambrian transition and its possible influence on early animal evolution, Corumbá Group, Brazil. Geosci. Front. 2024, 15, 101810. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; James, N.P. Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. In SEPM Society for Sedimentary Geology; SEPM: Claremore, OK, USA, 2000; Volume 67. [Google Scholar]
- Sholkovitz, E.; Shen, G.T. The incorporation of rare earth elements in modern coral. Geochim. Cosmochim. Acta 1995, 59, 2749–2756. [Google Scholar] [CrossRef]
- Bellanca, A.; Masetti, D.; Neri, R. Rare earth elements in limestone/marlstone couplets from the Albian-Ccnomanian Cismon section (Venetian region, northern Italy)” assessing REE sensitivity to environmental changes. Chem. Geol. 1997, 141, 141–152. [Google Scholar] [CrossRef]
- Zaky, A.H.; Brand, U.; Azmy, K.; Logan, A.; Hooper, R.G.; Svavarsson, J. Rare earth elements of shallow-water articulated brachiopods: A bathymetric sensor. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 461, 178–194. [Google Scholar] [CrossRef]
- Valdés-Vilchis, S.; Sánchez-Beristain, F.; Bernal, J.P.; Juárez-Aguilar, E.A. Rare Earth Elements and Yttrium (REE+Y) patterns in recent Anadara brasiliana shells from Playa Norte, Barra de Cazones (Veracruz, Mexico): Evidence of anthropogenic contamination linked to river output? J. S. Am. Earth Sci. 2021, 110, 103368. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci. Lett. 1996, 143, 245–255. [Google Scholar] [CrossRef]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Frimmel, H.E. On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation. Precambrian Res. 2010, 182, 239–253. [Google Scholar] [CrossRef]
- Madhavaraju, J.; González-León, C.M.; Lee, Y.I.; Armstrong-Altrin, J.S.; Reyes-Campero, L.M. Geochemistry of the Mural Formation (Aptian-Albian) of the Bisbee Group, Northern Sonora, Mexico. Cretac Res. 2010, 31, 400–414. [Google Scholar] [CrossRef]
- Tobias, T.C. Micropaleontologia da Formação Tamengo, Eco Parque Cacimba da Saúde, Ediacarano, Grupo Corumbá, Estado do Mato Grosso do Sul, Brasil. Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 2014. [Google Scholar]
- Staplin, F.L. Determination of Thermal Alteration Index from Color of Exinite (Pollen, Spores); AAPG: Tulsa, OK, USA, 1982. [Google Scholar]
- Piacentini, T.; Vasconcelos, P.M.; Farley, K.A. 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil. Precambrian Res. 2013, 228, 48–62. [Google Scholar] [CrossRef]
- Fazio, G.; Guimarães, E.M.; Walde, D.W.G.; do Carmo, D.A.; Adorno, R.R.; Vieira, L.C.; Denezine, M.; da Silva, C.B.; de Godoy, H.V.; Borges, P.C.; et al. Mineralogical and chemical composition of Ediacaran-Cambrian pelitic rocks of The Tamengo and Guaicurus formations, (Corumbá Group–MS, Brazil): Stratigraphic positioning and paleoenvironmental interpretations. J. S. Am. Earth Sci. 2019, 90, 487–503. [Google Scholar] [CrossRef]
MgO | Al2O3 | SiO2 | K2O | CaO | TiO2 | MnO | FeO | BaO | |
---|---|---|---|---|---|---|---|---|---|
MgO | 1 | 0.49 | −0.49 | 0.03 | −0.12 | −0.07 | 0.21 | 0.67 | −0.06 |
Al2O3 | 0.47 | 1 | −0.90 | 0.53 | 0.10 | 0.16 | −0.02 | 0.30 | 0.23 |
SiO2 | −0.49 | −0.90 | 1 | −0.54 | −0.25 | −0.14 | −0.16 | −0.63 | −0.25 |
K2O | 0.00 | 0.53 | −0.54 | 1 | −0.28 | 0.32 | 0.14 | −0.01 | −0.01 |
CaO | 0.40 | 0.10 | −0.25 | −0.28 | 1 | −0.28 | −0.13 | 0.41 | 0.05 |
TiO2 | −0.09 | 0.16 | −0.14 | 0.32 | −0.28 | 1 | 0.16 | −0.16 | −0.17 |
MnO | 0.31 | −0.02 | −0.16 | 0.14 | −0.13 | 0.16 | 1 | 0.24 | −0.14 |
FeO | 0.66 | 0.30 | −0.63 | −0.01 | 0.41 | −0.16 | 0.24 | 1 | 0.34 |
BaO | −0.02 | 0.23 | −0.25 | −0.01 | 0.05 | −0.17 | −0.14 | 0.34 | 1 |
MgO | CaO | MnO | FeO | |
---|---|---|---|---|
MgO | 1 | 0.2 | 0.7 | −0.3 |
CaO | 0.2 | 1 | 0.01 | −0.4 |
MnO | 0.7 | 0.01 | 1 | −0.3 |
FeO | −0.3 | −0.4 | −0.3 | 1 |
57La | 58Ce | 59Pr | 60Nd | 62Sm | 63Eu | 64Gd | 65Tb | 66Dy | 39Y | 67Ho | 68Er | 69Tm | 70Yb | 71Lu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Matrix | 2.28 | 2.27 | 2.20 | 1.99 | 2.34 | 2.80 | 2.24 | 2.12 | 2.06 | 2.12 | 2.01 | 1.89 | 1.81 | 1.81 | 1.72 |
Exoskeleton | 1.17 | 1.41 | 1.41 | 1.29 | 1.55 | 2.06 | 1.41 | 1.26 | 1.02 | 1.10 | 0.992 | 0.897 | 0.809 | 0.849 | 0.808 |
INDICES | |||||||||||||||
ΣREE | Eu/Eu* | REEL/REEP | REEM | REEP | |||||||||||
Rb/Sr | Mn/Sr | Sr (ppm) | max | min | value | error | Nb/Yb | Pr/Yb | Nd/Dy | Tb/Yb | |||||
Matrix | 0.40 | 1.36 | 2517.30 | 31.78 | 68.76 | 13.40 | 1.20 | 0.079 | 1.04 | 1.16 | 0.947 | 1.08 | |||
Exoskeleton | 0.03 | 0.85 | 2220.62 | 18.03 | 25.39 | 9.69 | 1.39 | 0.101 | 2.05 | 2.21 | 1.31 | 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calmon Almeida, A.V.A.; Giorgioni, M.; Walde, D.H.G.; Do Carmo, D.A.; Gonçalves, G.d.O. Primary and Secondary Geochemical Signals in the Chemical Composition of Exoskeleton of Corumbella werneri (Tamengo Formation, Corumbá Group, Brazil): A Pilot Study. Minerals 2024, 14, 784. https://doi.org/10.3390/min14080784
Calmon Almeida AVA, Giorgioni M, Walde DHG, Do Carmo DA, Gonçalves GdO. Primary and Secondary Geochemical Signals in the Chemical Composition of Exoskeleton of Corumbella werneri (Tamengo Formation, Corumbá Group, Brazil): A Pilot Study. Minerals. 2024; 14(8):784. https://doi.org/10.3390/min14080784
Chicago/Turabian StyleCalmon Almeida, Ana Valéria Alves, Martino Giorgioni, Detlef Hans Gert Walde, Dermeval Aparecido Do Carmo, and Guilherme de Oliveira Gonçalves. 2024. "Primary and Secondary Geochemical Signals in the Chemical Composition of Exoskeleton of Corumbella werneri (Tamengo Formation, Corumbá Group, Brazil): A Pilot Study" Minerals 14, no. 8: 784. https://doi.org/10.3390/min14080784
APA StyleCalmon Almeida, A. V. A., Giorgioni, M., Walde, D. H. G., Do Carmo, D. A., & Gonçalves, G. d. O. (2024). Primary and Secondary Geochemical Signals in the Chemical Composition of Exoskeleton of Corumbella werneri (Tamengo Formation, Corumbá Group, Brazil): A Pilot Study. Minerals, 14(8), 784. https://doi.org/10.3390/min14080784