HRTEM Study of Desulfurization of Pt- and Pd-Rich Sulfides from New Caledonia Ophiolite
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Micron- to Atomic-Scale Characterization of the Pt-Pd O-Bearing PGMs
5. Discussion
5.1. Origin of the Nano-Scale Structure of O-Bearing PGMs
5.2. Stability Conditions for Pt-Pd Sulfide Transformation to Secondary Oxide–Alloy Intergrowths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Driscoll, B.; González-Jiménez, J.M. Petrogenesis of the platinum-group minerals. Rev. Mineral. Geochem. 2016, 81, 489–578. [Google Scholar] [CrossRef]
- Li, C.; Ripley, E.M. Formation of Pt-Fe alloy by desulfurization of Pt-Pd sulfide in the J-M Reef of the Stillwater Complex, Montana. Can. Mineral. 2006, 44, 895–903. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Augé, T.; Gervilla, F.; Bailly, L.; Proenza, J.A.; Griffin, W.L. Mineralogy and geochemistry of platinum-rich chromitites from the mantle-crust transition zone at Ouen Island, New Caledonia Ophiolite. Can. Mineral. 2011, 49, 1549–1569. [Google Scholar] [CrossRef]
- Stepanov, S.Y.; Palamarchuk, R.S.; Kozlov, A.V.; Khanin, D.A.; Varlamov, D.A.; Kiseleva, D.V. Platinum-group minerals of Pt placer deposits associated with the Svetloborsky Ural-Alaskan type Massif, middle Urals, Russia. Minerals 2019, 9, 77. [Google Scholar] [CrossRef]
- Cabri, L.J.; Oberthür, T.; Keays, R.R. Origin and depositional history of platinum-group minerals in placers—A critical review of facts and fiction. Ore Geol. Rev. 2022, 144, 104733. [Google Scholar] [CrossRef]
- Ma, B.; Keays, R.R. Are placer platinum nuggets formed during lateritization? The verdict from the Owendale Alaskan-Uralian Complex in Australia is an emphatic no! Econ. Geol. 2023, 118, 1835–1856. [Google Scholar] [CrossRef]
- Augé, T.; Legendre, O. Platinum-group element oxides from the Pirogues ophiolitic mineralization, New Caledonia: Origin and significance. Econ. Geol. 1994, 89, 1454–1468. [Google Scholar] [CrossRef]
- Shcheka, G.G.; Lehmann, B.; Solianik, A.N. Pd-bearing oxides and hydrated oxides in mertieite-II crystals from alluvial sediments of the Darya River, Aldan Shield, Russia. Mineral. Mag. 2005, 69, 981–994. [Google Scholar] [CrossRef]
- Jedwab, J. Oxygenated platinum-group element and transition metal (Ti, Cr, Mn, Co, Ni) compounds in the supergene domain. Chron. Rech. Min. 1995, 520, 47–53. [Google Scholar]
- Melcher, F.; Oberthür, T.; Lodziak, J. Modification of detrital platinum-group minerals from the eastern Bushveld Complex, South Africa. Can. Mineral. 2005, 43, 1711–1734. [Google Scholar] [CrossRef]
- Oberthür, T. The fate of platinum-group minerals in the exogenic environment—From sulfide ores via oxidized ores into placers: Case studies Bushveld Complex, South Africa, and Great Dyke, Zimbabwe. Minerals 2018, 8, 581. [Google Scholar] [CrossRef]
- Jedwab, J.; Criddle, A.J.; du Ry, P.; Piret, P.; Stanley, C.J. Rediscovery of palladinite (PdO Tetrag.) from Itabira (Minas Gerais, Brazil) and from Ruwe (Shaba, Zaire). In Proceedings of the IAGOD Meeting, Orléans, France, 6 September 1994. [Google Scholar]
- Hattori, K.H.; Takahashi, Y.; Augé, T. Mineralogy and origin of oxygen-bearing platinum-iron grains based on an X-Ray absorption spectroscopy study. Am. Mineral. 2010, 95, 622–630. [Google Scholar] [CrossRef]
- Zaccarini, F.; Bindi, L.; Garuti, G.; Proenza, J.A. Ruthenium and magnetite intergrowths from the Loma Peguera Chromitite, Dominican Republic, and relevance to the debate over the existence of platinum-group element oxides and hydroxides. Can. Mineral. 2014, 52, 617–624. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Galí, S.; Rius, J.; Longo, F.; Domènech, C. The supergene origin of ruthenian hexaferrum in Ni-laterites. Terra Nov. 2017, 29, 106–116. [Google Scholar] [CrossRef]
- Jiménez–Franco, A.; González–Jiménez, J.M.; Roqué, J.; Proenza, J.A.; Gervilla, F.; Nieto, F. Nanoscale constraints on the in-situ transformation of Ru–Os–Ir sulfides to alloys at low temperature. Ore Geol. Rev. 2020, 124, 103640. [Google Scholar] [CrossRef]
- Auzende, J.M.; Van De Beuque, S.; Régnier, M.; Lafoy, Y.; Symonds, P. Origin of the New Caledonian ophiolites based on a French-Australian seismic transect. Mar. Geol. 2000, 162, 225–236. [Google Scholar] [CrossRef]
- Crawford, A.J.; Meffre, S.; Symonds, P.A. 120–0 Ma Tectonic evolution of the southwest Pacific and analogous geological evolution of the 600–220 Ma Tasman Fold Belt System. Geol. Soc. Am. Spec. Pap. 2003, 372, 383–403. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Nicolas, A.; Cassard, D.; Moutte, J.; Leblanc, M.; Paris, J.P.; Rabinovitch, M. Structures in the New Caledonia peridotites-gabbros: Implications for oceanic mantle and crust. Tectonophysics 1980, 69, 85–112. [Google Scholar] [CrossRef]
- Aitchison, J.; Clarke, G.L.; Meffre, S.; Cluzel, D. Eocene arc–continental collision in New Caledonia and implications for regional southwest Pacific tectonic evolution. Geology 1995, 23, 161–164. [Google Scholar] [CrossRef]
- Spandler, C.; Rubatto, D.; Hermann, J. Late Cretaceous—Tertiary tectonics of the southwest Pacific: Insights from U–Pb sensitive, high-resolution ion microprobe (SHRIMP) dating of eclogite facies rocks from New Caledonia. Tectonics 2005, 24, 1–16. [Google Scholar] [CrossRef]
- Collot, J.-Y.; Malahoff, A.; Récy, J.; Latham, G.; Missege, F. Overthurst emplacement of New Caledonia ophiolite: Geophysical evidence. Tectonics 1987, 6, 215–232. [Google Scholar] [CrossRef]
- Cluzel, D.; Bosch, D.; Paquette, J.-L.; Lemennicier, Y.; Montjoie, P.; Ménot, R.-P. Late Oligocene post-obduction granitoids of New Caledonia: A case for reactivated subduction and slab break-off. Isl. Arc 2005, 14, 254–271. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Allègre, C.J. Residual peridotites and the mechanisms of partial melting. Earth Planet. Sci. Lett. 1985, 74, 251–265. [Google Scholar] [CrossRef]
- Moutte, J. Chromite deposits of the Tiébaghi Ultramafic Massif, New Caledonia. Econ. Geol. 1982, 77, 576–591. [Google Scholar] [CrossRef]
- Johan, Z.; Augé, T. Ophiolitic mantle sequences and their evolution: Mineral chemistry constraints. In Metallogeny of the Basic and Ultrabasic Rocks; Gallagher, M.J., Ixer, R.A., Neary, C.R., Prichard, H.M., Eds.; Institute of Mining and Metallurgy: London, UK, 1986; pp. 305–317. [Google Scholar]
- Nicolas, A.; Prinzhofer, A. Cumulative or residual origin for the Transition Zone in Ophiolites: Structural evidence. J. Petrol. 1983, 24, 188–206. [Google Scholar] [CrossRef]
- Augé, T.; Johan, Z. Comparative study of chromite deposits from Troodos, Vourinos, North Oman and New Caledonia Ophiolites. In Mineral Deposits within the European Comunity; Society for Geology Applied to Mineral Deposits Special Publication 6; Boissonnas, J., Omenetto, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 167–288. [Google Scholar]
- Augé, T.; Maurizot, P. Stratiform and alluvial platinum mineralization in the New Caledonia Ophiolite Complex. Can. Mineral. 1995, 33, 1023–1045. [Google Scholar]
- Cano, N.; González-Jiménez, J.M.; Camprubí, A.; Proenza, J.A.; González-Partida, E. Macro-to-nanoscale investigation unlocks gold and silver enrichment by lead-bismuth metallic melts in the Switchback Epithermal Deposit, Southern Mexico. Am. Mineral. 2024, in press. [CrossRef]
- Cano, N.; González-Jiménez, J.M.; Camprubí, A.; Domínguez-Carretero, D.; González-Partida, E.; Proenza, J.A. Nanomaterial accumulation in boiling brines enhances epithermal bonanzas. Sci. Rep. 2023, 13, 14985. [Google Scholar] [CrossRef] [PubMed]
- Locmelis, M.; Melcher, F.; Oberthür, T. Platinum-group element distribution in the oxidized main sulfide zone, Great Dyke, Zimbabwe. Miner. Depos. 2010, 45, 93–109. [Google Scholar] [CrossRef]
- Bayliss, P. Revised unit-cell dimensions, space group, and chemical formula of some metallic minerals. Can. Mineral. 1990, 28, 751–755. [Google Scholar]
- Stockman, H.W.; Hlava, P.F. Platinum-group minerals in Alpine chromitites from southwestern Oregon. Econ. Geol. 1984, 79, 491–508. [Google Scholar] [CrossRef]
- Garuti, G.; Zaccarini, F. In-situ alteration of platinum-group minerals at low temperature; Evidence from serpentinized and weathered chromitite of the Vourinos Complex, Greece. Can. Mineral. 1997, 35, 611–626. [Google Scholar]
- Zaccarini, F.; Garuti, G.; Bakker, R.J.; Pushkarev, E. Electron microprobe and Raman spectroscopy investigation of an Oxygen-bearing Pt-Fe-Pd-Ni-Cu compound from Nurali Chromitite (Southern Urals, Russia). Microsc. Microanal. 2015, 21, 1070–1079. [Google Scholar] [CrossRef]
- Uysal, I.; Zaccarini, F.; Sadiklar, B.; Bernhardt, H.J.; Bigi, S.; Garuti, G. Occurrence of rare Ru-Fe-Os-Ir-oxide and associated platinum-group minerals (PGM) in the chromitite of Mugla Ophiolite, SW-Turkey. Neues Jahrb. Mineral. 2009, 185, 323–333. [Google Scholar] [CrossRef]
- Grieco, G.; Bussolesi, M.; Eslami, A.; Gentile, A.; Cavallo, A.; Lian, D.; Yang, J.; Ghaseminejad, F. Differential platinum group elements (PGE) re-mobilization at low fS2 in Abdasht and Soghan mafic-ultramafic complexes (Southern Iran). Lithos 2020, 366–367, 105523. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.Y.; Yang, S.; Uysal, İ. Hydrothermal origin of platinum-group minerals during serpentinization of the podiform chromitites from the Kızıldağ Ophiolite in Southern Türkiye. Chem. Geol. 2025, 674, 122563. [Google Scholar] [CrossRef]
- Frost, B.R. On the stability of sulfides, oxides, and native metals in serpentinite. J. Petrol. 1985, 26, 31–63. [Google Scholar] [CrossRef]
- Sleep, N.H.; Meibom, A.; Fridriksson, T.; Coleman, R.G.; Bird, D.K. H2-rich fluids from serpentinization: Geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 2004, 101, 12818–12823. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.A.; Powell, R.; Frost, B.R. Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. Lithos 2013, 168–169, 67–84. [Google Scholar] [CrossRef]
- Ulrich, M.; Munoz, M.; Boulvais, P.; Cathelineau, M.; Cluzel, D.; Guillot, S.; Picard, C. Serpentinization of New Caledonia peridotites: From depth to (sub-)surface. Contrib. Mineral. Petrol. 2020, 175, 91. [Google Scholar] [CrossRef]
- Klein, F.; Grozeva, N.G.; Seewald, J.S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl. Acad. Sci. USA 2019, 116, 17666–17672. [Google Scholar] [CrossRef]
- Bach, W.; Paulick, H.; Garrido, C.J.; Ildefonse, B.; Meurer, W.P.; Humphris, S.E. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Putnis, A. Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineral. Mag. 2002, 66, 689–708. [Google Scholar] [CrossRef]
- Evans, K.A.; Frost, B.R.; Reddy, S.M.; Brown, T.C. Causes, effects, and implications of the relationships amongst fluids, serpentinisation, and alloys. Lithos 2023, 446–447, 107132. [Google Scholar] [CrossRef]
- Mungall, J.E.; Andrews, D.R.A.; Cabri, L.J.; Sylvester, P.J.; Tubrett, M. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim. Cosmochim. Acta 2005, 69, 4349–4360. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Reich, M.; Camprubí, A.; Gervilla, F.; Griffin, W.L.; Colás, V.; O’Reilly, S.Y.; Proenza, J.A.; Pearson, N.J.; Centeno-García, E. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contrib. Mineral. Petrol. 2015, 170, 15. [Google Scholar] [CrossRef]
- Evans, K.A.; Reddy, S.M.; Tomkins, A.G.; Crossley, R.J.; Frost, B.R. Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. Lithos 2017, 278–281, 26–42. [Google Scholar] [CrossRef]
- Frost, B.R.; Evans, K.A.; Swapp, S.M.; Beard, J.S.; Mothersole, F.E. The process of serpentinization in dunite from New Caledonia. Lithos 2013, 178, 24–39. [Google Scholar] [CrossRef]
- Foustoukos, D.I.; Bizimis, M.; Frisby, C.; Shirey, S.B. Redox controls on Ni-Fe-PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite. Geochim. Cosmochim. Acta 2015, 150, 11–25. [Google Scholar] [CrossRef]
- Grobéty, B.; Plas, A.; Früg-Green, G. Serpentinization temperature of ocean floor peridotites from the Hess Deep Rift Valley, Pacific Ocean. Terra Nov. 1997, 9, 549. [Google Scholar]
- Nayak, B.; Michael, M. Tetrataenite in terrestrial rock. Am. Mineral. 2015, 100, 209–214. [Google Scholar] [CrossRef]
- Tominaga, M.; Klein, F. Downhole magnetic and physical property logging of serpentinized peridotite and carbonate-altered serpentinite. In Proceedings of the Workshop on Geological Carbon Capture and Storage in Mafic and Ultramafic Rocks, Muscat, Oman, 7–10 January 2011; pp. 8–10. [Google Scholar]
- Rajabzadeh, M.A.; Moosarinasab, Z. Mineralogy and distribution of platinum-group minerals (PGM) and other solid inclusions in the Faryab Ophiolitic Chromitites, Southern Iran. Mineral. Petrol. 2013, 107, 943–962. [Google Scholar] [CrossRef]
- Lima, E.; Fichtnerb, P.F.; Domingues, P.H. Tetrataenite and other Fe–Ni equilibrium phases produced by reduction of nanocrystalline NiFe2O4. Solid State Commun. 2003, 128, 345–350. [Google Scholar] [CrossRef]
- Colás, V.; González-Jiménez, J.M.; Griffin, W.L.; Fanlo, I.; Gervilla, F.; O’Reilly, S.Y.; Pearson, N.J.; Kerestedjian, T.; Proenza, J.A. Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chem. Geol. 2014, 389, 137–152. [Google Scholar] [CrossRef]
- Evans, B.W.; Kuehner, S.M.; Chopelas, A. Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain Complex, N.E. Oregon. Am. Mineral. 2009, 94, 1731–1734. [Google Scholar] [CrossRef]
- Beard, J.S.; Hopkinson, L. A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry. J. Geophys. Res. Solid Earth 2000, 105, 16527–16539. [Google Scholar] [CrossRef]
- Templeton, A.S.; Ellison, E.T.; Glombitza, C.; Morono, Y.; Rempfert, K.R.; Hoehler, T.M.; Zeigler, S.D.; Kraus, E.A.; Spear, J.R.; Nothaft, D.B.; et al. Accessing the subsurface biosphere within rocks undergoing active low-temperature serpentinization in the Samail Ophiolite (Oman Drilling Project). J. Geophys. Res. Biogeosciences 2021, 126, 1–30. [Google Scholar] [CrossRef]
- Gervilla, F.; Padrón-Navarta, J.A.; Kerestedjian, T.; Sergeeva, I.; González-Jiménez, J.M.; Fanlo, I. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane Serpentinite, Eastern Rhodopes, SE Bulgaria: A two-stage process. Contrib. Mineral. Petrol. 2012, 164, 643–657. [Google Scholar] [CrossRef]
- Barra, F.; Gervilla, F.; Hernández, E.; Reich, M.; Padrón-Navarta, J.A.; González-Jiménez, J.M. Alteration patterns of chromian spinels from La Cabaña Peridotite, South-Central Chile. Mineral. Petrol. 2014, 108, 819–836. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Barra, F.; Garrido, L.N.F.; Reich, M.; Satsukawa, T.; Romero, R.; Salazar, E.; Colás, V.; Orellana, F.; Rabbia, O.; et al. A Secondary precious and base metal mineralization in chromitites linked to the development of a Paleozoic accretionary complex in Central Chile. Ore Geol. Rev. 2016, 78, 14–40. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, J.; Zhou, M.; Qi, H. Alteration of chromite during serpentinization of peridotites. Lithos 2023, 460–461, 107385. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano, N.; González-Jiménez, J.M.; Gervilla, F.; Kerestedjian, T.N. HRTEM Study of Desulfurization of Pt- and Pd-Rich Sulfides from New Caledonia Ophiolite. Minerals 2025, 15, 66. https://doi.org/10.3390/min15010066
Cano N, González-Jiménez JM, Gervilla F, Kerestedjian TN. HRTEM Study of Desulfurization of Pt- and Pd-Rich Sulfides from New Caledonia Ophiolite. Minerals. 2025; 15(1):66. https://doi.org/10.3390/min15010066
Chicago/Turabian StyleCano, Néstor, José M. González-Jiménez, Fernando Gervilla, and Thomas N. Kerestedjian. 2025. "HRTEM Study of Desulfurization of Pt- and Pd-Rich Sulfides from New Caledonia Ophiolite" Minerals 15, no. 1: 66. https://doi.org/10.3390/min15010066
APA StyleCano, N., González-Jiménez, J. M., Gervilla, F., & Kerestedjian, T. N. (2025). HRTEM Study of Desulfurization of Pt- and Pd-Rich Sulfides from New Caledonia Ophiolite. Minerals, 15(1), 66. https://doi.org/10.3390/min15010066