Evolution of the Hydrothermal Fluids Inferred from the Occurrence and Isotope Characteristics of the Carbonate Minerals at the Pogo Gold Deposit, Alaska, USA
Abstract
:1. Introduction
2. Geology and Mineralogy
3. Materials and Methods
3.1. Samples
3.2. Analytical Methods
3.2.1. X-Ray Diffraction (XRD) Analysis
3.2.2. Chemical Analysis Methods
3.2.3. Isotope Ratio Mass Spectrometry (IRMS)
3.2.4. Secondary Ion Mass Spectrometry (SIMS)
4. Results
4.1. XRD Analysis
4.2. Chemical Analysis
4.3. IRMS
4.4. SIMS
5. Discussion
5.1. Chemical Analyses and REE Patterns
5.2. SIMS Analysis
5.3. Origin of the Ore-Forming Fluid
5.4. Fluid Evolution in the Pogo Hydrothermal System
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newberry, R.J.; McCoy, D.T.; Brew, D.A. Plutonic-hosted gold ores in Alaska: Igneous versus metamorphic origins. Resour. Geol. Spec. Issue 1995, 18, 57–100. [Google Scholar]
- McCoy, D.M.; Newberry, R.J.; Layer, P.; Dimarchi, J.J.; Bakke, A.; Masterman, J.S.; Minehane, D.L. Plutonic-related gold deposits of interior Alaska. Econ. Geol. 1997, 9, 191–241. [Google Scholar]
- Lang, J.R.; Baker, T.; Hart, C.J.R.; Mortensen, J.K. An exploration model for Intrusion-Related Gold Systems. Soc. Econ. Geol. 2000, 40, 1–15. [Google Scholar] [CrossRef]
- Lang, J.R.; Baker, T. Intrusion-related gold system: The present level of understanding. Miner. Depos. 2001, 36, 477–489. [Google Scholar] [CrossRef]
- Thompson, J.F.H.; Sillitoe, R.H.; Baker, T.; Lang, J.R.; Mortensen, J.K. Intrusion-related gold deposits associated with tungsten-tin provinces. Miner. Depos. 1999, 34, 323–334. [Google Scholar] [CrossRef]
- Smith, M.T.; Thompson, J.F.H.; Bressler, J.; Layer, P.; Mortensen, J.K.; Abe, I.; Takaoka, H. Geology of the Liese zone, Pogo property, east-central Alaska. Soc. Econ. Geol. 1999, 38, 11–21. [Google Scholar] [CrossRef]
- Rhys, D.; DiMarchi, J.; Smith, M.; Friesen, R.; Rombach, C. Structural setting, style and timing of vein-hosted gold mineralization at the Pogo deposit, east central Alaska. Miner. Depos. 2003, 38, 863–874. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, C.; McClelland, W. The Late Cretaceous Donlin Creek gold deposit, southwestern Alaska: Controls on epizonal ore formation. Econ. Geol. 2004, 99, 643–671. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Hart, C.J.R.; Miller, M.L.; Miller, L.D.; Farmer, G.L.; Groves, D. The Tintina gold belt—A global perspective. In The Tintina Gold Belt: Concepts, Exploration and Discoveries; Tucker, T., Smith, M., Eds.; British Columbia and Yukon Chamber of Mines: Vancouver, BC, Canada, 2000; Volume 2, pp. 5–34. [Google Scholar]
- Hart, C.J.R.; Mccoy, D.T.; Goldfarb, R.J.; Smith, M.; Roberts, P.; Hulstein, R.; Bakke, A.A.; Bundtzen, T.K. Geology, Exploration and Discovery in the Tintina Gold Province, Alaska and Yukon. In Integrated Methods for Discovery: Global Exploration in the Twenty-First Century; Society of Economic Geologists: Littleton, CO, USA, 2002; Volume 9, pp. 241–274. [Google Scholar]
- Hart, C.J.R. Mid-Cretaceous Magmatic Evolution and Intrusion-related Metallogeny of the Tintina Gold Province, Yukon and Alaska. Unpublished. Ph.D. Thesis, University of Western Australia, Perth, Australia, 2005. [Google Scholar]
- Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R. Gold deposits in metamorphic belts; Overview of current understanding, outstanding problems, future research, and exploration significance. Econ. Geol. 2003, 98, 1–29. [Google Scholar]
- Northern Star Resources Ltd. Annual Report 2024. Available online: https://www.nsrltd.com/media/kmlbwkzn/2-2024-annual-report-double-page-22-08-2024.pdf (accessed on 18 November 2024).
- Morishita, Y. Calcite as a tracer of ore-forming hydrothermal fluids: Carbon and oxygen isotopic evidence. In Calcite Formation, Properties and Applications; Dobrev, J., Markovic, P., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 1–36. [Google Scholar]
- Deditius, A.P.; Utsunomiya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Becker, U.; Kesler, S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Cabri, L.J.; McMahon, G. SIMS analysis of sulfide minerals for Pt and Au: Methodology and relative sensitivity factors (RSF). Can. Mineral. 1995, 33, 349–359. [Google Scholar]
- Chryssoulis, S.L.; Weisener, C.G. Secondary ion mass spectrometry relative sensitivity factors for Ru, Rb, Pb, Ag, Os, Ir, Pt and Au in sulfide minerals. In Secondary Ion Mass Spectrometry: SIMS X; Benninghoven, A., Hagenhoff, B., Werner, H.W., Eds.; John Wiley & Sons: New York, NY, USA, 1997; pp. 983–986. [Google Scholar]
- Larocque, A.C.L.; Cabri, L.J. Ion-microprobe quantification of precious metals in sulfide minerals. Rev. Econ. Geol. 1998, 7, 155–167. [Google Scholar]
- Chouinard, A.; Paquette, J.; Williams-Jones, A.E. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. Can. Mineral. 2005, 43, 951–963. [Google Scholar] [CrossRef]
- Morishita, Y.; Hammond, N.Q. Sub-microscopic gold from the Kalahari Goldridge deposit, Kraaipan Greenstone belt, South Africa. In Digging Deeper, Proceedings of the ninth Biennial SGA Meeting; Andrew, C.J., Ed.; Irish Association for Economic Geology: Dublin, Ireland, 2007; Volume 2, pp. 1019–1022. [Google Scholar]
- Morishita, Y.; Shimada, N.; Shimada, K. Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geol. Rev. 2018, 95, 79–93. [Google Scholar] [CrossRef]
- Morishita, Y.; Hammond, N.Q.; Momii, K.; Konagaya, R.; Sano, Y.; Takahata, N.; Ueno, H. Invisible gold in pyrite from epithermal, banded-iron-formation-hosted, and sedimentary gold deposits: Evidence of hydrothermal influence. Minerals 2019, 9, 447. [Google Scholar] [CrossRef]
- Baker, T.; Pollard, P.J.; Mustard, R.; Mark, G.; Graham, J.L. A comparison of granite-related tin, tungsten, and gold-bismuth deposits: Implications for exploration. Soc. Econ. Geol. 2005, 61, 5–17. [Google Scholar] [CrossRef]
- Larimer, D.; Uesugi, J.; Puchlik, K.; Fukuda, E. Discovery of Deep Ore Body of the pogo Deposit. Resour. Geol. 2013, 63, 91–104. [Google Scholar]
- Selby, D.; Creaser, R.A.; Hart, C.J.R.; Rombach, C.S.; Thompson, J.F.H.; Smith, M.T.; Bakke, A.A.; Goldfarb, R.J. Absolute timing of sulphide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina gold belt, Alaska. Geology 2002, 30, 791–794. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two constrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Ishihara, S. The magnetite-series and ilmenite-series granitic rocks. Min. Geol. 1977, 27, 293–305. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 2nd ed.; Longman Group UK Limited: Essex, UK, 1992; 696p. [Google Scholar]
- McCrea, J.M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 1950, 18, 49–857. [Google Scholar] [CrossRef]
- Wada, H.; Niitsuma, N.; Saito, T. Carbon and oxygen isotopic measurements of ultra-small samples. Geosci. Rep. Shizuoka Univ. 1982, 7, 35–50, (In Japanese with English Abstract). [Google Scholar]
- Friedman, I.; O’Neil, R. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest; USGS Professional Paper 440-KK; USGS: Reston, VA, USA, 1977.
- Coplen, T.B.; Kendall, C.; Hopple, J. Comparison of stable isotope reference samples. Nature 1983, 302, 236–238. [Google Scholar] [CrossRef]
- Swart, P.K.; Burns, S.J.; Lede, J.J. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. 1991, 86, 89–96. [Google Scholar] [CrossRef]
- Rosenbaum, J.; Sheppard, S.M.F. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Acta 1986, 50, 1147–1150. [Google Scholar] [CrossRef]
- Morishita, Y.; Matsuhisa, Y. Measurement of carbon and oxygen isotope ratios of carbonate reference samples. Bull. Geol. Surv. Jpn. 1984, 35, 69–79, (In Japanese with English Abstract). [Google Scholar]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Garcia, N.; Londoño, A.; Rodriguez, L.; Rojas, N.; Calvache, M. The chemistry of fumarolic vapor and termal-spring discharges from the Nevado del Ruiz volcanic-magmatic-hydrothermal system, Colombia. J. Volcanol. Geother. Res. 1990, 42, 13–29. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 2000GC000109. [Google Scholar] [CrossRef]
- Takaoka, H.; Abe, I.; Murakami, T. Discovery of gold deposits at Pogo in the Stone Boy area of Alaska. Resour. Geol. 1999, 49, 125–145, (In Japanese with English Abstract). [Google Scholar]
- Rombach, C.S.; Newberry, R.J.; Goldfarb, R.J.; Smith, M. Geochronology and mineralization of the Liese zones, Pogo deposit, Alaska. Geol. Soc. Am. Abstr. 2002, 34, A114. [Google Scholar]
- Morishita, Y.; Nakano, T. Role of basement in epithermal deposits: The Kushikino and Hishikari gold deposits, southwestern Japan. Ore Geol. Rev. 2008, 34, 597–609. [Google Scholar] [CrossRef]
- Morishita, Y.; Yabe, Y. Genesis and evolution of hydrothermal fluids in the formation of the high-grade Hishikari gold deposit: Carbon, oxygen, and sulfur isotopic evidence. Minerals 2022, 12, 1595. [Google Scholar] [CrossRef]
- Zheng, Y.-F. On the theoretical calculations of oxygen isotope fractionation factors for carbonate-water systems. Geochem. J. 2011, 45, 341–354. [Google Scholar] [CrossRef]
- Mumin, A.H.; Fleet, M.E.; Longstaffe, F.J. Evolution of hydrothermal fluids in the Ashanti gold belt, Ghana: Stable isotope geochemistry of carbonates, graphite, and quartz. Econ. Geol. 1996, 91, 135–148. [Google Scholar] [CrossRef]
- Golyshev, S.I.; Padalko, N.L.; Pechenkin, S.A. Fractionation of stable oxygen and carbon isotopes in carbonate systems. Geochem. Int. 1981, 18, 85–99. [Google Scholar]
- Sheppard, S.M.F. Characterization and isotope variations in naturel waters. Rev. Mineral. 1986, 16, 165–183. [Google Scholar]
- Taylor, H.P., Jr. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1997; pp. 229–302. [Google Scholar]
- Mattey, D.P.; Carr, R.H.; Wright, I.P.; Pillinger, C.T. Carbon isotopes in submarine basalts. Earth Planet. Sci. Lett. 1984, 70, 196–206. [Google Scholar]
- Deines, P. The carbon and oxygen isotopic composition of carbonates from the Oka carbonatite complex, Quebec, Canada. Geochim. Cosmochim. Acta 1970, 34, 1199–1225. [Google Scholar] [CrossRef]
- Morishita, Y. Fluid evolution and geobarometry on the Ohtani and Kaneuchi tungsten-quartz vein deposits, Japan: Oxygen and carbon isotopic evidence. Mineral. Depos. 1991, 26, 40–50. [Google Scholar] [CrossRef]
- Teck Cominco. Post-Mining Groundwater Chemistry, Pogo Mine, Alaska; Water Management Plan Appendix, K; Teck Cominco: Vancouver, BC, Canada, 2002. [Google Scholar]
- Kroopnick, P. Correlations between 13C and SCO2 in surface waters and atmospheric CO2. Earth Planet. Sci. Lett. 1974, 22, 397–403. [Google Scholar] [CrossRef]
- Kroopnick, P. The distribution of 13C of SCO2 in the world oceans. Deep Sea Res. Part A Oceanogr. Res. Pap. 1985, 32, 57–84. [Google Scholar] [CrossRef]
- Galbraith, E.D.; Kwon, E.Y.; Bianchi, D.; Hain, M.P.; Sarmiento, J.L. The impact of atmospheric pCO2 on carbon isotope ratios of the atmosphere and ocean. Glob. Biogeochem. Cycles AGU 2015, 29, 307–324. [Google Scholar] [CrossRef]
- McCoy, D.M.; Olson, I. Fluid Inclusions and Mineral Equilibria: Implications for P-T-X Conditions and Deposit Type; Stone Boy Project Annual Report, Appendix 1.1; WGM Inc.: Missoula, MT, USA, 1997. [Google Scholar]
- Kuetera, N.; Schmidta, M.W.; Lilley, M.D.; Bernasconi, S.M. Experimental determination of equilibrium CH4–CO2-CO carbon isotope fractionation factors (300–1200 °C). Earth Planet. Sci. Lett. 2019, 506, 64–75. [Google Scholar]
- Bottinga, Y. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor. Geochim. Cosmochim. Acta 1969, 33, 49–64. [Google Scholar] [CrossRef]
- Horita, J. Carbon isotope exchange in the system CO2–CH4 at elevated temperatures. Geochim. Cosmochim. Acta 2001, 65, 1907–1919. [Google Scholar] [CrossRef]
No. | Sample Name | Cal | Ank | Sid | Vein or Area, Location (or Drill Depth), Description | Coordinate | δ13C of | |||
---|---|---|---|---|---|---|---|---|---|---|
X | Y | Z | REE | Graphite | ||||||
1 | 2011032201 | L1 Blk 10, 1760C6E, graphite schist | 1813630 | 3820717 | 1777 | ● | ● | |||
2 | 2011032202 | ● | L1 Blk 10, 1760C6E, qtz vein with ankerite and sulfide | 1813630 | 3820717 | 1777 | ||||
3 | 2011032205 | ● | L1 Blk 08, 1558C9W, qtz vein with ankerite and sulfide | 1811272 | 3820623 | 1579 | ||||
4 | 2012080709 | ● | East Deep, 1300EXP, qtz vein with calcite and sulfide | 1814935 | 3821196 | 1257 | ||||
5 | 2012080711 | ● | ○ | North Zone, NZ02-1331, carbonate dissemination in altered intrusive | 1812013 | 3822688 | 1318 | |||
6 | 2012081001 | ● | ○ | New Portal Bench, carbonate vein in weathered diorite (ground) | 1814453 | 3821485 | 2090 | |||
7 | 2012081003 | ● | North Zone, drill core 12-685, 635′, qtz–ank vein | 1814677 | 3823024 | 2081 | ● | |||
8 | 2012081004 | ● | Drill core 12u130, 305.5′, thin qtz–cal vein with sulfide | 1811122 | 3821419 | 887 | ||||
9 | 2012081005 | ● | North Zone, drill core 12-685, 697′, qtz vein with calcite and sulfide | 1814670 | 3823017 | 2020 | ||||
10 | 2012081006 | ● | North Zone, drill core 12-598, (Loc 4021), 66′, calcite dissemination in altered rock | 1823121 | 3814731 | 3108 | ● | |||
11 | 2012081011 | ● | L1, Ankerite dissemination in altered intrusive | 1811995 | 3822640 | 1318 | ||||
12 | 2012081108 | ● | L1 BLK10, 1320, S3, qtz vein with ankerite and sulfide | 1812948 | 3821164 | 1336 | ● | |||
13 | 2014081806 | X-Vein, North Zone, graphite schist with pyrite crystal | 1812801 | 3822967 | 895 | ● | ● | |||
14 | 2014082206 | ● | East Deep, 1020Cut#2E, E1, qtz vein with calcite and sulfide | 1815072 | 3821642 | 1050 | ||||
15 | 2014082207 | ● | Estimated L1 extension, qtz–cal vein (ground) | 1818057 | 3817256 | 822 | ||||
16 | 2014082208 | ● | ○ | 40 cm above 2014082207, qtz–cal vein (ground) | 1818057 | 3817256 | 822 | |||
17 | 2014082210 | ○ | ● | Estimated L1 extension, qtz vein with brown carbonate (ground) | 1818057 | 3817256 | 822 | |||
18 | 2014082211 | ● | ○ | Estimated L1 extension, qtz–cal vein (ground) | 1818057 | 3817256 | 822 | |||
19 | 2014082212 | ● | ○ | Estimated L1 extension, carbonate veinlet (ground) | 1818057 | 3817256 | 822 | |||
20 | 2014082213 | ● | Estimated L1 extension, just below 2014082207, qtz–cal vein (ground) | 1818057 | 3817256 | 822 | ||||
21 | 2014082215 | ● | Qtz–Cal vein (ground) | 1816789 | 3818489 | 822 | ||||
22 | 2014082216 | ● | Qtz–Cal vein with sulfide (ground) | 1816789 | 3818489 | 822 | ||||
23 | 2014082304-2 | Burn, fracture-filling qtz vein with arsenopyrite and visible Au | 1802710 | 3818930 | 511 | ● | ||||
24 | M000002a | ● | Hill 4021 prospecting area, drill core 13-610, qtz–cal vein in altered diorite | 1823453 | 3815885 | 2807 | ● | |||
25 | M000004a | ● | Hill 4021 prospecting area, drill core 13-610, qtz–cal vein in altered diorite | 1823445 | 3815896 | 2784 | ||||
26 | M000013 | ● | East Deep East, drill core 13-678, calcite dissemination in EDE | 1817768 | 3820455 | 155 | ||||
27 | M000015a | ● | South Pogo, drill core 13-759, qtz–cal vein | 1814301 | 3819357 | 1745 | ||||
28 | M000034a | ● | NZ03, drill core 13EXP007, qtz–cal vein between NZ04-NZ03 | 1812626 | 3823140 | 134 | ● | |||
29 | M000068c | ● | L1 NorthWest, drill core 12-691, qtz–sid vein with sulfide | 1808261 | 3822132 | 101 | ||||
30 | 10DL007A | ● | East Deep East, 10-507, 841′, cal vein | 1817712 | 3821658 | 1395 | ||||
31 | 10DL007B | ● | ● | East Deep East, 10-507, 841′, qtz–cal–ank vein | 1817712 | 3821658 | 1395 | |||
32 | 10DL008 | ● | East Deep, 10-508, 560′, crystalline calcite with rhodochrosite in a drusy cavity | 1815203 | 3821563 | 1442 | ||||
33 | 10DL012A | ● | L1, 10-517, 371′, cal vein | 1809548 | 3822370 | 1475 | ||||
34 | 10DL012B | ● | ● | L1, 10-517, 371’, cal–ank vein | 1809548 | 3822370 | 1475 | |||
35 | 11DL011A | ● | ● | Under the L1, 10u129, 108’, qtz–cal–ank vein with muscovite | 1811935 | 3822586 | 1019 | |||
36 | 11DL011B | ● | Under the L1, 10u129, 108′, qtz–ank vein | 1811935 | 3822586 | 1019 | ||||
37 | 11DL011DOS | ● | Under the L1, 10u129, 108′, qtz–ank vein with DOS alterataion | 1811935 | 3822586 | 1019 | ||||
38 | 11DL012A | ● | ● | Under the L1, 10u129, 144′, cal–ank vein | 1811935 | 3822596 | 1168 | |||
39 | 11DL012B | ● | ● | Under the L1, 10u129, 144′, qtz–cal–ank vein | 1811935 | 3822596 | 1168 | |||
40 | 11DL012C | ● | ● | Under the L1, 10u129, 144′, cal–ank vein | 1811935 | 3822596 | 1168 | |||
41 | 11DL025 | ● | Under the L3, 11u133, 120′, qtz–cal vein | 1812390 | 3820875 | -92 | ||||
42 | 11DL028 | ● | ● | Above the ED01, 11-573, 528′, qtz–cal–ank vein | 1815763 | 3823111 | 1404 | |||
43 | 11-584A | ● | East Deep area, 11-584, 980′, qtz–sid vein with chlorite and sulfide | 1816137 | 3822155 | 1644 | ||||
44 | 11-584B | ● | East Deep area, 11-584, 548′, qtz–cal vein | 1816140 | 3822098 | 2109 | ||||
45 | 11-584C | ● | East Deep area, 11-584, 430′, qtz–ank vein with sulfide | 1816141 | 3822081 | 2240 | ||||
46 | 11-584D | ● | East Deep area, 11-584, 430′, cal vein | 1816141 | 3822081 | 2240 | ||||
47 | 11u201A | ● | ● | Between L1 and NZ02, 11u201, 60′, qtz–cal–ank vein | 1811795 | 3823003 | 1038 | |||
48 | 14-716_278.2ft | ○ | ● | Qtz–Sid vein | 1813519 | 3818448 | 2226 | |||
49 | 14-742_474.6ft | ● | SP-1a, qtz–ank vein with sulfide | 1813107 | 3818234 | 1850 | ||||
50 | 14-742_1027.2ft | ● | SP-1b, qtz–cal vein | 1813145 | 3818381 | 1319 | ||||
51 | 14-752_1188.6ft | ● | SP-1b, qtz–sid vein with muscovite | 1812047 | 3817786 | 1252 | ● | |||
52 | 14-765_589.9ft | ● | SP-1a, qtz–sid vein with sulfide | 1811963 | 3818573 | 1566 | ||||
53 | 14-765_824.3ft | ● | SP-1b, qtz–sid vein with sulfide | 1812030 | 3818527 | 1346 | ||||
54 | 14-771_876.1ft | ● | SP-1b?, qtz–cal vein | 1811607 | 3818969 | 1488 | ||||
55 | 14-773_875.8ft | ● | SP-1a?, qtz–ank vein with sulfide | 1811862 | 3819396 | 1455 | ||||
56 | 14-795_1242.8ft | ● | X-Vein, qtz–cal vein | 1812263 | 3823758 | 1132 | ● | |||
57 | 14-795_1434.4ft | ● | NZ04, qtz–ank vein with sericite | 1812186 | 3823706 | 964 | ||||
58 | 14-805_857.1ft | ● | X-Vein, qtz–cal vein | 1811981 | 3823809 | 1420 | ||||
59 | 14-805_1008.9ft | ● | NZ04, Qtz vein with calcite and sulfide | 1811980 | 3823808 | 1419 | ||||
60 | 14-805_1020ft | ● | NZ04, qtz–cal vein | 1811894 | 3823760 | 1292 | ||||
61 | 15-882_316.5 | ● | Star, Silicified rock with calcite | 1819343 | 3812334 | 2633 | ||||
62 | 15-882_833.5 | ● | Star, qtz–cal vein | 1819148 | 3812519 | 2192 | ||||
63 | 15-884_500.5 | ● | Star, qtz–cal vein | 1819394 | 3811999 | 2469 | ||||
64 | 15-896_2500.4 | ● | East Deep, qtz–ank vein with sericite and sulfide | 1814790 | 3823129 | 487 | ||||
65 | 15-896_2581.3 | ● | East Deep, qtz–cal vein | 1814801 | 3823084 | 420 | ||||
66 | 15-900_156 | ● | East Deep, qtz–cal vein | 1814985 | 3825571 | 2426 | ||||
67 | 15-900_1116.8 | ● | East Deep, qtz–cal vein | 1814639 | 3825093 | 1670 | ||||
68 | 15-901_2500 | ● | East Deep, qtz–ank vein in altered host rock | 1814636 | 3822901 | 615 | ||||
69 | 15-926_1388 | ● | SP-1a, South Pogo, qtz–cal vein with disseminated sulfide | 1814092 | 3819327 | 1334 | ||||
70 | 15-926_1396 | ● | SP-1a, South Pogo, qtz–ank vein in altered host rock | 1814093 | 3819328 | 1326 | ||||
71 | 15-949_833.5 | ● | Northern extension of the Liese Zone, qtz–cal vein in altered host rock | 1810795 | 3822859 | 963 | ||||
72 | 15-949_988.4 | ● | Northern extension of the Liese Zone, qtz–ank vein in altered host rock | 1810696 | 3822866 | 844 | ||||
73 | 15EXP008_1177 | ● | ● | Liese Zone, qtz–cal–ank vein in alterd host rock | 1812500 | 3821393 | 464 | |||
74 | 15EXP043_389.7 | ● | East Deep, qtz–ank vein | 1813646 | 3822714 | 404 | ||||
75 | 15EXP043_582.9 | ● | East Deep, qtz–cal vein | 1813773 | 3822786 | 278 | ||||
76 | 555_stope access_X-Vein | ● | X-Vein, North Zone, qtz–ank vein | 1812723 | 3822854 | 544 |
Sample Name | Ca | Fe | Mg | Mn | Au | Minerals Other than Carbonates |
---|---|---|---|---|---|---|
wt % | wt % | wt % | wt % | ppb | ||
2014082207 | 29.60 | 0.86 | 0.43 | 0.43 | 8 | Qtz |
M000002a | 24.00 | 1.88 | 0.83 | 0.00 | 35 | Qtz |
10DL007A | 38.13 | 0.46 | 0.22 | 0.28 | 13 | Qtz |
10DL008 | 36.56 | 1.21 | 0.17 | 2.17 | <2 | Qtz, Rho |
11DL025 | 29.90 | 0.36 | 0.18 | 0.39 | 7 | Qtz |
11-584A | 0.29 | 42.21 | 1.54 | 2.55 | 373 | Qtz, Chl, Sulfide |
11-584B | 35.93 | 0.30 | 0.16 | 0.49 | 425 | Qtz |
11-584C | 18.48 | 10.23 | 6.39 | 0.42 | <2 | Qtz |
11-584D | 37.90 | 0.42 | 0.17 | 0.70 | <2 | Qtz |
14-765_589.9 | 0.40 | 27.80 | 1.18 | 0.75 | 4670 | Qtz, Sulfide |
14-765_824.3 | 0.52 | 26.20 | 2.05 | 2.11 | 503 | Qtz, Sulfide |
14-795_1434.4 | 6.31 | 5.99 | 2.66 | 0.11 | 503 | Qtz, Ser |
15-896_2500.4 | 10.60 | 17.40 | 3.43 | 0.81 | 154 | Qtz, Ser, Sulfide |
Pogo Deposit | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Au |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppb | |
2011032201 | 43.3 | 79.4 | 10.2 | 33.7 | 5.5 | 0.91 | 4.8 | 0.6 | 3.3 | 0.6 | 1.4 | 0.2 | 0.7 | 0.1 | 32 |
2012081003 | 50.9 | 101 | 12.1 | 41.7 | 7.6 | 1.83 | 7.1 | 1 | 5.9 | 1.1 | 2.8 | 0.4 | 2.3 | 0.4 | 167 |
2012081006 | 60.3 | 115 | 14.2 | 50.2 | 9.3 | 1.84 | 8.5 | 1.1 | 6 | 1.1 | 2.7 | 0.4 | 1.9 | 0.3 | <2 |
2012081108 | 48.2 | 94.7 | 11.1 | 38.2 | 6.4 | 1.53 | 6 | 0.8 | 4.7 | 0.9 | 2.5 | 0.4 | 2 | 0.3 | 31 |
M000002a | 14.2 | 28.3 | 3.5 | 14.3 | 3.1 | 0.79 | 3.8 | 0.6 | 4 | 0.9 | 2.6 | 0.4 | 2.1 | 0.4 | 35 |
M000034a | 56 | 110 | 13.5 | 47 | 9 | 1.95 | 8.4 | 1.1 | 5.9 | 1 | 2.2 | 0.3 | 1.6 | 0.2 | 115 |
M000068c | 7 | 14.6 | 1.7 | 6 | 1.3 | 0.75 | 1.5 | 0.2 | 1.8 | 0.4 | 1.4 | 0.3 | 1.7 | 0.3 | 64 |
11-584A | 10.6 | 20.2 | 2.3 | 8.2 | 1.7 | 1 | 2 | 0.3 | 2.4 | 0.5 | 1.5 | 0.3 | 1.7 | 0.3 | 373 |
14-752_1188.6ft | 52.3 | 101 | 11.9 | 40.8 | 6.9 | 1.21 | 5.8 | 0.7 | 3.5 | 0.5 | 1.2 | 0.1 | 0.8 | 0.1 | 30 |
14-795_1242.8ft | 40.4 | 78.5 | 9.3 | 32.7 | 5.9 | 1.35 | 5.6 | 0.7 | 3.9 | 0.7 | 1.6 | 0.2 | 1 | 0.1 | 102 |
2014081806 | 48.6 | 104 | 13.8 | 48 | 8.3 | 1.49 | 7.4 | 0.9 | 4.9 | 0.8 | 1.8 | 0.2 | 0.9 | 0.1 | 77 |
Burn | |||||||||||||||
2014082304 | 8.8 | 14.7 | 1.5 | 4.6 | 0.9 | 1.24 | 1 | 0.1 | 1 | 0.2 | 0.7 | 0.1 | 1 | 0.2 | >30,000 |
Sample Name | Description | δ13CPDB | δ18OSMOW |
---|---|---|---|
2012080709 | Qtz vein with calcite and sulfide | −1.5 | −5.3 |
2012081001 | Carbonate vein in weathered diorite (ground) | −1.5 | −3.2 |
2012081004 | Thin qtz–cal vein with sulfide | −2.1 | −2.8 |
2012081005 | Qtz vein with calcite and sulfide | −0.8 | −4.6 |
2012081006 | Calcite dissemination in altered rock | −2.2 | −2.6 |
2014082206 | Qtz vein with calcite and sulfide | −0.2 | −2.0 |
2014082207 | Qtz–Cal vein (ground) | 0.0 | −2.3 |
2014082208 | Qtz–Cal vein (ground) | −0.2 | −2.1 |
2014082211 | Qtz–Cal vein (ground) | −0.1 | −1.8 |
2014082212 | Carbonate veinlet (ground) | −0.3 | −0.2 |
2014082213 | Qtz–Cal vein (ground) | 0.1 | −2.3 |
2014082215 | Qtz–Cal vein (ground) | −0.9 | −0.2 |
2014082216 | Qtz–Cal vein with sulfide (ground) | −3.3 | 2.9 |
M000002a | Qtz–Cal vein in altered diorite | −2.1 | −2.2 |
M000004a | Qtz–Cal vein in altered diorite | −2.4 | −1.5 |
M000013 | Calcite dissemination | −0.9 | −2.9 |
M000015a | Qtz–Cal vein | −1.3 | −0.7 |
M000034a | Qtz–Cal vein | −1.0 | −0.3 |
10DL007A * | Cal vein | −0.7 | −5.4 |
10DL007B * | Qtz–Cal–Ank vein | −0.5 | −3.2 |
10DL008 * | Crystalline calcite in a drusy cavity | 1.4 | 2.8 |
10DL012A * | Cal vein | −1.1 | −0.9 |
10DL012B * | Cal–Ank vein | −1.3 | 0.9 |
11DL011A * | Qtz–Cal–Ank vein with muscovite | −1.8 | 6.4 |
11DL012A * | Cal–Ank vein | −1.5 | −2.6 |
11DL012B * | Qtz–Cal–Ank vein | −1.7 | −0.4 |
11DL012C * | Cal–Ank vein | −1.3 | −2.8 |
11DL025 * | Qtz–Cal vein | −1.1 | −4.2 |
11DL028 * | Qtz–Cal–Ank vein | −1.0 | −2.7 |
11-584B * | Qtz–Cal vein | −0.6 | −5.0 |
11-584D * | Cal vein | −0.8 | −3.6 |
11u201A * | Qtz–Cal–Ank vein | −3.4 | 9.3 |
14-742_1027.2ft | Qtz–Cal vein | −1.3 | −3.2 |
14-771_876.1ft | Qtz–Cal vein | −1.6 | −3.1 |
14-795_1242.8ft | Qtz–Cal vein | −0.7 | 1.8 |
14-805_857.1ft | Qtz–Cal vein | −0.6 | −2.8 |
14-805_1008.9ft | Qtz vein with calcite and sulfide | −1.7 | 12.5 |
14-805_1020ft | Qtz–Cal vein | −1.5 | 6.1 |
15-882_316.5 | Silicified rock with calcite | −2.5 | 6.9 |
15-882_833.5 | Qtz–Cal vein | −1.3 | −1.8 |
15-884_500.5 | Qtz–Cal vein | −0.3 | −0.4 |
15-896_2581.3 | Qtz–Cal vein | −1.7 | −5.6 |
15-900_156 | Qtz–Cal vein | −0.8 | −3.3 |
15-900_1116.8 | Qtz–Cal vein | −0.7 | 0.0 |
15-926_1388 | Qtz–Cal vein with disseminated sulfide | −0.9 | −2.4 |
15-949_833.5 | Qtz–Cal vein in altered host rock | −1.3 | −1.8 |
15EXP008_1177 | Qtz–Cal–Ank vein in alterd host rock | −1.7 | −2.1 |
15EXP043_582.9 | Qtz–Cal vein | −1.3 | −4.2 |
Sample Name | Description | δ13CPDB | δ18OSMOW |
---|---|---|---|
2011032202 | Qtz vein with ankerite and sulfide | 0.2 | 5.6 |
2011032205 | Qtz vein with ankerite and sulfide | 0.6 | 6.1 |
2012080711 | Carbonate dissemination in altered intrusive | −2.9 | 4.5 |
2012081003a | 12-685, 635′, qtz–ank vein | −1.8 | −1.9 |
2012081011b | Ankerite dissemination in altered intrusive | −3.8 | 8.8 |
2012081108a | Qtz vein with ankerite and sulfide | −2.6 | 7.6 |
2014082210b | Qtz vein with brown carbonate | 0.1 | 2.7 |
10DL007B * | Qtz–Cal–Ank vein | 0.2 | −3.7 |
10DL012B * | Cal–Ank vein | −0.9 | 1.9 |
11DL011A * | Qtz–Cal–Ank vein with muscovite | −1.8 | 7.3 |
11DL011B * | Qtz–Ank vein | −1.7 | −2.1 |
11DL011DOS * | Qtz–Ank vein with DOS alteration | −1.5 | 0.1 |
11DL012A * | Cal–Ank vein | −0.9 | −4.5 |
11DL012B * | Qtz–Cal–Ank vein | −1.6 | −1.3 |
11DL012C * | Cal–Ank vein | −0.6 | −4.9 |
11DL028 * | Qtz–Cal–Ank vein | −1.2 | −3.4 |
11-584C * | Qtz–Ank vein | −1.3 | 11.1 |
11u201A * | Qtz–Cal–Ank vein | −4.0 | 10.5 |
14-742_474.6ft | Qtz–Ank vein with sulfide | −3.2 | 10.9 |
14-773_875.8ft | Qtz–Ank vein with sulfide | −2.8 | 10.9 |
14-795_1434.4ft | Qtz–Ank vein with sericite | −2.3 | 12.5 |
15-896_2500.4 | Qtz–Ank vein with sericite and sulfide | −2.0 | 12.7 |
15-901_2500 | Qtz–Ank vein in altered host rock | −2.0 | −2.5 |
15-926_1396 | Qtz–Ank vein in altered host rock | −0.1 | 1.9 |
15-949_988.4 | Qtz–Ank vein in altered host rock | −2.0 | 1.8 |
15EXP008_1177 | Qtz–Cal–Ank vein in altered host rock | −1.5 | −3.7 |
15EXP043_389.7 | Qtz–Ank vein | −1.8 | −3.7 |
555_stope access_X-Vein | Qtz–Ank vein | −2.7 | 6.7 |
Sample Name | Description | δ13CPDB | δ18OSMOW |
---|---|---|---|
M000068c | Qtz–Sid vein with sulfide | −4.5 | 12.6 |
11-584A * | Qtz–Sid vein with chlorite and sulfide | −4.3 | 12.0 |
14-716_278.2ft | Qtz–Sid vein | −4.5 | 12.7 |
14-752_1188.6ft | Qtz–Sid vein with muscovite | −4.7 | 14.0 |
14-765_589.9ft | Qtz–Sid vein with sulfide | −3.3 | 14.0 |
14-765_824.3ft | Qtz–Sid vein with sulfide | −5.2 | 13.2 |
Mineral | Core/Rim | Measurement No. | Locality No. | 28Si | 34S | As | Au | Au | As |
---|---|---|---|---|---|---|---|---|---|
SIMS | SIMS | SIMS | SIMS | ppm | ppm | ||||
Pyrite | core | Au5*262.adp | M262 | 2.70 × 105 | 5.83 | 7.10× 10−2 | 0.06 | 195 | |
Pyrite | core | Au5*263.adp | M263 | 2.40 × 105 | 10.3 | 2.54 × 10−1 | 0.22 | 389 | |
Chalcopyrite | core | Au5*264.adp | M264 | 2.70 × 105 | 9.07 | 7.73 × 10−1 | 0.28 | ||
Chalcopyrite | rim | Au7*281.adp | M281 | 4.92 × 10−1 | 3.39 × 105 | 0.75 | 3.08 | 0.89 | |
Arsenopyrite | core | Au5*265.adp | M265 | 8.62 × 104 | 1.11 × 104 | 2.64 | 6 | ||
Pyrite | core | Au6*267.adp | M267 | 2.47 × 105 | 8.25 × 10−1 | 1.05 | 0.89 | 30 | |
Arsenopyrite | core | Au6*271.adp | M271 | 1.15 × 105 | 1.78 × 104 | 2.29 | 4 | ||
Qtz/Apy | boundary | Au6*272.adp | M272 | 1.19 × 104 | 7.03 × 104 | 1.07 × 104 | 2.00 | 16 | |
Quartz | rim | Au6*273.adp | M273 | 2.11 × 104 | 0.53 | 4.92 × 10−1 | 1.87 × 10−1 | 1.38 | |
Quartz | rim | Au6*274.adp | M274 | 1.63 × 104 | 1.03 × 103 | 6.85 × 102 | 9.82 × 10−1 | 9.36 | |
Arsenopyrite | core | Au7*276.adp | M276 | 1.59 | 7.83 × 104 | 1.03 × 104 | 9.83 × 10−1 | 3 | |
Quartz | core | Au7*277.adp | M277 | 5.39 × 104 | 9.49 × 10−1 | 7.31 × 10−1 | 1.81 × 10−1 | 0.52 | |
Qtz/Qtz | boundary | Au7*279.adp | M279 | 9.37 × 104 | 2.27 × 103 | 1.36 × 102 | 1.44 | 2.38 | |
Pyrite | core | Au7*280.adp | M280 | 1.60 | 2.56 × 105 | 3.33 × 10−1 | 1.57 | 1.29 | 12 |
Py/Cpy | boundary | Au7*282.adp | M282 | 9.29 | 3.13 × 105 | 9.46 × 10−1 | 3.05 | 1.5 | 27 |
Chemical Formulas of Carbonates | Carbonate Name | |
---|---|---|
2014082207 | (Ca0.95Fe0.02Mg0.02Mn0.01)CO3 | Calcite |
M000002a | (Ca0.90Fe0.05Mg0.05)CO3 | Calcite |
10DL007A | (Ca0.98Fe0.01Mg0.01Mn0.01)CO3 | Calcite |
10DL008 | (Ca0.93Fe0.02Mg0.01Mn0.04)CO3 | Calcite |
11DL025 | (Ca0.97Fe0.01Mg0.01Mn0.01)CO3 | Calcite |
11-584A | (Ca0.01Fe0.87Mg0.07Mn0.05)CO3 | Siderite |
11-584B | (Ca0.98Fe0.01Mg0.01Mn0.01)CO3 | Calcite |
11-584C | (Ca0.50Fe0.20Mg0.29Mn0.01)CO3 | Ankerite |
11-584D | (Ca0.97Fe0.01Mg0.01Mn0.01)CO3 | Calcite |
14-765_589.9 | (Ca0.02Fe0.87Mg0.09Mn0.02)CO3 | Siderite |
14-765_824.3 | (Ca0.02Fe0.78Mg0.14Mn0.06)CO3 | Siderite |
14-795_1434.4 | (Ca0.42Fe0.29Mg0.28Mn0.01)CO3 | Ankerite |
15-896_2500.4 | (Ca0.36Fe0.43Mg0.19Mn0.02)CO3 | Ankerite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morishita, Y.; Rogers, J.R. Evolution of the Hydrothermal Fluids Inferred from the Occurrence and Isotope Characteristics of the Carbonate Minerals at the Pogo Gold Deposit, Alaska, USA. Minerals 2025, 15, 67. https://doi.org/10.3390/min15010067
Morishita Y, Rogers JR. Evolution of the Hydrothermal Fluids Inferred from the Occurrence and Isotope Characteristics of the Carbonate Minerals at the Pogo Gold Deposit, Alaska, USA. Minerals. 2025; 15(1):67. https://doi.org/10.3390/min15010067
Chicago/Turabian StyleMorishita, Yuichi, and Jamie R. Rogers. 2025. "Evolution of the Hydrothermal Fluids Inferred from the Occurrence and Isotope Characteristics of the Carbonate Minerals at the Pogo Gold Deposit, Alaska, USA" Minerals 15, no. 1: 67. https://doi.org/10.3390/min15010067
APA StyleMorishita, Y., & Rogers, J. R. (2025). Evolution of the Hydrothermal Fluids Inferred from the Occurrence and Isotope Characteristics of the Carbonate Minerals at the Pogo Gold Deposit, Alaska, USA. Minerals, 15(1), 67. https://doi.org/10.3390/min15010067