Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China
Abstract
:1. Introduction
2. Analytical Methods
2.1. Chemical Composition Analysis
2.2. Crystal Structural Analysis
2.3. Infrared Absorption Spectroscopy Analysis
2.4. Raman Spectroscopy Analysis
2.5. Reflectance Test Analysis
2.6. X-Ray Photoelectron Spectroscopy (XPS) Analysis
3. Results
3.1. Occurrence and Associated Minerals
3.2. Optical, Morphological and Physical Properties of Nioboixiolite-(□)
3.3. Infrared Absorption Spectroscopy
3.4. Raman Spectroscopy
3.5. Chemical Composition
3.6. Crystal Structure
4. Discussion
Contents | Nioboixiolite-(□) | Nioboixiolite-(Mn2+) | Ixiolite-(Fe2+) | Columbite-(Fe) | Scandian Ixiolite | Rossovskyite | Wodginite |
---|---|---|---|---|---|---|---|
Nb2O5 | 47.04 | 42.80 | 10.50 | 73.18 | 63.28 | 26.59 | 1.35 |
Ta2O5 | 13.95 | 26.77 | 61.47 | 6.12 | 5.82 | 37.51 | 70.05 |
UO3 | 21.56 | 1.44 | - | 0.02 | - | ||
TiO2 | 3.68 | 7.66 | 0.38 | 0.26 | 6.54 | 7.69 | 2.39 |
Fe2O3 | 3.57 | 0.2 | 8.08 | 15.03 b | 8.16 f | 20.58 a | 1.87 |
CaO | 2.76 | - | 0.11 | 0.89 | - | ||
SiO2 | 1.69 | - | 0.12 | 0.15 | 0.6 | ||
REE2O3 | 1.58 | 1.34 d | - | 0.07 | 2.12 | - | |
MnO | 0.12 | 14.94 | 5.40 | 1.63 | 9.65 | 1.68 | 9.04 |
PbO | 0.91 | - | 0.26 | ||||
ThO2 | 0.11 | 0.26 | - | 0.06 | - | ||
MgO | 0.15 | - | 1.90 | - | |||
ZrOb2 | - | 1.74 | 0.60 | - | - | ||
F | 0.01 | - | 0.21 | ||||
SnO2 | - | 1.01 | 12.27 | - | 0.2 | 13.2 | |
Al2O3 | 0.01 | 0.16 | - | - | |||
Sc2O3 | 1.80 | 2.1 | |||||
WO3 | 0.30 | - | 5.61 | - | |||
BaO | 0.62 | ||||||
SrO | 1.49 | ||||||
H2O+ | 0.16 | - | |||||
H2O(−) | 0.08 | - | |||||
Total | 99.25 | 99.96 | 99.63 | 99.78 | 99.37 | 99.66 | 98.50 |
Reference | This study | [2] | [21] | This study | [3] | [22] | [23] |
Mineral | Nioboixiolite-(□) Bayan Obo, China | Nioboixiolite-(Mn2+), Sosedka, Russia | Ixiolite-(Fe2+) Skogsböle, Finland | Columbite-(Fe) Bayan Obo, China |
---|---|---|---|---|
a (Å) | 5.7097 | 4.7559 | 5.731 | 5.709 |
b (Å) | 4.7071 | 5.7318 | 4.742 | 14.150 |
c (Å) | 5.1111 | 5.1344 | 5.152 | 5.094 |
β (°) | 90 | 90 | 90 | 90 |
V (Å3) | 137.37 | 139.97 | 140 | 414 |
Symmetry | Orthorhombic | Orthorhombic | Orthorhombic | Orthorhombic |
Space Group | Pbcn | Pbcn | Pbcn | Pbcn |
Simplified Formula | (Nb0.8□0.2)4+O2 | (Nb2/3Mn2+1/3)O2 | (Ta2/3Fe2+1/3)O2 | Fe2+Nb2O6 |
Reference | This study | [2] | [23] | This study |
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chukanov, N.V.; Pasero, M.; Aksenov, S.M.; Britvin, S.N.; Zubkova, N.V.; Li, Y.K.; Witzke, T. Columbite supergroup of minerals: Nomenclature and classification. Mineral. Mag. 2023a, 87, 18–33. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pekov, I.V.; Zubkova, N.V.; Yapaskurt, V.O.; Shelukhina, Y.; Britvin, S.N.; Pushcharovsky, D.Y. Nioboixiolite-(Mn2+), (Nb2/3Mn2+1/3) O2, a new ixiolite-group mineral from the Malkhan pegmatite field, Transbaikal region, Russia. Proc. Russ. Mineral. Soc. 2023b, CLⅡ, 8–17. [Google Scholar]
- von Knorring, O.V.; Sahama, T.G. Scandian ixiolite from Mozambique and Madagascar. Bull. Geol. Soc. Finl. 1969, 41, 75–77. [Google Scholar] [CrossRef]
- Wise, M.A.; Černý, P.; Falster, A.U. Scandium substitution in columbite-group minerals and ixiolite. Can. Minerogist 1998, 36, 673–680. [Google Scholar]
- Zubkova, N.V.; Chukanov, N.V.; Pekov, I.V.; Ternes, B.; Schüller, W.; Pushcharovsky, D.Y. Tantalum-free Nb-dominant analogue of ixiolite from the Eifel paleovolcanic region, Germany, and its crystal structure: On the problem of “ashanite”. Zap. Ross. Mineral. Obs. 2020, 149, 125–134. (In Russian) [Google Scholar]
- Grice, J.D.; Ferguson, R.B.; Hawthorne, F.C. The crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. I. Tantaliteand ixiolite. Can. Mineral. 1976, 14, 540–549. [Google Scholar]
- Nordenskiöld, A.E. Beitrag zu Finnlands Mineralogie. Ann. Phys. Chem. 1857, 11, 625–642. [Google Scholar] [CrossRef]
- Taggart, J.E., Jr.; Foord, E.E.; Rosenzweig, A.; Hanson, T. Scrutinyite, natural occurrences of PbO2 from Bingham, New Mexico, U.S.A., and Mapimi, Mexico. Can. Mineral. 1988, 26, 905–910. [Google Scholar]
- Willgallis, A.; Siegmann, E.; Hettiaratchi, T. Srilankite, a new Zr-Ti-oxide mineral. Neues Jahrb. Mineral. Monatshefte 1983, 1983, 151–157. [Google Scholar]
- Dera, P.; Prewitt, C.T.; Boctor, N.Z.; Hemley, R.J. Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. Am. Mineral. 2002, 87, 1018–1023. [Google Scholar] [CrossRef]
- Hu, L.; Li, Y.; Sun, S.; Li, R.; Ke, C.; Wang, A. Identification of new igneous carbonatites in the Bayan Obo area, Inner Mongolia. Geol. China 2023, 50, 1788–1803, (In Chinese with English Abstract). [Google Scholar]
- Strehle, M. X-Ray Photoelectron Spectroscopy (XPS) Study of Single Crystal UO2 and U3O8 on R-Plane Sapphire and Yttrium Stabilized Zirconium (YSZ) Substrates (Mater Dissertation); University of Illinois Urbana-Champaign: Champaign, IL, USA, 2011; pp. 1–64. [Google Scholar]
- Palacio, C.; Mathieu, H.J.; Stambouli, V.; Landolt, D. XPS study of in-situ oxidation of an Fe-Cr alloy by low pressure oxygen in the presence of water vapor. Surf. Ence Lett. 1993, 295, 251–262. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELX. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Hatert, F.; Burke, E.A.J. The IMA-CNMNC dominant-constituent rule revisited and extended. Can. Mineral. 2008, 46, 717–728. [Google Scholar] [CrossRef]
- Harrison, W.T.A.; Cheetham, A.K. Structural and magnetic properties of FeNbO4-II. Mater. Res. Bull. 1989, 24, 523–527. [Google Scholar] [CrossRef]
- Pourroy, G.; Lutanie, E.; Poix, P. Transition orthorhombic ↔ rutile in xMFeO4-(1 − x) ZnF2 phases (M = Ta, Nb and x > 0.7). J. Solid State Chem. 1990, 86, 41–49. [Google Scholar] [CrossRef]
- Baumgarte, A.; Blachnik, R. Phase relations in the system titaniumdioxide-diniobium-zinc-hexoxide. Mater. Res. Bull. 1992, 27, 1287–1294. [Google Scholar] [CrossRef]
- Hadamek, T.; Posadas, A.B.; Dhamdhere, A.; Smith, D.J.; Demkov, A.A. Spectral identification scheme for epitaxially grown single-phase niobium dioxide. J. Appl. Phys. 2016, 119, 095308. [Google Scholar] [CrossRef]
- Nickel, E.H.; Rowland, J.F.; McAdam, R.C. Ixiolite—A columbite substructure. Am. Mineral. 1963, 48, 961–979. [Google Scholar]
- Konovalenko, S.I.; Ananyev, S.A.; Chukanov, N.V.; Rastsvetaeva, R.K.; Aksenov, S.M.; Baeva, A.A.; Gainov, R.R.; Vagizov, F.G.; Lopatin, O.N.; Nebera, T.S. A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: Crystal chemistry and physical properties. Phys. Chem. Miner. 2015, 42, 825–833. [Google Scholar] [CrossRef]
- Nickel, E.H.; Rowland, J.F.; McAdam, R.C. Wodginite—A new tin-manganese tantalate from Wodgina, Australia and Bernic lake, Manitoba. Can. Mineral. 1963, 7, 390–402. [Google Scholar]
Peak | Type | Amplitude | Center | FWHM | Asym50 | FW Base | Asym10 |
---|---|---|---|---|---|---|---|
1 | Gauss + Lor Amp | 418.03 | 266.179 | 69.19 | 1 | 138.50 | 1 |
2 | Gauss + Lor Amp | 193.65 | 461.561 | 55.69 | 1 | 112.75 | 1 |
3 | Gauss + Lor Amp | 293.17 | 720.66 | 68.69 | 1 | 137.50 | 1 |
4 | Gauss + Lor Amp | 344.33 | 790.68 | 60.57 | 1 | 188.18 | 1 |
Constituent | Wt.% * | Range | Stand. Dev. | Probe Standard |
---|---|---|---|---|
Nb2O5 | 47.04 | 43.86–51.80 | 2.09 | KNbO3 |
Ta2O5 | 13.95 | 10.26–15.22 | 1.25 | LiTaO3 |
UO3 * | 21.56 | 19.12–21.56 | 1.32 | thorianite |
TiO2 | 3.68 | 3.05–4.91 | 0.53 | rutile |
Fe2O3 * | 3.57 | 2.41–4.77 | 0.81 | hematite |
CaO | 2.76 | 2.22–3.44 | 0.37 | wollastonite |
MgO | 0.15 | 0.0–0.43 | 0.13 | forsterite |
SiO2 | 1.69 | 0.80–3.86 | 0.96 | Jade |
SrO | 1.49 | 1.11–2.16 | 0.31 | SrSO4 |
BaO | 0.62 | 0.07–1.34 | 0.46 | BaSO4 |
La2O3 | 0.08 | 0.00–0.14 | 0.04 | LaP5O14 |
Ce2O3 | 0.68 | 0.29–1.13 | 0.23 | CeP5O14 |
Pr2O3 | 0.10 | 0.00–0.22 | 0.07 | PrP5O14 |
Nd2O3 | 0.25 | 0.00–0.37 | 0.12 | NdP5O14 |
Sm2O3 | 0.04 | 0.00–0.09 | 0.04 | SmP5O14 |
Eu2O3 | 0.02 | 0.00–0.11 | 0.04 | EuP5O14 |
Gd2O3 | 0.06 | 0.00–0.15 | 0.05 | GdP5O14 |
Tb2O3 | 0.13 | 0.00–0.36 | 0.14 | Tb3Ga5O12 |
Dy2O3 | 0.05 | 0.00–0.17 | 0.06 | DyP5O14 |
Ho2O3 | 0.04 | 0.00–0.18 | 0.06 | HoP5O14 |
Er2O3 | 0.02 | 0.00–0.11 | 0.03 | ErP5O14 |
Tm2O3 | 0.02 | 0.00–0.14 | 0.04 | Tm P5O14 |
Yb2O3 | 0.04 | 0.00–0.29 | 0.08 | Yb P5O14 |
Lu2O3 | 0.03 | 0.00–0.15 | 0.05 | LuSiO5 |
Y2O3 | 0.02 | 0.00–0.13 | 0.04 | Y P5O14 |
MnO | 0.12 | 0.00–0.29 | 0.08 | MnTiO3 |
PbO | 0.91 | 0.76–1.06 | 0.08 | PbCr2O4 |
ThO2 | 0.11 | 0.07–0.16 | 0.03 | thorianite |
Al2O3 | 0.01 | 0.00–0.03 | 0.01 | jadeite |
F | 0.01 | 0–0.09 | 0.02 | phlogopite |
Total | 99.25 | 98.72–99.93 | 0.38 |
h | k | l | d(obs) | d(calc) | I/I0 |
---|---|---|---|---|---|
1 | 1 | 0 | 3.6621 | 3.6417 | 20 |
1 | 1 | 1 | 2.9746 | 2.9675 | 100 |
0 | 2 | 0 | 2.8603 | 2.8613 | 4 |
0 | 0 | 2 | 2.566 | 2.5596 | 10 |
0 | 2 | 1 | 2.5008 | 2.4976 | 20 |
2 | 0 | 0 | 2.3637 | 2.3606 | 2 |
1 | 0 | 2 | 2.2605 | 2.2502 | 2 |
1 | 2 | 1 | 2.2104 | 2.2077 | 6 |
1 | 1 | 2 | 2.0958 | 2.0941 | 10 |
0 | 2 | 2 | 1.9075 | 1.9077 | 6 |
2 | 2 | 0 | 1.8234 | 1.8209 | 2 |
1 | 2 | 2 | 1.7702 | 1.7687 | 20 |
2 | 2 | 1 | 1.7177 | 1.7156 | 15 |
1 | 1 | 3 | 1.5453 | 1.5452 | 10 |
0 | 2 | 3 | 1.4581 | 1.4656 | 20 |
0 | 4 | 1 | 1.3793 | 1.3778 | 10 |
3 | 1 | 2 | 1.3058 | 1.3053 | 1 |
0 | 4 | 2 | 1.2465 | 1.2488 | 2 |
3 | 3 | 0 | 1.2108 | 1.2139 | 2 |
2 | 4 | 1 | 1.19 | 1.19 | 2 |
4 | 1 | 1 | 1.1267 | 1.1276 | 2 |
0 | 4 | 3 | 1.0973 | 1.0963 | 8 |
1 | 3 | 4 | 1.0365 | 1.0368 | 2 |
2 | 4 | 3 | 0.9952 | 0.9943 | 2 |
Structural formula | Nb0.88O2 | θ range for data collection/ ° | 5.615–29.335o |
Formula weight | 124.91 | Index ranges | −6 ≤ h ≤ 6, −7 ≤ k ≤ 7, −6 ≤ l ≤ 6 |
Crystal system | orthorhombic | Reflections collected | 2422 |
Space group | Pbcn | Independent reflections | 2422 [R (int) = 0.0226] |
a/Å | 4.7071 (5) | Completeness to θ = 29.33o/% | 97 |
b/Å | 5.7097 (7) | Absorption correction | Semi-empirical from equivalents |
c/Å | 5.1111 (6) | Refinement method | Full-matrix least-squares on F2 |
Volume/nm3 | 137.37 (3) | ||
Z | 4 | Goodness-of-fit on F2 | 0.94 |
Dc/(g·cm−3) | 2.571 | Final R indices [I > 2σ (I)] | R1 = 0.031, wR2 = 0.110 |
Absorption coefficient/mm−1 | 8.139 | Largest diff. peak and hole/(e·nm−3) | 1.32 and −1.25 |
F (000) | 228 |
Atom coordinates and displacement parameters (Å2) | ||||||
Atom | Wyck. | Occupancy | x | y | z | Uiso |
Nb1 | 4c | 0.877(19) | 1/2 | 0.83206(10) | 1/4 | 0.0199(4) |
O1 | 8d | 1 | 0.2288(5) | 0.6169(4) | 0.4165(8) | 0.0190(11) |
Anisotropic displacement parameters (in Å2) | ||||||
Atom | U11 | U22 | U33 | U23 | U13 | U12 |
Nb1 | 0.0238(6) | 0.0169(6) | 0.0190(6) | 0.000 | 0.00020(18) | 0.000 |
O1 | 0.0225(16) | 0.0145(14) | 0.0200(17) | 0.0021(13) | −0.0035(13) | 0.0000(9) |
Bond distances (Å) | ||||||
Nb1–O1 | 1.965(3) × 2 | |||||
–O1 | 2.037(4) × 2 | |||||
–O1 | 2.128(3) × 2 | |||||
Mean | 2.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ke, C.; Wang, D.; Peng, Z.; Zhao, Y.; Li, R.; Chen, Z.; Li, G.; Yu, H.; Zhang, L.; et al. Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China. Minerals 2025, 15, 88. https://doi.org/10.3390/min15010088
Li Y, Ke C, Wang D, Peng Z, Zhao Y, Li R, Chen Z, Li G, Yu H, Zhang L, et al. Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China. Minerals. 2025; 15(1):88. https://doi.org/10.3390/min15010088
Chicago/Turabian StyleLi, Yike, Changhui Ke, Denghong Wang, Zidong Peng, Yonggang Zhao, Ruiping Li, Zhenyu Chen, Guowu Li, Hong Yu, Li Zhang, and et al. 2025. "Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China" Minerals 15, no. 1: 88. https://doi.org/10.3390/min15010088
APA StyleLi, Y., Ke, C., Wang, D., Peng, Z., Zhao, Y., Li, R., Chen, Z., Li, G., Yu, H., Zhang, L., Guo, B., & Gao, Y. (2025). Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China. Minerals, 15(1), 88. https://doi.org/10.3390/min15010088