Critical Minerals in Tibetan Geothermal Systems: Their Distribution, Flux, Reserves, and Resource Effects
Abstract
:1. Introduction
2. Classification Criteria for Critical Mineral Resources
3. Geological Background and Occurrence of the Tibetan Geothermal Systems
4. Geochemical Features and Spatial Distribution of Tibetan CMR-Rich Geothermal Systems
4.1. Geochemical Features of Critical Mineral Resources in Tibetan Geothermal Spring Water
4.1.1. Lithium
4.1.2. Rubidium and Cesium
4.1.3. Boron
4.1.4. Other Critical Mineral Resources
4.2. Cesium-Bearing Geyserite Deposits
4.3. Spatial Distribution of CMR-Rich Geothermal Systems
5. Resource Flux and Reserves of Critical Metals in Tibetan Geothermal Systems
5.1. Resource Flux of Critical Mineral Resources in Geothermal Spring Water
5.2. Reserves of Cesium in Geyserite Deposits
6. Resource Effects of Tibetan Geothermal Springs
7. Conclusions
- (1)
- Critical minerals such as lithium, rubidium, cesium, and boron display abnormal enrichment in the Tibetan geothermal systems including spring water and sediments, and they are majorly concentrated along the Yarlung Zangbo suture zone and the N–S trending rift zones.
- (2)
- The analysis of available geothermal springs in the dataset indicates a total lithium resource flux of ~246 t/a (over cut-off grade for 27 t/a), alongside a rubidium flux of ~54 t/a (over cut-off grade for 4 t/a), a cesium flux of approximately 233 t/a (over cut-off grade for 202 t/a), and a substantial boron flux estimated at around 2747 t/a (over cut-off grade for 360 t/a), highlighting the significant mineral potential of Tibetan geothermal spring water.
- (3)
- Abundant cesium reserves are preserved in the geothermal sediments of Tibetan geothermal systems such as in Tagejia, Gulu, Semi, Gudui, Chatuogang, and Chabu, with total cesium reserves exceeding 40,000 t in forms of siliceous sinters.
- (4)
- The Tibetan geothermal systems host potential for CMRs through stable discharge and widespread distribution, serve as valuable indicators of endogenous mineral exploration, and act as potential sources for lithium deposits in exogenous salt lakes, thereby facilitating the deep-to-shallow and source-to-sink migration and accumulation of critical minerals.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathieux, F.; Ardente, F.; Bobba, S.; Nuss, P.; Blengini, G.A.; Dias, P.A.; Blagoeva, D.; De Matos, C.T.; Wittmer, D.; Pavel, C. Critical Raw Materials and the Circular Economy; Publications Office of the European Union: Brussels, Belgium, 2017. [Google Scholar]
- Gulley, A.L.; Nassar, N.T.; Xun, S. China, the United States, and Competition for Resources That Enable Emerging Technologies. Proc. Natl. Acad. Sci. USA 2018, 115, 4111–4115. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Research on Strategic Mineral Resource Inventory, Supply-Demand Situation and Countermeasures. Sci. Technol. Rev. 2024, 42, 26–37. [Google Scholar]
- Zhai, M.G.; Wu, F.Y.; Hu, R.Z.; Jiang, S.Y.; Li, W.C.; Wang, R.C.; Wang, D.H.; Qi, T.; Qin, K.Z.; Wen, H.J. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bull. Natl. Nat. Sci. Found. China 2019, 33, 106–111. [Google Scholar]
- Akcil, A.; Sun, Z.; Panda, S. COVID-19 Disruptions to Tech-Metals Supply Are a Wake-up Call. Nature 2020, 587, 365–367. [Google Scholar] [CrossRef]
- Peng, W.; Qiaochu, W.; Ruru, H.; Linbin, T.; Yu, L.; Wenjia, C.; Weiqiang, C. Nexus between Low-Carbon Energy and Critical Metals: Literature Review and Implications. Resour. Sci. 2021, 43, 669–681. [Google Scholar]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, Germanium, Indium, and Other Trace and Minor Elements in Sphalerite as a Function of Deposit Type—A Meta-Analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Kelley, K.D.; Huston, D.L.; Peter, J.M. Toward an Effective Global Green Economy: The Critical Minerals Mapping Initiative (CMMI). SGA News 2021, 8, 1–5. [Google Scholar]
- Müller, D.; Groves, D.I.; Santosh, M.; Yang, C.-X. Critical Metals: Their Applications with Emphasis on the Clean Energy Transition. Geosyst. Geoenviron. 2024, 4, 100310. [Google Scholar] [CrossRef]
- Wang, D.; Dai, H.; Liu, S.; Wang, C.; Yu, Y.; Zhao, Z. Progress in Strategic Critical Minerals Exploration and Production and Proposals for a New Round of Prospecting in China. Sci. Technol. Rev. 2024, 42, 7–25. [Google Scholar]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global Lithium Resources: Relative Importance of Pegmatite, Brine and Other Deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Munk, L.A.; Hynek, S.A.; Bradley, D.C.; Boutt, D.; Labay, K.; Jochens, H. Lithium Brines: A Global Perspective. In Rare Earth and Critical Elements in Ore Deposits; Society of Economic Geologists: Littleton, CO, USA, 2016. [Google Scholar]
- Sanjuan, B.; Gourcerol, B.; Millot, R.; Rettenmaier, D.; Jeandel, E.; Rombaut, A. Lithium-Rich Geothermal Brines in Europe: An Update about Geochemical Characteristics and Implications for Potential Li Resources. Geothermics 2022, 101, 102385. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, W.; Fu, Y.; Liu, F.; Yuan, R.; Yan, X.; Liao, Y.; Wang, G. Distribution Characteristics and Resource Potential Evaluation of Lithium in Geothermal Water in China. Geol. China 2024, 51, 1527–1553. [Google Scholar]
- Xue, F.; Tan, H.; Zhang, X.; Su, J. Sources, Enrichment Mechanisms, and Resource Effects of Rare Metal Elements-Enriched Geothermal Springs in Xizang, China. Sci. China Earth Sci. 2024, 67, 3476–3499. [Google Scholar] [CrossRef]
- McKibben, M.A.; Elders, W.A.; Raju, A.S. Lithium and Other Geothermal Mineral and Energy Resources beneath the Salton Sea. In Crisis at the Salton Sea: Research Gaps and Opportunities; UC Riverside Salton Sea Task Force: Riverside, CA, USA, 2021; pp. 103–119. [Google Scholar]
- Dobson, P.; Araya, N.; Brounce, M.; Busse, M.; Camarillo, M.K.; English, L.; Humphreys, J.; Kalderon-Asael, B.; McKibben, M.; Millstein, D. Characterizing the Geothermal Lithium Resource at the Salton Sea; Lawrence Berkeley National Laboratory (LBNL): Berkeley, CA, USA, 2023.
- Busse, M.M.; McKibben, M.A.; Stringfellow, W.; Dobson, P.; Stokes-Draut, J.R. Impact of Geothermal Expansion and Lithium Extraction in the Salton Sea Known Geothermal Resource Area (SS-KGRA) on Local Water Resources. Environ. Res. Lett. 2024, 19, 104011. [Google Scholar] [CrossRef]
- Grimaud, D.; Huang, S.; Michard, G.; Zheng, K. Chemical Study of Geothermal Waters of Central Tibet (China). Geothermics 1985, 14, 35–48. [Google Scholar] [CrossRef]
- Tan, H.; Zhang, Y.; Zhang, W.; Kong, N.; Zhang, Q.; Huang, J. Understanding the Circulation of Geothermal Waters in the Tibetan Plateau Using Oxygen and Hydrogen Stable Isotopes. Appl. Geochem. 2014, 51, 23–32. [Google Scholar] [CrossRef]
- Tan, H.; Su, J.; Xu, P.; Dong, T.; Elenga, H.I. Enrichment Mechanism of Li, B and K in the Geothermal Water and Associated Deposits from the Kawu Area of the Tibetan Plateau: Constraints from Geochemical Experimental Data. Appl. Geochem. 2018, 93, 60–68. [Google Scholar] [CrossRef]
- Tan, H.B.; Shi, Z.W.; Cong, P.X.; Xue, F.; Chen, G.H. The Spatial Distribution Law of B, Li, Rb and Cs Elements and Supernormal Enrichment Mechanism in Tibet Geothermal System. Sediment. Geol. Tethyan Geol. 2023, 43, 404–415. [Google Scholar]
- Elenga, H.I.; Tan, H.; Su, J.; Yang, J. Origin of the Enrichment of B and Alkali Metal Elements in the Geothermal Water in the Tibetan Plateau: Evidence from B and Sr Isotopes. Geochemistry 2021, 81, 125797. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Ruan, C.; Sagoe, G.; Li, J. Enrichment Mechanisms of Lithium for the Geothermal Springs in the Southern Tibet, China. J. Hydrol. 2022, 612, 128022. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, Q.; Duo, J.; Liu, J.; Pingcuo, W.; Zhang, S. A New Type of Hydrothermal Deposit Cesium-Bearing Geyserite in Tibet; Geological Publishing House: Beijing, China, 1995; Volume 113, p. 172. [Google Scholar]
- Wang, C.; Zheng, M.; Zhang, X.; Wu, Q.; Liu, X.; Ren, J.; Chen, S. Geothermal-Type Lithium Resources in Southern Xizang, China. Acta Geol. Sin. Engl. Ed. 2021, 95, 860–872. [Google Scholar] [CrossRef]
- Applegate, J.D. Final List of Critical Minerals; US Geological Survey, Department of the Interior: Reston, VA, USA, 2022.
- Schulz, K.J. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply; US Geological Survey: Reston, VA, USA, 2017; ISBN 1-4113-3991-6.
- Szczepanski, M. Critical Raw Materials for the EU: Enablers of the Green and Digital Recovery; European Parliament: Strasbourg, France, 2020; pp. 1–11.
- Australian Government Department of Industry, Science and Resources. Critical Minerals Strategy 2023–2030; Australian Government Department of Industry, Science and Resources: Canberra, Australia, 2023.
- Hatayama, H.; Tahara, K. Criticality Assessment of Metals for Japan’s Resource Strategy. Mater. Trans. 2015, 56, 229–235. [Google Scholar] [CrossRef]
- Ministry of Economy, Trade and Industry Agency for Natural Resources and Energy. Japan’s New International Resource Strategy to Secure Rare Metals. Available online: https://www.enecho.meti.go.jp/en/category/special/article/detail_158.html (accessed on 4 November 2024).
- Villalba, G.; Ayres, R.U.; Schroder, H. Accounting for Fluorine: Production, Use, and Loss. J. Ind. Ecol. 2007, 11, 85–101. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene Research and Their Outputs: Status and Prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, C.; Sun, W.; Gao, Y.; Kowalczuk, P.B. Froth Flotation of Fluorite: A Review. Adv. Colloid Interface Sci. 2021, 290, 102382. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Graczyk-Zajac, M.; Kessler, A.; Weidenkaff, A.; Riedel, R. Recycling and Reusing of Graphite from Retired Lithium-Ion Batteries: A Review. Adv. Mater. 2024, 36, 2308494. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Hou, Z.Q.; Nie, F.J.; Yang, Z.S.; Qu, X.M.; Meng, X.J.; Zhao, Y.Y. Enrichment of Element Cesium during Modern Geothermal Action in Tibet, China. Acta Geol. Sin. 2006, 80, 1457–1464. [Google Scholar]
- Zhao, Y.Y.; Nie, F.; Hou, Z.; Li, Z.; Zhao, X.; Ma, Z. Geochemistry of Targejia Hot Spring Type Cesium Deposit in Tibet. Miner. Depos. 2007, 26, 163. [Google Scholar]
- Guo, Q.; Planer-Friedrich, B.; Liu, M.; Yan, K.; Wu, G. Magmatic Fluid Input Explaining the Geochemical Anomaly of Very High Arsenic in Some Southern Tibetan Geothermal Waters. Chem. Geol. 2019, 513, 32–43. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Yan, Y.-N.; Zhao, Z.-Q.; Liu, X.-M.; Li, X.-D.; Zhang, D.; Ding, H.; Meng, J.-L.; Liu, C.-Q. Spatiotemporal Variation of Li Isotopes in the Yarlung Tsangpo River Basin (Upper Reaches of the Brahmaputra River): Source and Process. Earth Planet. Sci. Lett. 2022, 600, 117875. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Zhu, X.; Zhang, W. The Status and Development Trend of Geothermal Resources in China. Earth Sci. Front. 2020, 27, 1–9. [Google Scholar]
- Xu, Z.-Q.; Yang, J.-S. The Progress in the Study of Continental Dynamics of the Tibetan Plateau. Geol. China 2016, 43, 1–42. [Google Scholar]
- Duffield, W.; Sass, J. Geothermal Energy—Clean Power from the Earth’s Heat: USGS Circular 1249; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2003.
- Tamburello, G.; Chiodini, G.; Ciotoli, G.; Procesi, M.; Rouwet, D.; Sandri, L.; Carbonara, N.; Masciantonio, C. Global Thermal Spring Distribution and Relationship to Endogenous and Exogenous Factors. Nat. Commun. 2022, 13, 6378. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Zhang, M.T.; Zhang, Z.F.; Liao, Z.J.; You, M.Z.; Zhu, M.X.; Guo, G.Y.; Liu, S.B. Geothermals Beneath Xizang (Tibetan) Plateau; Beijing Science and Technology Press: Beijing, China, 1981. [Google Scholar]
- Tong, W.; Liao, Z.J.; Liu, S.B.; Zhang, Z.F.; You, M.Z.; Zhang, M.T. Thermal Springs in Tibet; Beijing Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Zhao, Y.; Cui, Y.; Zhao, X. Geological and Geochemical Features and Significance of Travertine in Travertine-Island from Zhabuye Salt Lake, Tibet, China. Geol. Bull. China 2010, 29, 124–141. [Google Scholar]
- Guo, Q.; Wang, Y. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. J. Volcanol. Geotherm. Res. 2012, 215–216, 61–73. [Google Scholar] [CrossRef]
- Li, J.; Sagoe, G.; Yang, G.; Lu, G. Evaluation of Mineral-Aqueous Chemical Equilibria of Felsic Reservoirs with Low-Medium Temperature: A Comparative Study in Yangbajing Geothermal Field and Guangdong Geothermal Fields. J. Volcanol. Geotherm. Res. 2018, 352, 92–105. [Google Scholar] [CrossRef]
- Gan, H.; Wang, G.; Wang, X.; Lin, W.; Yue, G. Research on the Hydrochemistry and Fault Control Mechanism of Geothermal Water in Northwestern Zhangzhou Basin. Geofluids 2019, 2019, e3925462. [Google Scholar] [CrossRef]
- Maity, J.P.; Chen, C.-Y.; Bundschuh, J.; Bhattacharya, P.; Mukherjee, A.; Chang, Y.-F. Hydrogeochemical Reconnaissance of Arsenic Cycling and Possible Environmental Risk in Hydrothermal Systems of Taiwan. Groundw. Sustain. Dev. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Peralta Arnold, Y.; Cabassi, J.; Tassi, F.; Caffe, P.J.; Vaselli, O. Fluid Geochemistry of a Deep-Seated Geothermal Resource in the Puna Plateau (Jujuy Province, Argentina). J. Volcanol. Geotherm. Res. 2017, 338, 121–134. [Google Scholar] [CrossRef]
- Cullen, J.T.; Hurwitz, S.; Barnes, J.D.; Lassiter, J.C.; Penniston-Dorland, S.; Meixner, A.; Wilckens, F.; Kasemann, S.A.; McCleskey, R.B. The Systematics of Chlorine, Lithium, and Boron and δ37Cl, δ7Li, and δ11B in the Hydrothermal System of the Yellowstone Plateau Volcanic Field. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009589. [Google Scholar] [CrossRef]
- Gemici, Ü.; Tarcan, G. Distribution of Boron in Thermal Waters of Western Anatolia, Turkey, and Examples of Their Environmental Impacts. Environ. Geol. 2002, 43, 87–98. [Google Scholar] [CrossRef]
- Bernard, R.; Taran, Y.; Pennisi, M.; Tello, E.; Ramirez, A. Chloride and Boron Behavior in Fluids of Los Humeros Geothermal Field (Mexico): A Model Based on the Existence of Deep Acid Brine. Appl. Geochem. 2011, 26, 2064–2073. [Google Scholar] [CrossRef]
- DZ/T 0212—2002; People’s Republic of China Geological and Mineral Industry Standard: Specifications for Salt-Lake, Salt Mineral Exploration. Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2002.
- DZ/T 0203—2002; People’s Republic of China Geological and Mineral Industry Standard: Specifications for Rare Metal Mineral Exploration. Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2002.
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Willey: Hoboken, NJ, USA, 1985. [Google Scholar]
- Santosh, M.; Groves, D.I.; Yang, C.-X. Habitable Planet to Sustainable Civilization: Global Climate Change with Related Clean Energy Transition Reliant on Declining Critical Metal Resources. Gondwana Res. 2024, 130, 220–233. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Dallas, J.; Casanova, S.; Pelech, T.; Bournival, G.; Saydam, S.; Canbulat, I. Towards a Low-Carbon Society: A Review of Lithium Resource Availability, Challenges and Innovations in Mining, Extraction and Recycling, and Future Perspectives. Miner. Eng. 2021, 163, 106743. [Google Scholar] [CrossRef]
- Gong, H.; Hansen, T. The Rise of China’s New Energy Vehicle Lithium-Ion Battery Industry: The Coevolution of Battery Technological Innovation Systems and Policies. Environ. Innov. Soc. Trans. 2023, 46, 100689. [Google Scholar] [CrossRef]
- Desaulty, A.-M.; Monfort Climent, D.; Lefebvre, G.; Cristiano-Tassi, A.; Peralta, D.; Perret, S.; Urban, A.; Guerrot, C. Tracing the Origin of Lithium in Li-Ion Batteries Using Lithium Isotopes. Nat. Commun. 2022, 13, 4172. [Google Scholar] [CrossRef]
- Mohammadi, F.; Saif, M. A Comprehensive Overview of Electric Vehicle Batteries Market. e-Prime Adv. Electr. Eng. Electron. Energy 2023, 3, 100127. [Google Scholar] [CrossRef]
- Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.-F. Spodumene: The Lithium Market, Resources and Processes. Minerals 2019, 9, 334. [Google Scholar] [CrossRef]
- Bibienne, T.; Magnan, J.-F.; Rupp, A.; Laroche, N. From Mine to Mind and Mobiles: Society’s Increasing Dependence on Lithium. Elements 2020, 16, 265–270. [Google Scholar] [CrossRef]
- Ding, T.; Zheng, M.; Peng, S.; Lin, Y.; Zhang, X.; Li, M. Lithium Extraction from Salt Lakes with Different Hydrochemical Types in the Tibet Plateau. Geosci. Front. 2023, 14, 101485. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, L.; Jin, D. Discussion on Lithium Resources of High Temperature Geothermal Water in Southern Xizang and Its Technical and Economic Efficiency of Extraction and Utilization. Multipurp. Util. Miner. Resour. 2024, 45, 85–91. [Google Scholar]
- Nishio, Y.; Okamura, K.; Tanimizu, M.; Ishikawa, T.; Sano, Y. Lithium and Strontium Isotopic Systematics of Waters Around Ontake Volcano, Japan: Implications for Deep-Seated Fluids and Earthquake Swarms. Earth Planet. Sci. Lett. 2010, 297, 567–576. [Google Scholar] [CrossRef]
- Pogge von Strandmann, P.A.E.; Burton, K.W.; Opfergelt, S.; Eiríksdóttir, E.S.; Murphy, M.J.; Einarsson, A.; Gislason, S.R. The Effect of Hydrothermal Spring Weathering Processes and Primary Productivity on Lithium Isotopes: Lake Myvatn, Iceland. Chem. Geol. 2016, 445, 4–13. [Google Scholar] [CrossRef]
- Wang, D.H. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geol. Sin. 2019, 93, 1189–1209. [Google Scholar]
- Varala, R.; Rao, S.K. Cesium Salts in Organic Synthesis: A Review. Curr. Org. Chem. 2015, 19, 1242–1274. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.H.; Wang, C.H.; Li, J.K.; Zhao, Z.; Wang, Y.; Guo, W.M. Metallogenic Regularity, New Prospecting and Guide Direction of Rubidium Deposits in China. Acta Geol. Sin. 2019, 93, 1231–1244. [Google Scholar]
- Sun, Y.; Lin, B. Research and Policy Suggestions on Development and Utilization of Rubidium Resources at Home and Abroad. China Min. Mag. 2019, 28, 41–43. [Google Scholar]
- Gao, X.R.; Jia, H.X.; Li, T.J.; Li, W.D.; Wang, A.J. Perspective of Rubidium and Caesium Resource Demand in China. Acta Geosci. Sin. 2023, 44, 279–285. [Google Scholar]
- Wu, S.; Lei, R.; Wu, C. Zircon U-Pb Age, Differentiation Process, and Its Constraints on Rb Mineralization of the Ore-Bearing Granites of the Baitoushan Rubidium Deposit in the Beishan Area. Geol. Bull. China 2023, 42, 714–729. [Google Scholar]
- Stilling, A.; Ćerný, P.; Vanstone, P.J. The Tanco Pegmatite at Bernic Lake, Manitoba. XVI. Zonal and Bulk Compositions and Their Petrogenetic Significance. Can. Mineral. 2006, 44, 599–623. [Google Scholar] [CrossRef]
- Bradley, D.C.; McCauley, A.D.; Stillings, L.L. Mineral-Deposit Model for Lithium-Cesium-Tantalum Pegmatites; U.S. Geological Survey: Reston, VA, USA, 2017.
- USGS. Mineral Commodity Summaries 2024; USGS: Reston, VA, USA, 2024.
- Zhou, X.; Zhao, Y.; Chen, W. Rubidium and Cesium Resources Current Status, Enrichment Pattern and Extraction Technology in Salt Lakes of Qinghai—Xizang (Tibet) Plateau, China. Geol. Rev. 2024, 70, 705–716. [Google Scholar]
- Chakrapani, G.J. Major and Trace Element Geochemistry in Upper Ganga River in the Himalayas, India. Environ. Geol. 2005, 48, 189–201. [Google Scholar] [CrossRef]
- Ollivier, P.; Radakovitch, O.; Hamelin, B. Major and Trace Element Partition and Fluxes in the Rhône River. Chem. Geol. 2011, 285, 15–31. [Google Scholar] [CrossRef]
- Tsumura, A.; Yamasaki, S. Background Levels of Trace Elements in Rain and River Waters in Japan. Radioisotopes 1998, 47, 46–55. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, B.; Shang, L.; Sendula, E.; Chou, I.-M. Lithium Enrichment of the Magmatic-Hydrothermal Fluid in Albite-Spodumene Pegmatite from Lijiagou, Eastern Tibetan Plateau: Evidence from Fluid Inclusions. Ore Geol. Rev. 2023, 162, 105685. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Ding, T.; Yan, K.; You, C.; Liu, X.; Chen, Z. Genetic Types, Distribution, Application and Ore-Searching Prospects of Boron Deposits. Geol. China 2023, 50, 1414–1431. [Google Scholar]
- Liu, R.; Xue, X.; Jiang, T.; Zhang, S.; Duan, P.; Yang, H.; Huang, D. The Current Situation and Development of Boron and Boride. Mater. Rev. 2006, 6, 1–4. [Google Scholar]
- Kalay, S.; Yilmaz, Z.; Sen, O.; Emanet, M.; Kazanc, E.; Çulha, M. Synthesis of Boron Nitride Nanotubes and Their Applications. Beilstein J. Nanotechnol. 2015, 6, 84–102. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, X.; Xie, H.; Li, J.; Hosmane, N.S.; Zhang, Y. The Current Status and Perspectives of Delivery Strategy for Boron-based Drugs. Curr. Med. Chem. 2019, 26, 5019–5035. [Google Scholar]
- Dymova, M.A.; Taskaev, S.Y.; Richter, V.A.; Kuligina, E.V. Boron Neutron Capture Therapy: Current Status and Future Perspectives. Cancer Commun. 2020, 40, 406–421. [Google Scholar] [CrossRef]
- Monti Hughes, A.; Hu, N. Optimizing Boron Neutron Capture Therapy (BNCT) to Treat Cancer: An Updated Review on the Latest Developments on Boron Compounds and Strategies. Cancers 2023, 15, 4091. [Google Scholar] [CrossRef] [PubMed]
- Redondo, J.; Busch, M.; De Witte, J.-P. Boron Removal from Seawater Using FILMTEC™ High Rejection SWRO Membranes. Desalination 2003, 156, 229–238. [Google Scholar] [CrossRef]
- Shakeri, A.; Moore, F.; Kompani-Zare, M. Geochemistry of the Thermal Springs of Mount Taftan, Southeastern Iran. J. Volcanol. Geotherm. Res. 2008, 178, 829–836. [Google Scholar] [CrossRef]
- Cortecci, G.; Boschetti, T.; Mussi, M.; Lameli, C.H.; Mucchino, C.; Barbieri, M. New Chemical and Original Isotopic Data on Waters from El Tatio Geothermal Field, Northern Chile. Geochem. J. 2005, 39, 547–571. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, X.; Han, J.; Deng, J.; Zhao, X. Geologic and Geochemical Features and Ore Forming Process for Hot Spring Cesium Deposit of Gulu Area, Nagqu Region, Tibet, China. Geol. Bull. China 2009, 28, 933–954. [Google Scholar]
- Li, Y.-C.; Wei, H.-Z.; Palmer, M.R.; Wang, Y.-J.; Li, W.; Cai, Y.; Zhu, Y.-F.; Wang, J.-L.; Lu, J.-J. Boron Isotope Constraints on the Migration and Accumulation of Rare Alkali Metals in the Geyserite Cesium Deposits in Southern Tibet. Ore Geol. Rev. 2023, 163, 105740. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, S.-Y. The Silicon Isotopic Compositions of Silica Sinters in Xizang, China: Implications for Paleo-Geothermal Activities since 0.5 Ma B.P. Appl. Geochem. 2024, 169, 106052. [Google Scholar] [CrossRef]
- Chevalier, M.-L.; Tapponnier, P.; van Der Woerd, J.; Leloup, P.H.; Wang, S.; Pan, J.; Bai, M.; Kali, E.; Liu, X.; Li, H. Late Quaternary Extension Rates across the Northern Half of the Yadong-Gulu Rift: Implication for East-West Extension in Southern Tibet. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019106. [Google Scholar] [CrossRef]
- Xue, F.; Tan, H.; Zhang, X.; Santosh, M.; Cong, P.; Ge, L.; Li, C.; Chen, G.; Zhang, Y. Contrasting Sources and Enrichment Mechanisms in Lithium-Rich Salt Lakes: A Li-H-O Isotopic and Geochemical Study from Northern Tibetan Plateau. Geosci. Front. 2024, 15, 101768. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M. Hydrochemical Characteristics and Evolution of Hot Fluids in the Gudui Geothermal Field in Comei County, Himalayas. Geothermics 2019, 81, 243–258. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Zhang, X.; Xing, E.; Zhang, J.; Ren, J.; Ling, Y. O, H, and Sr Isotope Evidence for Origin and Mixing Processes of the Gudui Geothermal System, Himalayas, China. Geosci. Front. 2020, 11, 1175–1187. [Google Scholar] [CrossRef]
- White, D.E. Deep Geothermal Brine near Salton Sea, California. Bull. Volcanol. 1964, 27, 369–370. [Google Scholar] [CrossRef]
- Schmitt, A.K.; Hulen, J.B. Buried Rhyolites within the Active, High-Temperature Salton Sea Geothermal System. J. Volcanol. Geotherm. Res. 2008, 178, 708–718. [Google Scholar] [CrossRef]
- Karakas, O.; Dufek, J.; Mangan, M.T.; Wright, H.M.; Bachmann, O. Thermal and Petrologic Constraints on Lower Crustal Melt Accumulation under the Salton Sea Geothermal Field. Earth Planet. Sci. Lett. 2017, 467, 10–17. [Google Scholar] [CrossRef]
- Gao, L.; Ma, G.; Zheng, Y.; Tang, Y.; Xie, G.; Yu, J.; Liu, B.; Duan, J. Research Trends on Separation and Extraction of Rare Alkali Metal from Salt Lake Brine: Rubidium and Cesium. Solvent Extr. Ion Exch. 2020, 38, 753–776. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Lu, J. Life Cycle Assessment on Boron Production: Is Boric Acid Extraction from Salt-Lake Brine Environmentally Friendly? Clean Technol. Environ. Policy 2021, 23, 1981–1991. [Google Scholar] [CrossRef]
- Xing, P.; Wang, C.; Chen, Y.; Ma, B. Rubidium Extraction from Mineral and Brine Resources: A Review. Hydrometallurgy 2021, 203, 105644. [Google Scholar] [CrossRef]
- Millot, R.; Hegan, A.; Négrel, P. Geothermal Waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr Isotopes Characterization. Appl. Geochem. 2012, 27, 677–688. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Wen, H.; Hao, Y. Geochemical Evidence for the Nonexistence of Supercritical Geothermal Fluids at the Yangbajing Geothermal Field, Southern Tibet. J. Hydrol. 2022, 604, 127243. [Google Scholar] [CrossRef]
- Kani, T.; Misawa, K.; Morikawa, N.; Kazahaya, K.; Kusuhara, F.; Yoneda, S.; Terakado, Y. Strontium Isotope Characteristics (Δ88/86Sr, 87Sr/86Sr) of Arima-Type Brines Originated From Slab-Fluids. Geophys. Res. Lett. 2023, 50, e2022GL100309. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Liu, Z.C.; Wang, R.C.; Xie, L.; Wang, J.M.; Ji, W.Q.; Yang, L.; Liu, C.; Khanal, G.P.; et al. Highly Fractionated Himalayan Leucogranites and Associated Rare-Metal Mineralization. Lithos 2020, 352–353, 105319. [Google Scholar] [CrossRef]
- Qin, K.Z.; Zhao, J.X.; He, C.T.; Shi, R.Z. Discovery of the Qongjiagang Giant Lithium Pegmatite Deposit in Himalaya, Tibet, China. Acta Petrol. Sin. 2021, 37, 3277–3286. [Google Scholar]
- Cao, H.-W.; Pei, Q.-M.; Santosh, M.; Li, G.-M.; Zhang, L.-K.; Zhang, X.-F.; Zhang, Y.-H.; Zou, H.; Dai, Z.-W.; Lin, B.; et al. Himalayan Leucogranites: A Review of Geochemical and Isotopic Characteristics, Timing of Formation, Genesis, and Rare Metal Mineralization. Earth Sci. Rev. 2022, 234, 104229. [Google Scholar] [CrossRef]
- Hu, F.; Liu, X.; He, S.; Wang, J.; Wu, F. Cesium-Rubidium Mineralization in Himalayan Leucogranites. Sci. China Earth Sci. 2023, 66, 2827–2852. [Google Scholar] [CrossRef]
- Li, Q.; Fan, Q.; Wang, J.; Qin, Z.; Zhang, X.; Wei, H.; Du, Y.; Shan, F. Hydrochemistry, Distribution and Formation of Lithium-Rich Brines in Salt Lakes on the Qinghai-Tibetan Plateau. Minerals 2019, 9, 528. [Google Scholar] [CrossRef]
- Shi, Z.; Tan, H.; Xue, F.; Li, Y.; Zhang, X.; Cong, P.; Santosh, M.; Zhang, Y. Hydrochemical Evolution and Source Mechanisms Governing the Unusual Lithium and Boron Enrichment in Salt Lakes of Northern Tibet. Geol. Soc. Am. Bull. 2024, 136, 5174–5190. [Google Scholar] [CrossRef]
- Liu, X.F.; Zheng, M.P.; Qi, W. Sources of Ore-Forming Materials of the Superlarge B and Li Deposit in Zabuye Salt Lake, Tibet, China. Acta Geol. Sin. 2007, 81, 1709–1715. [Google Scholar]
- Ericksen, G.E.; Vine, J.D.; Ballon, R. Chemical Composition and Distribution of Lithium-Rich Brines in Salar de Uyuni and Nearby Salars in Southwestern Bolivia. In Lithium Needs and Resources; Elsevier: Amsterdam, The Netherlands, 1978; pp. 355–363. [Google Scholar]
- Tan, H.; Chen, J.; Rao, W.; Zhang, W.; Zhou, H. Geothermal Constraints on Enrichment of Boron and Lithium in Salt Lakes: An Example from a River-Salt Lake System on the Northern Slope of the Eastern Kunlun Mountains, China. J. Asian Earth Sci. 2012, 51, 21–29. [Google Scholar] [CrossRef]
- Araoka, D.; Kawahata, H.; Takagi, T.; Watanabe, Y.; Nishimura, K.; Nishio, Y. Lithium and Strontium Isotopic Systematics in Playas in Nevada, USA: Constraints on the Origin of Lithium. Miner. Depos. 2014, 49, 371–379. [Google Scholar] [CrossRef]
- Steinmetz, R.L.L. Lithium- and Boron-Bearing Brines in the Central Andes: Exploring Hydrofacies on the Eastern Puna Plateau between 23° and 23°30′S. Miner. Depos. 2017, 52, 35–50. [Google Scholar] [CrossRef]
- Miao, W.; Zhang, X.; Li, Y.; Li, W.; Yuan, X.; Li, C. Lithium and Strontium Isotopic Systematics in the Nalenggele River Catchment of Qaidam Basin, China: Quantifying Contributions to Lithium Brines and Deciphering Lithium Behavior in Hydrological Processes. J. Hydrol. 2022, 614, 128630. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, H.; Cong, P.; Rao, W.; Ta, W.; Lu, S.; Shi, D. Boron and Lithium Isotopic Constraints on Their Origin, Evolution, and Enrichment Processes in a River–Groundwater–Salt Lake System in the Qaidam Basin, Northeastern Tibetan Plateau. Ore Geol. Rev. 2022, 149, 105110. [Google Scholar] [CrossRef]
- Li, Y.-L.; Miao, W.-L.; He, M.-Y.; Li, C.-Z.; Gu, H.-E.; Zhang, X.-Y. Origin of Lithium-Rich Salt Lakes on the Western Kunlun Mountains of the Tibetan Plateau: Evidence from Hydrogeochemistry and Lithium Isotopes. Ore Geol. Rev. 2023, 155, 105356. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, L.; Li, Q.; Wang, J.; Yu, D.; Liu, Z.; Huo, S. Sources and Enrichment Processes of Rubidium and Cesium in the Nalengele River and Its Terminal Lakes. J. Salt Lake Res. 2024, 32, 10–18. [Google Scholar] [CrossRef]
Critical Mineral | Lithium | Rubidium | Cesium | Boron |
---|---|---|---|---|
Cut-off grade (mg/L) | 25 | 3 | 0.5 | 125 |
Industrial grade (mg/L) | 50 | 50 | 20 | 315 |
Grade Rank (mg/L) | Annual Resource Flux of Li (t/a) | Grade Rank (mg/L) | Annual Resource Flux of Rb (t/a) | Grade Rank (mg/L) | Annual Resource Flux of Cs (t/a) | Grade Rank (mg/L) | Annual Resource Flux of B (t/a) |
---|---|---|---|---|---|---|---|
≥50 | 2 (n = 2) | ≥3 | 4 (n = 7) | ≥20 | 23 (n = 6) | ≥315 | 125 (n = 5) |
25–50 | 25 (n = 5) | 1–3 | 18 (n = 22) | 0.5–20 | 179 (n = 114) | 125–315 | 235 (n = 10) |
10–25 | 100 (n = 23) | 0–1 | 32 (n = 164) | 0–0.5 | 31 (n = 65) | 50–125 | 1176 (n = 24) |
1–10 | 109 (n = 92) | 10–50 | 910 (n = 68) | ||||
0–1 | 9 (n = 96) | 0–10 | 301 (n = 155) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Xue, F.; Ren, L.; Li, X.; Wang, S.; Er, X.Q. Critical Minerals in Tibetan Geothermal Systems: Their Distribution, Flux, Reserves, and Resource Effects. Minerals 2025, 15, 93. https://doi.org/10.3390/min15010093
Wang D, Xue F, Ren L, Li X, Wang S, Er XQ. Critical Minerals in Tibetan Geothermal Systems: Their Distribution, Flux, Reserves, and Resource Effects. Minerals. 2025; 15(1):93. https://doi.org/10.3390/min15010093
Chicago/Turabian StyleWang, Di, Fei Xue, Lijian Ren, Xin Li, Songtao Wang, and Xie Qibei Er. 2025. "Critical Minerals in Tibetan Geothermal Systems: Their Distribution, Flux, Reserves, and Resource Effects" Minerals 15, no. 1: 93. https://doi.org/10.3390/min15010093
APA StyleWang, D., Xue, F., Ren, L., Li, X., Wang, S., & Er, X. Q. (2025). Critical Minerals in Tibetan Geothermal Systems: Their Distribution, Flux, Reserves, and Resource Effects. Minerals, 15(1), 93. https://doi.org/10.3390/min15010093