Pyrite Textures, Trace Element Geochemistry and Galena Pb Isotopes of the Yanzhupo Gold Deposit in the Jiangnan Orogen, South China: Implications for Gold Mineralization Genesis
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
3. Sampling and Analytical Methods
3.1. Sampling
3.2. LA-ICP-MS Pyrite Trace Element Analysis
3.3. LA-MC-ICP-MS Galena Pb Isotope Analysis
4. Results
4.1. The Yanzhupo Pyrite Types and Internal Textures
4.2. LA-ICP-MS Trace Element Compositions of Pyrite
4.3. LA-MC-ICP-MS In-Situ Pb Isotopes of Galena
5. Discussion
5.1. Trace Element Occurrence in Pyrite
5.2. Ore Source
5.3. Ore-Forming Process
5.4. Implications for Gold Mineralization
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M.W. Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and as in pyrite from hydrothermal ore deposits. Geochim. Et Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef]
- Tanner, D.; Henley, R.W.; Mavrogenes, J.A.; Holden, P. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit, Chile. Contrib. Mineral. Petrol. 2016, 171, 33. [Google Scholar] [CrossRef]
- Steadman, J.A.; Large, R.R.; Olin, P.H.; Danyushevsky, L.V.; Meffre, S.; Huston, D.; Fabris, A.; Lisitsin, V.; Wells, T. Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study. Ore Geol. Rev. 2021, 128, 103878. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.C.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Smith, J.W.; Holwell, D.A.; McDonald, I. Precious and base metal geochemistry and mineralogy of the Grasvally Norite-Pyroxenite-Anorthosite (GNPA) member, northern Bushveld Complex, South Africa: Implications for a multi-stage emplacement. Miner. Depos. 2014, 49, 667–692. [Google Scholar] [CrossRef]
- Tan, H.; Shao, Y.; Liu, Q.; Zhang, Y.; Feng, Y.; Zhang, Y.; Sajjad, A.S. Textures, trace element geochemistry and in-situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis. Ore Geol. Rev. 2022, 144, 104843. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.; Liu, Q.; Zhang, X.; Zhan, Y.; Wang, C.; Wu, H.; Sun, J. Pyrite textures, trace element and sulfur isotopes of Yanlinsi slate-hosted deposit in the Jiangnan Orogen, South China: Implications for gold mineralization processes. Ore Geol. Rev. 2022, 148, 105029. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Mao, J. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Ulrich, T.; Long, D.; Kamber, B.; Whitehouse, M. In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement townships, Ontario, Canada. Econ. Geol. 2011, 106, 667–686. [Google Scholar] [CrossRef]
- Deol, S.; Deb, M.; Large, R.R.; Gilbert, S. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization. Chem. Geol. 2012, 326, 72–87. [Google Scholar] [CrossRef]
- Tosdal, R.M.; Wooden, J.L.; Bouse, R.M. Pb isotopes, ore deposits, and metallogenic terranes. In Application of Radiogenic Isotopes to Ore Deposit Research and Exploration, Reviews in Economic Geology; Lambert, D.D., Ruiz, J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 12, pp. 1–28. [Google Scholar]
- Potra, A.; Macfarlane, A.W. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: Implications for ore genesis. Miner. Depos. 2014, 49, 101–117. [Google Scholar] [CrossRef]
- Standish, C.D.; Dhuime, B.; Chapman, R.J.; Hawkesworth, C.J.; Pike, A.W.G. The genesis of gold mineralisation hosted by orogenic belts: A lead isotope investigation of Irish gold deposits. Chem. Geol. 2014, 378–379, 40–51. [Google Scholar] [CrossRef]
- Xiong, L.; Zhao, X.; Wei, J.; Jin, X.; Fu, L.; Lin, Z. Linking Mesozoic lode gold deposits to metal-fertilized lower continental crust in the North China Craton: Evidence from Pb isotope systematics. Chem. Geol. 2020, 533, 119440. [Google Scholar] [CrossRef]
- Yan, C.; Shu, L.; Santosh, M.; Yao, J.; Li, J.; Li, C. The Precambrian tectonic evolution of the western Jiangnan Orogen and western Cathaysia Block: Evidence from detrital zircon age spectra and geochemistry of clastic rocks. Precambrian Res. 2015, 268, 33–60. [Google Scholar] [CrossRef]
- Deng, T.; Xu, D.; Chi, G.; Wang, Z.; Jiao, Q.; Ning, J.; Dong, G.; Zou, F. Geology, geochronology, geochemistry, and ore genesis of the Wangu gold deposit in northeastern Hunan Province, Jiangnan Orogen. South China. Ore Geol. Rev. 2017, 88, 619–637. [Google Scholar] [CrossRef]
- Xu, D.; Deng, T.; Chi, G.; Wang, Z.; Zou, F.; Zhang, J.; Zou, S. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting. Ore Geol. Rev. 2017, 88, 565–618. [Google Scholar] [CrossRef]
- Sun, S.; Yang, L.; Zhang, L.; Wang, J. Origin of Zhengchong gold deposit, northeastern Hunan Province, China: Constraints from sulfur and lead isotopes. Acta Petrol. Sin. 2020, 36, 1461–1476, (In Chinese with English abstract). [Google Scholar]
- Dong, G.J.; Xu, D.R.; Wang, L.S.; Chen, G.H. Determination of mineralization age and tracing of ore bearing fluid source of gold deposits in eastern Hunan—Also on genetic types of deposits. Geotecton. Et Metallog. 2008, 32, 10, (In Chinese with English abstract). [Google Scholar]
- Han, F.B.; Chang, L.; Cai, M.H.; Liu, S.Y.; Zhang, S.-Q.; Chen, Y.; Peng, Z.-A.; Xu, M. Ore-forming epoch of gold deposits in northeastern Hunan. Miner. Depos. 2010, 29, 563–571, (In Chinese with English abstract). [Google Scholar]
- Deng, T.; Xu, D.; Chi, G.; Wang, Z.; Chen, G.; Zhou, Y.; Li, Z.; Ye, T.; Yu, D. Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen: A case study on gold deposits in northeastern Hunan, South China. Ore Geol. Rev. 2020, 124, 103586. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Liu, Q.; Shao, Y.; Wu, S.; Pan, Z.; Chen, M.; Zhang, Y.; Wu, H. Genesis of the Lishupo gold deposit in the Jiangnan Orogen, NE Hunan (South China): Biotite Ar-Ar, zircon U-Pb ages and H-O-S-Pb isotopic constraints. Ore Geol. Rev. 2022, 145, 104890. [Google Scholar] [CrossRef]
- Liu, A.-L.; Zhang, X.-J.; Ulrich, T.; Zhang, J.; Jiang, M.-R.; Liu, W.-H. Geology, geochronology and fluid characteristics of the Pingqiu gold deposit, Southeastern Guizhou Province, China. Ore Geol. Rev. 2017, 89, 187–205. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.-Q.; Groves, D.I.; Liu, Y.; Sun, S.-C.; Qi, P.; Wu, S.-G.; Peng, J.-S. Geological and H-O-S-Pb isotopic constraints on ore genesis, Huangjindong gold deposit, Jiangnan Orogen, southern China. Ore Geol. Rev. 2018, 99, 264–281. [Google Scholar] [CrossRef]
- Wang, J.; Wen, H.; Li, C.; Zhang, J.; Ding, W. Age and metal source of orogenic gold deposits in Southeast Guizhou Province, China: Constraints from Re–Os and He–Ar isotopic evidence. Geosci. Front. 2019, 10, 581–593. [Google Scholar] [CrossRef]
- Li, W.; Xie, G.-Q.; Mao, J.-W.; Zhang, Z.-Y.; Fu, B.; Lu, S. Muscovite 40Ar/39Ar and in situ sulfur isotope analyses of the slate-hosted Gutaishan Au–Sb deposit, South China: Implications for possible Late Triassic magmatic-hydrothermal mineralization. Ore Geol. Rev. 2018, 101, 839–853. [Google Scholar] [CrossRef]
- Li, W.; Cook, N.J.; Xie, G.-Q.; Mao, J.-W.; Ciobanu, C.; Fu, B. Complementary Textural, Trace Element, and Isotopic Analyses of Sulfides Constrain Ore-Forming Processes for the Slate-Hosted Yuhengtang Au Deposit, South China. Econ. Geol. 2021, 116, 1825–1848. [Google Scholar] [CrossRef]
- Dai, J.; Xu, D.; Chi, G.; Li, Z.; Deng, T.; Zhang, J.; Li, B. Origin of the Woxi orogenic Au-Sb-W deposit in the west Jiangnan Orogen of South China: Constraints from apatite and wolframite U-Pb dating and pyrite in-situ S-Pb isotopic signatures. Ore Geol. Rev. 2022, 150, 105134. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Fan, W.; Zhang, G.; Chen, S.; Cawood, P.A.; Zhang, A. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics 2010, 29, 6. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Gao, L.Z.; Ding, X.Z.; Huang, Z.Z. Tectonic Environment of the Metamorphosed Basement in the Jiangnan Orogen and Its Evolutional Features. Geol. Rev. 2012, 58, 401–413, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.; Fan, W.; Zhang, G.; Zhang, Y. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Shu, L.S.; Jahn, B.M.; Charvet, J.; Santosh, M.; Wang, B.; Xu, X.S.; Jiang, S.Y. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations. Am. J. Sci. 2014, 314, 154–186. [Google Scholar] [CrossRef]
- Liu, J.; Tran, M.-D.; Tang, Y.; Nguyen, Q.-L.; Tran, T.-H.; Wu, W.; Chen, J.; Zhang, Z.; Zhao, Z. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications. Gondwana Res. 2012, 22, 628–644. [Google Scholar] [CrossRef]
- Faure, M.; Lepvrier, C.; Nguyen, V.V.; Vu, T.V.; Lin, W.; Chen, Z. The South China block-Indochina collision: Where, when, and how? J. Asian Earth Sci. 2014, 79, 260–274. [Google Scholar] [CrossRef]
- Mao, J.; Cheng, Y.; Chen, M.; Pirajno, F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Zheng, H.; Sun, X.; Wang, P.; Chen, W.; Yue, J. Mesozoic tectonic evolution of the Proto-South China Sea: A perspective from radiolarian paleobiogeography. J. Asian Earth Sci. 2019, 179, 37–55. [Google Scholar] [CrossRef]
- Fu, G.-G.; Xu, D.-R.; Chen, G.-H.; Li, P.-C. New recognitions on geological characteristics of gold ore deposits in northeastern Hunan province, China and new prospecting advances. Geotecton. Et Metallog. 2002, 4, 416–422, (In Chinese with English abstract). [Google Scholar]
- Lu, W.; Sun, J.; Zhou, C.; Guo, A.M.; Peng, W. Source of ore-forming materials and types of ore-forming fluids in yanlinsi gold deposit, Northeastern Hunan. Acta Geosci. Sin. 2020, 41, 11, (In Chinese with English abstract). [Google Scholar]
- Meng, Q.-X.; Zhang, J.; Geng, J.-Z.; Zhang, C.-L.; Huang, W.-C. Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Baxi Groups in middle Hunan Province: Implications for the Neoproterozoic tectonic evolution in South China. Geol. China 2013, 40, 191–216, (In Chinese with English abstract). [Google Scholar]
- Bai, D.; Jiang, Q.; Li, B.; Jiang, W.; Li, Y. Geochemistry and tectonic implication of the sedimentary rocks in Lengjiaxi Group in northeastern Hunan. Bull. Geol. Sci. Technol. 2021, 40, 1–13, (In Chinese with English abstract). [Google Scholar]
- Wang, X.L.; Zhou, J.C.; Qiu, J.S.; Gao, J.F. Petrogenesis of Neoproterozoic Peraluminous Granites from Northeastern Hunan Province:Chronological and Geochemical Constraints. Geol. Rev. 2004, 50, 65–76. [Google Scholar]
- Ji, W.; Faure, M.; Lin, W.; Chen, Y.; Chu, Y.; Xue, Z. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan–Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints. J. Geophys. Res. Solid Earth 2018, 123, 689–710. [Google Scholar] [CrossRef]
- Wang, J.Q.; Shu, L.S.; Santosh, M. Petrogenesis and tectonic evolution of Lianyunshan complex, South China: Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen. Gondwana Res. 2016, 39, 114–130. [Google Scholar] [CrossRef]
- Jia, D.; Hu, R.; Zhao, J.; Xie, G. Lithogeochemical Characteristies of the Mesozoic Granitic Intrusion from the Wangxiang Area in Northeastern Hunan Province and Its Tectonic Setting. Acta Geol. Sin. 2003, 77, 98–103. [Google Scholar]
- Xiong, Y.-Q.; Jiang, S.-Y.; Wen, C.-H.; Yu, H.-Y. Granite–pegmatite connection and mineralization age of the giant Renli Ta Nb deposit in South China: Constraints from U–Th–Pb geochronology of coltan, monazite, and zircon. Lithos 2020, 358–359, 105422. [Google Scholar] [CrossRef]
- Changsha General Survey of Natural Resources Center, China Geological Survey. Proposal for Exploration Block of Yanzhupo Gold Mine in Pingjiang County, Hunan Province; Changsha General Survey of Natural Resources Center, China Geological Survey: Changsha, China, 2024; pp. 1–62. (In Chinese) [Google Scholar]
- Gilbert, S.; Danyushevsky, L.; Goemann, K.; Death, D. Fractionation of sulphur relative to iron during laser abla-tion-ICP-MS analyses of sulfide minerals: Implications for quantification. J. Anal. At. Spectrom. 2014, 29, 1024–1033. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Wilson, S.A.; Koenig, A.E.; Ridley, W.I. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Chu, G.; Chen, H.; Zhang, S.; Zhang, Y.; Cheng, J. Geochemistry and Geochronology of Multi-Generation Garnet: New Insights on the Genesis and Fluid Evolution of Prograde Skarn Formation. Geosci. Front. 2023, 14, 101495. [Google Scholar] [CrossRef]
- Danyushevsky, L.; Robinson, P.; Gilbert, S.; Norman, M.; Large, R.; Mcoldrick, P.; Shelley, M. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochemistry 2011, 11, 51–60. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Cheng, J.; Tian, J.; Zhang, L.; Olin, P. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China. Am. Mineral. 2022, 107, 1910–1925. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, W.; Liu, Y.; Gao, S.; Li, M.; Zong, K.; Chen, H.; Hu, S. Wave Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hu, Z.; Gunther, D.; Liu, Y.; Ling, W.; Zong, K.; Chen, H.; Gao, S. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration. Anal. Chim. Acta 2016, 948, 9–18. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Z.; Liu, Y. Iso-Compass: New freeware software for isotopic data reduction of LA-MC-ICP-MS. J. Anal. At. Spectrom. 2020, 35, 1087–1096. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics-the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Han, R.Y.; Shao, Y.J.; Zhang, Y.; Zhao, L.J.; Wang, X. Ore source and cobalt enrichment mechanism of the Jingchong Cu-Co polymetallic deposit, Northeast Hunan Province. Geochemistry 2024, unpublished (In Chinese with English abstract). [Google Scholar]
- Li, P. Magmatism of Phanerzoic Granitoids in Southeastern Hunan Province, China and It Evolution Regularity. PhD Thesis, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China, 2006. (In Chinese with English abstract). [Google Scholar]
- Liu, H.C.; Zhu, B.Q. Study on the depositional time of the Lengjiaxi Group and Banxi Group in the northwestern Hunan Province. Chin. Sci. Bull. 1994, 39, 148–150. [Google Scholar]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- George, L.L.; Biagioni, C.; Lepore, G.O.; Lacalamita, M.; Agrosì, G.; Capitani, G.C.; Bonaccorsi, E.; d’Acapito, F. The specia-tion of thallium in (Tl, Sb, As)-rich pyrite. Ore Geol. Rev. 2019, 107, 364–380. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Et Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Becker, U.; Kesler, S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Et Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Morishita, Y.; Shimada, N.; Shimada, K. Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geol. Rev. 2018, 95, 79–93. [Google Scholar] [CrossRef]
- Kusebauch, C.; Gleeson, S.A.; Oelze, M. Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits. Sci. Adv. 2019, 5, 5891. [Google Scholar] [CrossRef] [PubMed]
- Pokrovski, G.S.; Kokh, M.A.; Proux, O.; Hazemann, J.L.; Bazarkina, E.F.; Testemale, D.; Escoda, C.; Boiron, M.C.; Blanchard, M.; Aigouy, T.; et al. The nature and partitioning of invisible gold in the pyrite-fluid system. Ore Geol. Rev. 2019, 109, 545–563. [Google Scholar] [CrossRef]
- Morishita, Y.; Hammond, N.Q.; Momii, K.; Konagaya, R.; Sano, Y.; Takahata, N.; Ueno, H. Invisible gold in pyrite from epithermal, bandediron-formation-hosted, and sedimentary gold deposits: Evidence of hydrothermal influence. Minerals 2019, 9, 447. [Google Scholar] [CrossRef]
- Chouinard, A.; Paquette, J.; Williams-Jones, A.E. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal highsulfidation deposit, Chile–Argentina. Can. Mineral. 2005, 43, 951–963. [Google Scholar] [CrossRef]
- Hazarika, P.; Mishra, B.; Chinnasamy, S.S.; Bernhardt, H.-J. Multi-stage growth and invisible gold distribution in pyrite from the Kundarkocha sediment-hosted gold deposit, eastern India. Ore Geol. Rev. 2013, 55, 134–145. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.C.; Kesler, S.E. Nanoscale “liquid” inclusions of As–Fe–S in arsenian pyrite. Am. Mineral. 2009, 94, 391–394. [Google Scholar] [CrossRef]
- Belousov, I.; Large, R.; Meffre, S.; Danyushevsky, L.; Steadman, J.; Beardsmore, T. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geol. Rev. 2016, 79, 474–499. [Google Scholar] [CrossRef]
- Román, N.; Reich, M.; Leisen, M.; Morata, D.; Barra, F.; Deditius, A.P. Geochemical and micro-textural fingerprints of boil-ing in pyrite. Geochim. Et Cosmochim. Acta 2019, 246, 60–85. [Google Scholar] [CrossRef]
- Liu, Q.-Q.; Shao, Y.-J.; Chen, M.; Algeo, T.J.; Li, H.; Dick, J.M.; Wang, C.; Wang, W.-S.; Li, Z.-Q.; Liu, Z.-F. Insights into the genesis of orogenic gold deposits from the Zhengchong gold field, northeastern Hunan Province, China. Ore Geol. Rev. 2019, 105, 337–355. [Google Scholar] [CrossRef]
- Wang, C.; Shao, Y.; Zhang, X.; Lai, C.; Liu, Z.; Li, H.; Ge, C.; Liu, Q. Metallogenesis of the Hengjiangchong gold deposit in Jiangnan Orogen, South China. Ore Geol. Rev. 2020, 118, 103350. [Google Scholar] [CrossRef]
- Wang, C.; Shao, Y.; Chen, X.; Zhang, X.; Li, H.; Wei, H.; Liu, Q. Genesis of the Jinji gold deposit in the Jiangnan Orogen, South China: Constraints from geology, chlorite geochemistry, age and H-O-S-Pb isotopes. Ore Geol. Rev. 2023, 155, 105352. [Google Scholar] [CrossRef]
- Mao, J.W.; Kerrich, R.; Li, H.; Li, Y. High 3He/4He ratios in the Wangu gold deposit, Hunan province, China: Implications for mantle fluids along the Tanlu deep fault zone. Geochem. J. 2002, 36, 197–208. [Google Scholar] [CrossRef]
- Dong, G.J.; Xu, D.R.; Wang, L.; Chen, G.H.; He, Z.L.; Fu, G.G.; Wu, J.; Wang, Z.L. Determination of mineralizing ages on gold ore deposits in the eastern hunan province, South China and isotopic tracking on ore-forming fluids–re-discussing gold ore deposit type. Geotecton. Et Metallog. 2008, 32, 482–491, (In Chinese with English abstract). [Google Scholar]
- Wang, C.; Shao, Y.-J.; Goldfarb, R.; Tan, S.-M.; Sun, J.; Zhou, C.; Zheng, H.; Liu, Q.-Q.; Xiong, Y.-Q. Superimposed Gold Mineralization Events in the Tuanshanbei Orogenic Gold Deposit, Central Jiangnan Orogen, South China. Econ. Geol. 2024, 119, 113–137. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Dong, G.J.; Xu, D.R.; Deng, T.; Wu, J.; Wang, X.; Gao, L.; Chen, X.G. Scheelite Sm-Nd age of the Huangjindong Au deposit in Hunan and its geological significance. Geochimica 2021, 50, 381–397, (in Chinese with English abstract). [Google Scholar]
- Yuan, Z.K.; Shao, Y.J.; Liu, Q.Q.; Zhang, Y.C.; Wang, Z.L. Genesis of Jiangdong gold deposit in Wangu gold field, Northeast 713 Hunan: Constraints from fluid inclusions and H-O isotope. Gold Sci. Technol. 2024, 32, 559–578, (in Chinese with 714 English abstract). [Google Scholar]
- Zhang, Q.; Pan, J.Y.; Shao, S.X. Lead isotope interpretation of lead sources in some metal deposits in China. Geochemistry 2000, 29, 231–238, (In Chinese with English abstract). [Google Scholar]
- Shen, N.P.; Peng, J.T.; Yuan, S.D.; Zhang, D.L.; Hu, R.Z. Discussion on lead isotopic composition and source of ore-forming materials in Xujiashan antimony deposit, Hubei Province. Acta Mineral. Sin. 2008, 28, 169–176, (In Chinese with English abstract). [Google Scholar]
- Huston, D.L.; Champion, D.C. Applications of lead isotopes to ore geology, metallogenesis and exploration. In Isotopes in Economic Geology, Metallogenesis and Exploration; Springer International Publishing: Cham, Germany, 2023; pp. 155–187. [Google Scholar]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Zezin, D.; Williams-Jones, A.E. An experimental study of cobalt (II) complexation in Cl- and H2S-bearing hydrothemal solutions. Geochim. Et Cosmochim. Acta 2011, 75, 4065–4079. [Google Scholar] [CrossRef]
- Burisch, M.; Marks, M.A.W.; Nowak, M.; Markl, G. The effect of temperature and cataclastic deformation on the composition of upper crustal fluids—An experimental approach. Chem. Geol. 2016, 433, 24–35. [Google Scholar] [CrossRef]
- Shan, L. Metallogenic System of Copper-Lead-Zinc-Cobalt Polymetallic Deposits Northeastern Hu’nan Province, South China. PhD. Degree Thesis, South China China University of Geosciences, Beijing, China, 2019. (In Chinese with English abstract). [Google Scholar]
- Wang, Z.; Li, S.; Xu, D.; Peng, E.; Wang, Y.; Gan, J.; Huang, B.; Zhang, D. Cobalt enrichment mechanism in the Hengdong cobalt deposit, Northeast Hunan Province: Evidence from texture, chemical composition and sulfur isotopic composition of pyrite. Acta Petrol. Sin. 2023, 39, 2723–2740, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Shan, L.; Wang, C.; Kang, B.; Jiang, J.S.; Wang, L.; Zhang, K.; Li, Y.J. Mineralization Age, Fluid Properties and Metallogenic Model of the Jingchong Co-Cu Deposit in the Central Jiangnan Orogen, South China. Geotecton. Et Metallog. 2024, 48, 1299–1314, (In Chinese with English abstract). [Google Scholar]
- Jia, B.H.; Peng, H.Q. Precambrian Geology and Mineralization in Northeast Hunan; Geological Publishing House: Beijing, China, 2005; pp. 106–122. (In Chinese) [Google Scholar]
- Bralia, A.; Sabatini, G.; Troja, F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner. Deposita 1979, 14, 353–374. [Google Scholar] [CrossRef]
- Clark, C.; Grguric, B.; Mumm, A.S. Genetic implications of pyrite chemistry from the Paleoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences, northeastern South Australia. Ore Geology Reviews 2004, 25, 237–257. [Google Scholar] [CrossRef]
- Wang, K.; Zhai, D.; Liu, J.; Wu, H. LA-ICP-MS trace element analysis of pyrite from the Dafang gold deposit, South China: Implications for ore genesis. Ore Geol. Rev. 2021, 139, 104507. [Google Scholar] [CrossRef]
- Adam, M.M.A.; Lv, X.; Abdel Rahman, A.A.; Stern, R.J.; Abdalrhman, A.A.A.; Ullah, Z. In-situ sulfur isotope and trace ele-ment compositions of pyrite from the Neoproterozoic Haweit gold deposit, NE Sudan: Implications for the origin and source of the sulfur. Ore Geol. Rev. 2020, 120, 103405. [Google Scholar] [CrossRef]
- del Real, I.; Thompson, J.; Simon, A.C.; Reich, M. Geochemical and Isotopic Signature of Pyrite as a Proxy for Fluid Source and Evolution in the Candelaria-Punta del Cobre Iron Oxide Copper-Gold District, Chile. Econ. Geol. 2020, 115, 1493–1518. [Google Scholar] [CrossRef]
- Liu, W.; McPhail, D.C. Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chem. Geol. 2005, 221, 21–39. [Google Scholar] [CrossRef]
- Kouzmanov, K.; Pokrovski, G.S. Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems In: Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2012; pp. 573–618. [Google Scholar]
- Genna, D.; Gaboury, D. 2015. Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-Mcleod deposits, Abitibi, Canada, and implications for exploration. Econ. Geol. 2015, 110, 2087–2108. [Google Scholar] [CrossRef]
- Keith, M.; Hackel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Doyle, K.; Holwell, D.A.; Jenkin, G.R.T.; Barry, T.L.; Becker, J.; Rampe, J. Pyrite chemistry: A new window into Au-Te ore-forming processes in alkaline epithermal districts, Cripple Creek, Colorado. Geochim. Et Cosmochim. Acta 2020, 274, 172–191. [Google Scholar] [CrossRef]
- Putnis, A. Mineral replacement reactions. Rev. Mineral. Geochem. 2009, 70, 87–124. [Google Scholar] [CrossRef]
- Hu, H.; Lentz, D.; Li, J.-W.; McCarron, T.; Zhao, X.-F.; Hall, D. Reequilibration processes in magnetite from iron skarn deposits. Econ. Geol. 2015, 110, 1–8. [Google Scholar] [CrossRef]
- Hastie, E.C.G.; Schindler, M.; Kontak, D.J.; Lafrance, B. Transport and coarsening of gold nanoparticles in an orogenic deposit by dissolution-reprecipitation and Ostwald ripening. Commun. Earth Environ. 2021, 2, 57. [Google Scholar] [CrossRef]
- Chen, X.-D.; Li, B.; Tang, L.; Zhang, W.-D.; Zhu, L. Silver enrichment and trace element deportment in hydrothermal replacement reactions: Perspective from the Nageng Ag-polymetallic deposit, East Kunlun Orogen, NW China. Ore Geol. Rev. 2022, 142, 104691. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, S.Y.; Frimmel, H.E.; Zhu, L.-Y. In situ chemical and isotopic analyses and element mapping of multiple-generation pyrite: Evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China. Am. Mineral. 2022, 107, 1133–1148. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Heinrich, C.A. Vapor transport or metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Borisova, A.Y.; Bychkov, A.Y. Speciation and transport of metals and metalloids in geological vapors. Rev. Mineral. Geochem. 2013, 76, 165–218. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljoen, F.; Petersen, S.; Vorster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Et Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- Velásquez, G.; Beziat, D.; Salvi, S.; Siebenaller, L.; Borisova, A.Y.; Pokrovski, G.S.; De Parseval, P. Formation and deformation of pyrite and implications for gold mineralization in the El Callao District, Venezuela. Econ. Geol. 2014, 109, 457–486. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Econ. Geol. 2003, 98, 1–29. [Google Scholar]
- He, D.Y.; Qiu, K.F.; Simon, A.C.; Pokrovski, G.S.; Yu, H.C.; Connolly, J.A.D.; Li, S.S.; Turner, S.; Wang, Q.F.; Yang, M.F.; et al. Mantle oxidation by sulfur drives the formation of giant gold deposits in subduction zones. Proc. Natl. Acad. Sci. USA 2024, 121, e2404731121. [Google Scholar] [CrossRef]
- Morrison, G.W.; Rose, W.J.; Jaireth, S. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geol. Rev. 1991, 6, 333–364. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, T.; Shen, W.; Shu, L.; Niu, Y. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-X.; Li, X.-H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Wen, Z.L.; Deng, T.; Dong, G.J.; Zou, F.H.; Xu, D.R.; Wang, Z.L.; Lin, G.; Chen, G.W. Study on the characters and rules of the ore-controlling structures of the Wangu gold deposit in northeastern Hunan Province. Geotecton. Et Metallog. 2016, 40, 281–294, (In Chinese with English abstract). [Google Scholar]
- Cook, N.J.; Ciobanu, C.L.; Meria, D.; Silcock, D.; Wade, B. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements. Econ. Geol. 2013, 108, 1273–1283. [Google Scholar] [CrossRef]
- Fougerouse, D.; Micklethwaite, S.; Tomkins, A.G.; Mei, Y.; Kilburn, M.; Guagliardo, P.; Fisher, L.A.; Halfpenny, A.; Gee, M.; Paterson, D.; et al. Gold remobilisation and formation of high grade ore shoots driven by dissolution reprecipitation replacement and Ni substitution into auriferous arsenopyrite. Geochim. Et Cosmochim. Acta 2016, 178, 143–159. [Google Scholar] [CrossRef]
- Rottier, B.; Kouzmanov, K.; Walle, M.; Bendezu, R.; Fontbote, L. Sulfide replacement processes revealed by textural and LA-ICP-MS trace element analyses: Example from the early mineralization stages at Cerro de Pasco, Peru. Econ. Geol. 2016, 111, 1347–1367. [Google Scholar] [CrossRef]
- Sung, Y.-H.; Brugger, J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Nugus, M. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner. Depos. 2009, 44, 765–791. [Google Scholar] [CrossRef]
- Thomas, H.V.; Large, R.R.; Bull, S.W.; Maslennikov, V.; Berry, R.F.; Fraser, R.; Froud, S.; Moye, R. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at bendigo gold mine, Australia: Insights for Ore Genesis. Econ. Geol. 2011, 106, 1–31. [Google Scholar] [CrossRef]
- Fougerouse, D.; Micklethwaite, S.; Ulrich, S.; Miller, J.; Godel, B.; Adams, D.T.; McCuaig, T.C. Evidence for two stages of mineralization in West Africa’s largest gold deposit: Obuasi, Ghana. Econ. Geol. 2017, 112, 3–22. [Google Scholar] [CrossRef]
- Wu, Y.F.; Evans, K.; Li, J.W.; Fougerouse, D.; Large, R.R.; Guagliardo, P. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit. Geochim. Et Cosmochim. Acta 2019, 245, 98–117. [Google Scholar] [CrossRef]
Sample Number | Sampling Location | Ore Stage | Mineral Assemblage |
---|---|---|---|
ZK1001-47 | 487.6 m level | Stage II | Pyrite + chalcopyrite + galena + sphalerite |
ZK1001-58 | 638.9 m level | Stage III | Pyrite + chalcopyrite |
ZK1001-63 | 711.1 m level | Stage II | Pyrite + chalcopyrite + galena + sphalerite + tetrahedrite + bismuth |
ZK1002-36 | 256.1 m level | Stage III | Pyrite + chalcopyrite + galena |
ZK3502-13 | 114.2 m level | Stage I | Pyrite + chalcopyrite + galena |
ZK3502-40 | 356.2 m level | Stage II | Pyrite + chalcopyrite + galena + sphalerite |
ZK3502-44 | 396.6 m level | Stage II | Pyrite + chalcopyrite + galena + sphalerite |
ZK3701-18 | 113.8 m level | Stage I | Pyrite + chalcopyrite + galena |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Wang, X.; Chen, B.; Wang, B.; Zhu, Z.; Wang, W.; Peng, D.; Zhang, Q.; Liu, Z.; Xu, Q. Pyrite Textures, Trace Element Geochemistry and Galena Pb Isotopes of the Yanzhupo Gold Deposit in the Jiangnan Orogen, South China: Implications for Gold Mineralization Genesis. Minerals 2025, 15, 94. https://doi.org/10.3390/min15010094
Liao J, Wang X, Chen B, Wang B, Zhu Z, Wang W, Peng D, Zhang Q, Liu Z, Xu Q. Pyrite Textures, Trace Element Geochemistry and Galena Pb Isotopes of the Yanzhupo Gold Deposit in the Jiangnan Orogen, South China: Implications for Gold Mineralization Genesis. Minerals. 2025; 15(1):94. https://doi.org/10.3390/min15010094
Chicago/Turabian StyleLiao, Jia, Xu Wang, Biao Chen, Buqing Wang, Zhenhua Zhu, Wentao Wang, Ding Peng, Qian Zhang, Zhuang Liu, and Qiangqiang Xu. 2025. "Pyrite Textures, Trace Element Geochemistry and Galena Pb Isotopes of the Yanzhupo Gold Deposit in the Jiangnan Orogen, South China: Implications for Gold Mineralization Genesis" Minerals 15, no. 1: 94. https://doi.org/10.3390/min15010094
APA StyleLiao, J., Wang, X., Chen, B., Wang, B., Zhu, Z., Wang, W., Peng, D., Zhang, Q., Liu, Z., & Xu, Q. (2025). Pyrite Textures, Trace Element Geochemistry and Galena Pb Isotopes of the Yanzhupo Gold Deposit in the Jiangnan Orogen, South China: Implications for Gold Mineralization Genesis. Minerals, 15(1), 94. https://doi.org/10.3390/min15010094