Late Triassic Felsic and Mafic Magmatism in the South Qinling Orogen, Central China: Insights from the Petrology, Zircon U-Pb Geochronology, and Geochemistry of the Huoshaodian Pluton
Abstract
:1. Introduction
2. Geological Background and Geological Characteristics of Pluton
2.1. Regional Geological Setting
2.2. Geological Characteristics of Pluton
3. Sample Descriptions
4. Analytical Methods
4.1. Whole-Rock Geochemical Analyses
4.2. LA-ICP-MS Zircon U-Pb Dating
5. Results
5.1. Geochemistry
5.2. Zircon U-Pb Ages and REE Contents
5.2.1. Zircon U-Pb Age of Gabbro
5.2.2. Zircon U-Pb Ages of Quartz Diorite
5.2.3. Zircon U-Pb Ages for Granodiorite
6. Discussion
6.1. Age of Formation of the Huoshaodian Pluton
6.2. Petrology
6.3. Tectonic Environment Discrimination
7. Conclusions
- (1)
- The LA-ICP-MS zircon U-Pb isotopic dating results indicate that the gabbro, quartz diorite, and granodiorite in the Huoshaodian pluton have crystallization ages of 214.9 ± 0.58 Ma, 215.1 ± 1.2 Ma, and 215.4 ± 1.9 Ma, respectively, suggesting that the formation age of the Huoshaodian pluton ranges from 214.9 to 215.4 Ma during the late Triassic period.
- (2)
- The gabbro samples from the Huoshaodian pluton exhibit an enrichment of LILEs and a depletion of HFSEs, which is indicative of typical geochemical features observed in arc-related magmatic rocks. During the ascent and evolution of the magma, processes of fractional crystallization and crustal contamination occurred. The quartz diorite and granodiorite derived from the Huoshaodian pluton display geochemical characteristics resembling adakitic rocks, suggesting that they were formed through the melting of mafic lower crust triggered by mantle-derived magma underplating.
- (3)
- The formation mechanism of the Huoshaodian pluton involves the subduction of oceanic crust to a specific depth, where the detachment of the subducting slab induces mantle material upwelling. Magma underplating brings heat, triggering the partial melting of the mafic lower crust. The resulting mafic magma ascends into the granitic magma chamber. Due to temperature differences and high viscosity between mafic and granitic magmas, incomplete mixing occurs, leading to the generation of mafic melts and melts with distinct adakitic characteristics.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.W.; Guo, A.L.; Dong, Y.P.; Yao, A.P. Rethinking of the Qinling orogen. Int. J. Geomech. 2019, 25, 746–768. (In Chinese) [Google Scholar]
- Xue, F.; Lerch, M.F.; Kröner, A.; Reischmann, T. Tectonic evolution of the East Qinling Mountains, China, in the Paleozoic: A review and new tectonic model. Tectonophysics 1996, 253, 271–284. [Google Scholar] [CrossRef]
- Dong, Y.P.; Santosh, M. Tectonic architecture and multiple orogenies of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Meng, Q.R.; Zhang, G.W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics 2000, 323, 183–196. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zhang, G.W.; Yan, Y.X.; Wang, Y. Origin and dynamic significance of Guangtoushan Granitic plutons to the north of Mianlue zone in southern Qinling. Acta Pet. Sin. 2005, 21, 711–720. (In Chinese) [Google Scholar]
- Dong, Y.P.; Zhang, G.W.; Neubauer, F. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Qin, J.F.; Lai, S.C. Granite Genesis and Deep Dynamics of the Late Triassic Qinling Orogenic Belt; Science Publishing House: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Shaanxi Institute of Geological Survey. Regional Geological Survey of China: Shaanxi Province; Geological Publishing House: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Xu, X.Y.; Chen, J.L.; Zhang, E.P. Geological Map of the Qinling Mountains and Surrounding Area (1:50,000); Map Publishing House: Xi’an, China, 2014. (In Chinese) [Google Scholar]
- Dong, Y.P.; Zhang, G.W.; Sun, S.S. The “cross-tectonics” in China continent: Formation, evolution, and its significance for continental dynamics. Int. J. Geomech. 2019, 25, 769–797. (In Chinese) [Google Scholar]
- Li, X.B.; Pei, X.Z.; Li, Z.C. Tectonic attributes and Late Paleozoic geological background of Mian-Lue belt in the southern margin of Qinling: Constraints from U-Pb geochronology of zircon. Acta Pet. Sin. 2021, 37, 1444–1468. (In Chinese) [Google Scholar]
- Li, Z.C.; Pei, X.Z.; Li, R.B. LA-ICP-MS zircon U-Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance. Acta Pet. Sin. 2013, 29, 2617–2634. (In Chinese) [Google Scholar]
- Zhang, G.W.; Cheng, S.Y.; Guo, A.L.; Dong, Y.P.; Lai, S.C.; Yao, A.P. Mianlue paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie—With a discussion of the assembly of the main part of the continent of China. Geol. Bull. China 2004, 23, 846–853. (In Chinese) [Google Scholar]
- Li, Y.L.; Li, S.Z.; Zhang, G.W. Composition of the Mianlue suture zone and its relation with the evolution of the old oceanic basin. Geol. China 2002, 29, 129–134. (In Chinese) [Google Scholar]
- Zhang, G.W.; Dong, Y.P.; Lai, S.C.; Guo, A.L.; Meng, Q.R.; Liu, S.F.; Cheng, S.Y.; Yao, A.P.; Zhang, Z.Q.; Pei, X.Z.; et al. The Mianlue structural zone and Mianlue suture zone at the southern edge of the Qinling-Dabie orogenic belt. Sci. China Earth Sci. 2003, 33, 1121–1135. (In Chinese) [Google Scholar]
- Faure, M.; Chen, Y.; Feng, Z. Tectonics and geodynamics of South China: An introductory note. J. Asian Earth Sci. 2017, 141, 1–6. [Google Scholar] [CrossRef]
- Chen, Y.J. Late Triassic tectonic setting, magmatism and metallogenies in Qinling Orogen, central China. Geol. China 2010, 37, 854–865. (In Chinese) [Google Scholar]
- Liang, X.T.; Mao, X.W.; Zeng, C.F.; Hu, Z.Y.; Yang, Y.A.; Yu, W.J. Gravity field characteristics and orogenic belt structure of the Qinling-Dabie orogenic belt (Hubei section). Geol. China 2016, 43, 446–457. (In Chinese) [Google Scholar]
- Qin, L.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Pei, L.; Liu, C.J.; Zhou, H.; Wang, M.; Zhao, S.W.; Chen, Y.X.; et al. Neoproterozoic Continental Arc Magmatism in Bikou Micro-block, the Northwestern Margi of Yangtze Plate, China: Evidence from Zircon U-Pb Dating, Hf lsotope and Geochemistry. J. Earth Sci. Environ. 2021, 43, 686–709. (In Chinese) [Google Scholar]
- Chen, H.; Tian, M.; Wu, G.L.; Hu, J.M. The Early Paleozoic Alkaline and Mafic Magmatic Events in Southern Qinling Belt, Central China: Evidences for the Break-up of the Paleo-Tethyan Ocean. Geol. Rev. 2014, 60, 1437–1452. (In Chinese) [Google Scholar]
- Hu, J.M.; Meng, Q.R.; Bai, W.M.; Zhao, G.C. Mid-Late Paleozoic extension of the Wudang block in the South Qinling tectonic belt, China. Geol. Bull. China 2002, 21, 471–477. (In Chinese) [Google Scholar]
- Zhang, C.L.; Wang, T.; Wang, X.X. Origin and Tectonic Setting of the Early Mesozoic Granitoids in Qinling Orogenic Belt. Geol. J. China Univ. 2008, 14, 304–316. (In Chinese) [Google Scholar]
- Gong, H.J.; Zhu, L.M.; Sun, B.Y.; Li, B.; Guo, B.; Wang, J.Q. Zircon U-Pb ages and Hf isotopic composition of the Donjiangkou granitic pluton and its mafic enclaves in the South Oinlingterrain. Acta Pet. Sin. 2009, 25, 3029–3042. (In Chinese) [Google Scholar]
- Wang, R.X.; Li, X.W.; Guan, Q.; Sun, Y.O.; Li, R.Z.; Xie, P.L.; Wu, B.B.; Xia, W.Y. Source compositions and peritectic assemblage entrainment as the main compositional driver in the granitoids: A case study of the Ningshan granitic plutons in South Qinling. Acta Pet. Sin. 2021, 37, 3815–3848. (In Chinese) [Google Scholar]
- Liu, C.H.; Wu, C.L.; Gao, Y.H.; Lei, M.; Qin, H.P.; Li, M.Z. Zircon LA-ICP-MS U-Ph dating and Lu-Hf isotopic system of Dongjiangkou, Zhashui, and Liyuantang granitoid intrusions, South Qinling belt, central China. Aca Petrol. 2014, 30, 2402–2420. (In Chinese) [Google Scholar]
- GB/T 14506.28–2010; Methods for Chemical Analysis of Silicate Rocks. Part 28: Determination of 16 Major and Minor Elements Content. China National Standardization Management Committee: Beijing, China, 2010.
- Chen, F.; Hegner, E.; Todt, W. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc. Int. J. Earth Sci. 2000, 88, 791–802. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.00—A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003. [Google Scholar]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Zhang, Z.C. Classification and nomenclature for plutonic rocks. Geoscience 2024, 38, 1205–1208. (In Chinese) [Google Scholar]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, G.Q.; Li, C.D.; Jin, W.J.; Jia, X.Q. Does fractional crystallization occur in granitic magma? Some crucial questions on granite study (2). Acta Petrol Sin. 2007, 23, 1239–1251. (In Chinese) [Google Scholar]
- Zhou, C.A.; Song, S.G. Post-collision magmatism and continental crust growth in continental orogenic belt: An example from North Qaidam ultrahigh-pressure metamorphic belt. Earth Sci. 2023, 48, 4481–4494. (In Chinese) [Google Scholar]
- Xu, M.; Duan, X.X.; Chen, B.; Wang, Z.Q.; Chen, Y.J.; Li, X.F. Evidence for magmatic differentiation processes: Zircon trace elements—An example from the study of the Triassic Wangxianling granite body in southern Hunan Province. Geol. Rev. 2020, 66, 665–685. (In Chinese) [Google Scholar]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Wu, F.H.; Liu, S.W.; Li, Q.G.; Wang, Z.Q.; Su, L.; Yang, K.; Zhang, F.; Yan, Q.R.; Yan, Z. Zircon U-Pb geochronology and geological significance of Guangtoushan granitoids from Western Qinling, central China. Acta Sci. Nat. Univ. Pekin. 2009, 45, 811–818. (In Chinese) [Google Scholar]
- Meng, X.Y.; Wang, X.X.; Ke, C.H.; Li, J.B.; Yang, Y.; Lv, X.Q. LA-ICP-MS zircon U-Pb age, geochemistry, and Hf isotopes of the granitoids from Huayang pluton in South Qinling orogen: Constraints on the genesis of Wulong plutons. Geol. Bull. China 2013, 32, 1704–1719. (In Chinese) [Google Scholar]
- Liu, C.Z.; Yang, A.Y.; Liu, B.D.; Liu, T. Compositional heterogeneity of the asthenosphere: Advancement and implications. Acta Petrol Sin. 2022, 38, 3712–3734. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.B.; Liu, Y.S.; Foley, S.F. Widespread two-layered melt structure in the asthenosphere. Nat. Geosci. 2024, 17, 472–477. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhang, J.B.; Xu, R.; Zhao, L. Plate motion ‘accelerators’: Two converging layers of soft-fluid melt beneath the lithosphere. Earth Sci. 2024, 49, 2296–2300. (In Chinese) [Google Scholar]
- Sawyer, E.W.; Cesare, B.; Brown, M. When the continental crust melts. Elements 2011, 7, 229–234. [Google Scholar] [CrossRef]
- Kong, H.; Jin, J.M.; Xie, D.K. A review of progress in the study of the lower continental crust. Adv. Geophys. 1998, 13, 10–23. (In Chinese) [Google Scholar]
- Condie, K.C.; Frey, B.A.; Kerrich, R. The 1.75-Ga Iron King Volcanics in west-central Arizona: A remnant of an accreted oceanic plateau derived from a mantle plume with a deep depleted component. Lithos 2002, 64, 49–62. [Google Scholar] [CrossRef]
- McKenzie, D.A.N.; O’Nions, R.K. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, Y.; Fan, W. Earliest Neoproterozoic (ca. 1.0 Ga) arc–back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: Geochronological and geochemical evidence from the metabasite. Precambrian Res. 2012, 220–221, 217–233. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hergt, J.M.; Davidson, J.P.; Eggins, S.M. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. 2001, 192, 331–346. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.; Mitchell, J.G. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Humphris, S.E.; Henderson, P. The Mobility of the Rare Earth Elements in the Crust. Dev. Geochem. 1984, 2, 317–342. [Google Scholar]
- Sun, S.S. Chemical composition and origin of the earth’s primitive mantle. Geochim. Cosmochim. Acta 1982, 46, 179–192. [Google Scholar] [CrossRef]
- Sun, S.S.; Nesbitt, R. Petrogenesis of Archaean ultrabasic and basic volcanics: Evidence from rare earth elements. Contrib. Mineral. Petrol. 1978, 65, 301–325. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Sajona, F.G.; Maury, R.C.; Pubellier, M. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos 2000, 54, 173–206. [Google Scholar] [CrossRef]
- Cui, X.N.; Chen, L. Factors controlling the stratified emplacement of mantle-derived magma within the crust: Thermomechanical modeling. Acta Pet. Sin. 2024, 40, 1087–1101. (In Chinese) [Google Scholar] [CrossRef]
- Qi, Y.Q.; Hu, R.Z.; Liu, S.; Tian, J.J. Review on Magma Mixing and Mingling. Bull. Mineral. Petrol. Geochem. 2008, 27, 409–416. (In Chinese) [Google Scholar]
- Xia, L.; Li, X. Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Res. 2019, 65, 43–67. [Google Scholar] [CrossRef]
- Xia, L.Q. The geochemical criteria to distinguish continental basalts from arc related ones. Earth-Sci. Rev. 2014, 139, 195–212. [Google Scholar] [CrossRef]
- Zhu, Y.; Lai, S.C.; Xie, W.L. Neoproterozoic tectonic transition from subduction to back-arc extension along the western Yangtze Block, South China: Petrological evidence of Nb-enriched basalts and arc-type intrusive rocks. Gondwana Res. 2023, 122, 163–180. [Google Scholar] [CrossRef]
- Saccani, E.A. New method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci. Front. 2015, 6, 481–501. [Google Scholar] [CrossRef]
- Polat, A.; Kerrich, R. Archean greenstone belt magmatism and the continental growth–mantle evolution connection: Constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth Planet. Sci. Lett. 2000, 175, 41–54. [Google Scholar] [CrossRef]
- Tommasini, S.; Avanzinelli, R.; Conticelli, S. The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth Planet. Sci. Lett. 2011, 301, 469–478. [Google Scholar] [CrossRef]
- Li, S.G. Implications of εNd–La/Nb, Ba/Nb, Nb/Th diagrams to mantle heterogeneity—Classification of island-arc basalts and decomposition of EMII component. Chin. J. Geochem. 1995, 14, 117–127. [Google Scholar]
- Briqueu, L.; Bougault, H.; Joron, J.L. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: Petrogenetic implications. Earth Planet. Sci. Lett. 1984, 68, 297–308. [Google Scholar] [CrossRef]
- Castillo, P.R. Adakitepetrogenesis. Lithos 2012, 134–135, 304–316. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Foley, S.; Tiepolo, M.; Vannucci, R. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 2002, 417, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Q.; Qian, Q. Geochemical characteristics of adakite and its tectonic significance. Sci. Geol. Sin. 2000, 35, 251–256. (In Chinese) [Google Scholar]
- Luo, Z.H.; Ke, S.; Chen, H.W. Characteristics, petrogenesis and tectonic implications of adakite. Geol. Bull. China 2002, 21, 436–440. [Google Scholar]
- Luo, J.C.; Lai, S.C.; Qin, J.F.; Li, H.B.; Li, X.J.; Zang, W.J. Geochemistry and Geological Significance of Late Triassic Yanzhiba Pluton from the Southern Qinling Orogenic Belt. Geol. Rev. 2010, 56, 792–800. (In Chinese) [Google Scholar]
- Qian, Q.; Hermann, J. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation. Contrib. Mineral. Petrol. 2013, 165, 1195–1224. [Google Scholar] [CrossRef]
- Huang, F.; He, Y.S. Partial melting of the dry basal continental lower crust: Constraints on the genesis of C-type adakite. Chin. Sci. Bull. 2010, 55, 1255–1267. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, C.; Ma, C.Q.; Holtz, F. Partial melting of the crust beneath the water-bearing continents: A discussion of the genesis of the Dabie Mountain C-type adakite. Geol. J. China Univ. 2012, 18, 41–51. (In Chinese) [Google Scholar]
- Dufek, J.; Bergantz, G.W. Lower Crustal Magma Genesis and Preservation: A Stochastic Framework for the Evaluation of Basalt–Crust Interaction. J. Petrol. 2005, 46, 2167–2195. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, L.L.; Zhang, X.Z.; Zhou, J.S.; Wang, J.; Li, Q.W.; Ma, L.; Zhang, L.; Qi, Y.; Tang, G.J. Convergent plate margin adakite: Composition and genesis. Sci. China Earth Sci. 2020, 50, 1845–1873. (In Chinese) [Google Scholar]
- Xu, H.J.; Ma, C.Q. constraints of experimental petrology on the origin of adakite, and petrogenesis of Mesozoic k-rich and high Sr/Y ratio granitoids in eastern China. Earth Sci. Front. 2003, 10, 417–427. (In Chinese) [Google Scholar]
- Martin, H.; Smithies, R.H.; Rapp, R. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Beard, J.S.; Lofgren, G.E. Effect of water on the composition of partial melts of greenstone and amphibolite. Science 1989, 244, 195–197. [Google Scholar] [CrossRef]
- Sun, P.; Guo, P.; Niu, Y. Eastern China continental lithosphere thinning is a consequence of paleo-Pacific plate subduction: A review and new perspectives. Earth-Sci. Rev. 2021, 218, 103680. [Google Scholar] [CrossRef]
- Defant, M.J.; Xu, J.F.; Kepezhinskas, P.; Wang, Q.; Zhang, Q.; Xiao, L. Adakite: Some variations on athame. Acta Pet. Sin. 2002, 18, 129–142. [Google Scholar]
- Wang, Q.; Xu, J.F.; Zhao, Z.H.; Zi, F.; Tang, G.J.; Jia, X.H.; Jiang, Z.Q. Tectonic Setting and Associated Rock Suites of AdakiticRocks. Bull. Mineral. Petrol. Geochem. 2008, 2, 344–350. (In Chinese) [Google Scholar]
- Huang, X.F.; Mo, X.X.; Yu, X.H.; Li, X.W.; Yang, M.C.; Luo, M.F.; He, W.Y.; Yu, J.C. Origin and geodynamic settings of the Late Triassic high Sr/Y granitoids in the west Oinling: An example from the Shehaliji pluton in Tongren area. Acta Petrol. Sin. 2014, 30, 3255–3270. (In Chinese) [Google Scholar]
- Zheng, Y.F.; Zhao, Z.F. Introduction to the structures and processes of subduction zones. J. Asian Earth Sci. 2017, 145, 1–15. [Google Scholar] [CrossRef]
- Baxter, S.; Feely, M. Magma mixing and mingling textures in granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineral. Petrol. 2002, 76, 63–74. [Google Scholar] [CrossRef]
- Chen, X. Coupling Mechanism of Crustal and Mantle Source Magmatism in Different Tectonic Environments. Ph.D. Thesis, Nanjing University, Nanjing, China, 2018. (In Chinese). [Google Scholar]
- Ghaffari, M.; Rashidnejad; Omran, N. Magma mixingmingling in Salmas granodiorite, NW Iran: Evidence from mafic microgranular enclaves. Arab. J. Geosci. 2015, 8, 7141–7152. [Google Scholar] [CrossRef]
- He, Y.; Li, S.; Hoefs, J. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochem. Et Metallog. Acta 2011, 75, 3815–3838. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Identification and research of high-grade differentiated granites. Sci. China Earth Sci. 2017, 47, 745–765. (In Chinese) [Google Scholar]
- Ge, X.Y.; Li, X.H.; Chen, Z.G.; Li, W.P. Geochemical characteristics and genesis of high-Sr and low-Y intermediate-acid igneous rocks in eastern China: Constraints on crustal thickness in eastern China. Chin. Sci. Bull. 2002, 47, 474–480. (In Chinese) [Google Scholar]
- Luo, M.F.; Mo, X.X.; Yu, X.H.; Li, S.W.; Huang, X.F. LA-ICP-MS U-Pb zircon dating, petrogenesis and significance of the Late Permian Granodiorite from Wulonggou, Eastern Kunlun Mountains, NW China. Earth Sci. Front. 2015, 22, 182–195. (In Chinese) [Google Scholar]
- Wu, C.M.; Chen, H.X. Estimation method for temperature and pressure limits of metamorphism. Acta Pet. Sin. 2013, 29, 1499–1510. (In Chinese) [Google Scholar]
- Zeng, Y.; Ducea, M.N.; Xu, J. Negligible surface uplift following foundering of thickened central Tibetan lower crust. Geology 2020, 49, 45–50. [Google Scholar] [CrossRef]
- Sizova, E.; Gerya, T.; Stüwe, K.; Brown, M. Generation of felsic crust in the Archean: A geodynamic modeling perspective. Precambrian Res. 2015, 271, 198–224. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, N.; Guo, J. The role of basaltic underplating in the evolution of the lower continental crust. Geochem. Et Metallog. Acta 2020, 275, 19–35. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration Melting of Meta basalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, W.J.; Li, C.D.; Wang, Y.L. A re-discussion on the classification of granites according to Sr-Yb: A marker. Acta Pet. Sin. 2010, 26, 985–1015. (In Chinese) [Google Scholar]
- Wang, J.; Jin, Q.; Lai, S.C.; Qin, J.F.; Li, X. Geochemical characteristics and genesis of the Wulong granitic pluton in the Fuoping area, southern Qinling Mountains. Mineral. Petrol. 2008, 28, 79–87. (In Chinese) [Google Scholar]
- Jia, W.L.; Gao, S.; Wang, L.S.; Hu, S.H. Evidence for partial melting of eclogite in the Dabie-Sulu ultrahigh-pressure metamorphic belt: Trace elements and lead isotopes. Earth Sci. 2003, 28, 121–128. (In Chinese) [Google Scholar]
- Wang, X.L. Some new developments and major scientific issues in granite research. Acta Petrol Sin. 2017, 33, 1445. (In Chinese) [Google Scholar]
- Long, X.Y.; Tang, J.; Xu, W.L. Granitic magmatism and late evolutionary processes: Constraints from mineral in situ microzonation compositions and isotopic compositions. Acta Pet. Sin. 2024, 40, 785–810. (In Chinese) [Google Scholar]
- Liu, Y.S.; Gao, S. Crustal deep melting (anatexis) and tracing of the lower crust by granites. Geol. Sci. Technol. Inf. 1998, 17, 32–39. (In Chinese) [Google Scholar]
- Gan, G.L. Mineral-Melt Element Partition Coefficients: Data and major Variation Regularities. Acta Petrol. Et Mineral. 1993, 12, 144–181. (In Chinese) [Google Scholar]
- Lu, C.Z.; Yang, S.F.; Gu, M.G.; Dong, C.W. Geochemical characteristics of the late Jinning double-peak magmatic complex in the Ziwu area, Zhejiang Province: A petrological record of the break-up of the Rodinia supercontinent. Acta Pet. Sin. 2009, 25, 67–76. (In Chinese) [Google Scholar]
- Jia, X.H.; Wang, Q.; Tang, G.J. Research progress and significance of A-type granites. Geochem. Et Metallog. 2009, 33, 465–480. (In Chinese) [Google Scholar]
- Zhang, B.; Hu, X.; Xu, J.G.; Zhao, D.Y.; Fan, D.W.; Zhou, W.G. Experimental study of trace element partition coefficients between hornblende-melt. J. Jilin Univ. (Earth Sci. Ed.) 2015, 45, 342. (In Chinese) [Google Scholar]
- Ge, D.L. Geochemical Composition Characteristics and Petrogenesis of the Zhashui Pluton in the Southern Qinling Block. Master’s Thesis, University of Science and Technology of China, Hefei, China, 2023. (In Chinese). [Google Scholar]
- Sun, W.L.; Han, K.; Lu, L.; Xue, X.P.; Wang, M.Z.; Jia, C.S.; Liu, N.; Meng, L.; Liu, K.; Tian, K. Geochemical characteristics of the Huangban porphyry dyke in the western part of Zhen’an, southern Qinling Mountains, and its indication of the tectonic environment during the Late Triassic. Geol. Bull. China 2022, 41, 1982–1995. (In Chinese) [Google Scholar]
- Lu, Y.H. Geochemical Study of Late Triassic Granites in the Qinling Orogenic Belt. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2017. (In Chinese). [Google Scholar]
- Qin, J.F.; Lai, S.C.; Li, Y.F. Genesis and geological significance of the Late TriassicPeriod Guangtoushanadakite granite in the Mianxian-Lueyang suture zone, southern Qinling. Geol. Bull. China 2007, 26, 466–471. (In Chinese) [Google Scholar]
- Yang, Y. Temporal and Spatial Framework of Granites in the Middle Section of the Qinling Orogenic Belt, Source Region Materials and Their Tracers of Deep Crustal Material Composition. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Zhang, C.L.; Liu, L.; Zhang, G.W.; Wang, T.; Chen, D.L.; Yuan, H.L.; Liu, X.S.; Yan, Y.X. Identification and tectonic significance of post-collisional granitoids in the Neoproterozoic North Qinling orogen, China. Earth Sci. Front. 2004, 11, 33–42. (In Chinese) [Google Scholar]
- Zhang, M.D.; Ma, C.Q.; Wang, L.X.; Hao, F.H.; Zheng, S.J.; Zhang, L. ‘Diving’ magmatic rocks in the post-collision stage: Evidence from the late Triassic diorite porphyries in the Naomuhungou area, East Kunlun. Earth Sci. 2018, 43, 1183–1206. (In Chinese) [Google Scholar]
- Zheng, Y.F.; Miller, C.F.; Xu, X. Introduction to the origin of granites and related rocks. Lithos 2021, 402–403, 106380. [Google Scholar] [CrossRef]
- Petford, N.; Cruden, A.R.; Mccaffrey, K.J.W.; Vigneresse, J.L. Granite magma formation, transport and emplacement in the Earth’s crust. Nature 2000, 408, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Song, S.G.; Wang, M.Y.; Wang, C.; Niu, Y.L. Magmatism and net growth of continental crust in the collision-subduction-reversion-collapse process of the continental orogen. Sci. China Earth Sci. 2015, 45, 916–940. (In Chinese) [Google Scholar]
- Wang, Y.Y.; Zeng, L.S.; Chen, F.K.; Cai, J.H.; Yan, G.H.; Hou, K.J.; Wang, Q. Evolution of high Ba-Sr granitic magmas with mixed crustal and mantle sources: A case study of the Laoshan and Huyanshanplutons in the central North China Craton. Acta Petrol Sin. 2017, 33, 3873–3896. (In Chinese) [Google Scholar]
- Zheng, Y.F.; Chen, Y.X.; Dai, L.Q.; Zhao, Z.F. Development of plate tectonics theory: From oceanic crust subduction zones to collisional orogenic belts. Sci. China Earth Sci. 2015, 45, 711–735. (In Chinese) [Google Scholar]
- Mu, K.B. Genesis and Tectonic Evolution of Indosinian Intermediate-Acidic Rocks in Lueyang Area of South Qinling Structural Belt. Master’s Thesis, Chang’an University, Xi’an, China, 2020. (In Chinese). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Pei, X.; Pei, L.; Li, Z.; Li, R.; Zhao, S.; Qin, L.; Wang, M.; Wang, X. Late Triassic Felsic and Mafic Magmatism in the South Qinling Orogen, Central China: Insights from the Petrology, Zircon U-Pb Geochronology, and Geochemistry of the Huoshaodian Pluton. Minerals 2025, 15, 120. https://doi.org/10.3390/min15020120
Li M, Pei X, Pei L, Li Z, Li R, Zhao S, Qin L, Wang M, Wang X. Late Triassic Felsic and Mafic Magmatism in the South Qinling Orogen, Central China: Insights from the Petrology, Zircon U-Pb Geochronology, and Geochemistry of the Huoshaodian Pluton. Minerals. 2025; 15(2):120. https://doi.org/10.3390/min15020120
Chicago/Turabian StyleLi, Meijing, Xianzhi Pei, Lei Pei, Zuochen Li, Ruibao Li, Shaowei Zhao, Li Qin, Mao Wang, and Xiao Wang. 2025. "Late Triassic Felsic and Mafic Magmatism in the South Qinling Orogen, Central China: Insights from the Petrology, Zircon U-Pb Geochronology, and Geochemistry of the Huoshaodian Pluton" Minerals 15, no. 2: 120. https://doi.org/10.3390/min15020120
APA StyleLi, M., Pei, X., Pei, L., Li, Z., Li, R., Zhao, S., Qin, L., Wang, M., & Wang, X. (2025). Late Triassic Felsic and Mafic Magmatism in the South Qinling Orogen, Central China: Insights from the Petrology, Zircon U-Pb Geochronology, and Geochemistry of the Huoshaodian Pluton. Minerals, 15(2), 120. https://doi.org/10.3390/min15020120