The Initial Subduction Time of the Proto-Tethys Ocean in the Eastern Section of the East Kunlun Orogen: The Constraints from the Zircon U-Pb Ages and the Geochemistry of the Kekesha Intrusion
Abstract
:1. Introduction
2. Geological Background
2.1. North Qimantagh Terrane (NQT)
2.2. North Kunlun Terrane (NKT)
2.3. Central Kunlun Ophiolitic Mélange Zone (CKM) and Its Early Paleozoic Back-Arc Basins
2.4. South Kunlun Terrane (SKT) and Its Early Paleozoic Island Arc
2.5. Muztagh–Buqingshan–Anemaqen Ophiolitic Mélange Zone (MBAM) and Its Early Paleozoic Main Ocean
3. Petrological Characteristics of the Kekesha Intrusion
4. Analytical Methods
4.1. Whole-Rock Geochemical Analyses
4.2. LA-ICP-MS Zircon U-Pb Dating
5. Results
5.1. Zircon U-Pb Age
5.2. Major Elements
5.3. Trace Elements
6. Discussion
6.1. Petrogenesis
6.1.1. Petrogenesis of Gabbro
6.1.2. Petrogenesis of Gabbro Diorite
6.1.3. Petrogenesis of Quartz Diorite
6.1.4. Petrogenesis of Granodiorite
6.2. Magma Source and Magmatic Processes
6.2.1. Magma Source of Gabbro and Gabbro Diorite
6.2.2. Magma Source of Quartz Diorite
6.2.3. Magma Source of Granodiorite
6.2.4. Magmatic Processes
6.3. Tectonic Environment
6.3.1. The Tectonic Environment of Gabbro and Gabbro Diorite
6.3.2. The Tectonic Environment of Quartz Diorite and Granodiorite
6.3.3. Tectonic Setting
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.Q.; Yang, J.S.; Li, H.B.; Yao, J.X. The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geol. Sin. 2006, 80, 1793–1806. (In Chinese) [Google Scholar]
- Yang, J.S.; Liu, F.L.; Wu, C.L.; Wan, Y.S.; Zhang, J.X.; Shi, R.D.; Chen, S.Y. Two Ultrahigh Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-bearing Zircons. Acta Geol. Sin. 2003, 77, 463–477. (In Chinese) [Google Scholar] [CrossRef]
- Bian, Q.T.; Pospelov, I.I.; Li, H.M.; Chang, C.F.; Li, J.L. Discovery of the end-Early Paleozoic adakite in the Buqingshan area, Qinghai province, and its tectonic implications. Acta Petrol. Sin. 2007, 23, 925–934. (In Chinese) [Google Scholar]
- Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction, accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Dong, Y.P.; Sun, S.S.; Santosh, M.; Zhao, J.; Sun, J.P.; He, D.F.; Shi, X.H.; Hui, B.; Cheng, C.; Zhang, G.W. Central China Orogenic Belt and amalgamation of East Asian continents. Gondwana Res. 2021, 100, 131–194. [Google Scholar]
- Meng, F.Y.; Ma, K.X.; Yeo, K.S.; Xu, S.S. Monolithic Sub-Terahertz SPDT Switches with Low Insertion Loss, Enhanced Isolation. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 192–200. [Google Scholar] [CrossRef]
- Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Liu, Z.Q.; Chen, G.C.; Li, X.B.; Wang, M. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen. J. Earth Sci. 2018, 43, 4498–4520. (In Chinese) [Google Scholar]
- Yu, M.; Dick, J.M.; Feng, C.; Li, B.; Wang, H. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model. J. Asian Earth Sci. 2020, 191, 104–168. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Wu, L.; Jiang, H.A.; Liu, B. Geochemistry, zircon U–Pb ages, Sr–Nd–Hf isotopes of an Ordovician appinitic pluton in the East Kunlun orogen: New evidence for Proto-Tethyan subduction. J. Asian Earth Sci. 2015, 111, 681–697. [Google Scholar] [CrossRef]
- Yang, J.; Robinson, P.; Jiang, C.; Xu, Z.Q. Ophiolites of the kunlun mountains, china and their tectonic implications. Tectonophys. 1996, 258, 215–231. [Google Scholar] [CrossRef]
- Wang, G.C.; Zhang, T.P.; Liang, B.; Chen, N.S.; Zhu, Y.H.; Zhu, J. Composite Ophiolitic Mélange Zone in Central Part of Eastern Section of East Kunlun Orogenic Zone and Geological Significance of “Fault Belt in Central Part of Eastern Section of East Kunlun Orogenic Zone”. J. Earth Sci. 1999, 24, 21–25. (In Chinese) [Google Scholar]
- Ren, J.H.; Liu, Y.Y.; Zhou, D.W.; Feng, Q.; Zhang, K.; Dong, Z.L.; Qin, P.L. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Dating of Basic Dykes in the Xiaomiao Area, Eastern Kunlun. J. Jilin Univ. Earth Sci. Ed. 2010, 40, 859–868. (In Chinese) [Google Scholar]
- Wang, B.Z.; Li, J.Q.; Fu, C.L.; Xu, H.Q.; Li, W.F. Research on Formation and Evolution of Early Paleozoic Bulhanbuda Arc in East Kunlun Orogen. J.Earth Sci. 2022, 47, 1253–1270. (In Chinese) [Google Scholar]
- Wang, B.Z.; Zhang, J.M.; Li, W.F.; Wang, T.S.; Jin, T.T.; Fu, C.L. Discovery of Two Stages of the Early Paleozoic Adakitic Intrusive Rocks in the Kunlun River Area, East Kunlun: Implications for Collisional Orogenic Processes. Acta Petrol. Sin. 2023, 39, 763–784. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.X.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Yang, J. Geochemical characteristics and tectonic significance of meta-sedimentary rocks from Naij Tal Group, eastern section of East Kunlun. Earth Sci. Front. 2013, 20, 240–254. (In Chinese) [Google Scholar]
- Meng, F.C.; Cui, M.H.; Jia, L.H.; Ren, Y.F.; Feng, H.B. Paleozoic Continental Collision of the East Kunlun Orogen: Evidence from Protoliths of the Eclogites. Acta Petrol. Sin. 2015, 31, 3581–3594. (In Chinese) [Google Scholar]
- Dong, G.C.; Luo, M.F.; Mo, X.X.; Zhao, Z.D.; Dong, L.Q.; Yu, X.H.; Wang, X.; Li, X.W.; Huang, X.F.; Liu, Y.B. Petrogenesis, tectonic implications of early Paleozoic granitoids in East Kunlun belt: Evidences from geochronology, geochemistry and isotopes. Geosci. Front. 2018, 9, 1383–1397. [Google Scholar] [CrossRef]
- Chen, J.J.; Fu, L.B.; Wei, J.H.; Tian, N.; Xiong, L.; Zhao, Y.J.; Zhang, Y.J.; Qi, Y.Q. Geochemical characteristics of late Ordovician granodiorite in Gouli area, eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the evolution of Proto-Tethys Ocean. Earth Sci. 2006, 41, 1863–1882. (In Chinese) [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Sun, Y.; Feng, J.Y.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J. Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic: Constraints from the Geochronology, Geochemistry of Helegangnaren Alkali-feldspar Granite. Acta Geol. Sin. 2013, 87, 333–345. [Google Scholar]
- Liu, B.; Ma, C.Q.; Jiang, H.A.; Guo, P.; Zhang, J.Y.; Xiong, F.H. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrol. Sin. 2013, 29, 2093–2106. (In Chinese) [Google Scholar]
- Zhou, B.; Dong, Y.P.; Zhang, F.F.; Yang, Z.; Sun, S.S.; He, D.F. Geochemistry, zircon U-Pb geochronology of granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau: Origin, tectonic implications. J. Asian Earth Sci. 2016, 130, 265–281. [Google Scholar] [CrossRef]
- Sang, J.Z.; Pei, X.Z.; Li, R.B.; Liu, C.J.; Chen, Y.X.; Li, Z.C.; Chen, G.C.; Yang, S.; Wang, X.B.; Chen, G.; et al. LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Gabbro in Qingshuiquan, East Section of East Kunlun, and Its Tectonic Significance. Geol. Bull. China 2016, 35, 700–710. (In Chinese) [Google Scholar]
- Li, Z.C.; Li, R.B.; Pei, L.; Chen, Y.X.; Liu, C.J.; Pei, X.Z.; Liu, Z.Q.; Chen, G.C.; Li, X.B. Magmatic Response to Proto-Tethyan Ocean Subduction in East Section of East Kunlun: Evidence from Zircon U-Pb Dating of Late Sinian Dundeshaerguole Hornblende Monzonite. J. Earth Sci. 2018, 43, 4536–4550. (In Chinese) [Google Scholar]
- Zheng, Y.F.; Chen, Y.X. Crust-Mantle Interaction in Continental Subduction Zones. Earth Sci. 2019, 44, 3961–3983. (In Chinese) [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Chen, G.C.; Liu, C.J.; Chen, Y.X.; Liu, Z.Q.; Pei, L. Geochemical Characteristics and Tectonic Significance of Yikehalaer Granodiorite in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun. Acta Geosci. Sin. 2014, 35, 434–444. (In Chinese) [Google Scholar]
- Li, Z.C.; Pei, X.Z.; Li, R.B.; Pei, L.; Liu, C.J.; Chen, Y.X.; Liu, Z.Q.; Chen, G.C.; Li, X.B. Geochronology, Geochemistry and Tectonic Setting of the Bairiqiete Granodiorite Intrusion (Rock Mass) from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun. Acta Geol. Sin. 2014, 88, 584–597. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Chen, Y.X.; Liu, C.J.; Pei, L.; Xu, T.; Liu, Z.Q.; Wei, B. Geological and Geochemical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt, Southern Margin of East Kunlun Orogen. J. China Univ. Geosci. 2015, 40, 1148–1162. (In Chinese) [Google Scholar]
- Zhao, F.F.; Sun, F.Y.; Liu, J.L. Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting. J. Earth Sci. 2017, 42, 927–940+1044. (In Chinese) [Google Scholar]
- Li, W.Y.; Li, S.G.; Guo, A.L.; Sun, Y.G.; Zhang, G.W. Zircon SHRIMP U-Pb Age and Trace Element Geochemistry of the Kuhai Gabbro and Deerni Diorite in the East Kunlun Tectonic Belt, Qinghai Province—Constraints on the Southern Boundary of the ’Qi-Chai-Kun’ Late Neoproterozoic-Early Ordovician Multi-Island Ocean. Sci. China Earth Sci. 2007, 37 (Suppl. S1), 288–294. (In Chinese) [Google Scholar]
- Li, W.Y. Geochronology and Geochemistry of the Ophiolites and Island-Arc-Type Igneous Rocks in the Western Qinling Orogen and the Eastern Kunlun Orogen: Implication for the Evolution of the Tethyan Ocean. Ph.D. Thesis, University of Science and Technology of China (USTC), Beijing, China, 2008. (In Chinese). [Google Scholar]
- Liu, Z.Q.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Chen, Y.X.; Gao, J.M.; Liu, C.J.; Wang, X.L.; Wei, F.H.; Zhang, G.; et al. Geological Characteristics of the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Its Tectonic Implications. Geol. Bull. China 2011, 30, 1182–1195. (In Chinese) [Google Scholar]
- Liu, Z.Q.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Zhang, X.F.; Liu, Z.G.; Chen, G.C.; Chen, Y.X.; Ding, S.P.; Guo, J.F. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A′nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implications. Acta Geol. Sin. 2011, 85, 185–194. (In Chinese) [Google Scholar]
- Pei, X.Z.; Hu, N.; Liu, C.J.; Li, R.B.; Li, Z.C.; Chen, Y.X.; Pei, L.; Liu, Z.Q.; Chen, G.C.; Yang, J. Detrital Composition, Geochemical Characteristics, and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region. J. Earth Sci. 2015, 61, 307–323. (In Chinese) [Google Scholar]
- Chen, N.S.; Sun, M.; Wang, Q.Y.; Zhao, G.C.; Chen, Q.; Shu, G.M. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen: Records of multi-tectonometamorphic events. Chin. Sci. Bull. 2007, 52, 2252–2263. [Google Scholar] [CrossRef]
- Chen, Y.X.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Liu, C.J.; Chen, G.C.; Pei, L.; Wei, B. Geochronology, geochemical features, and geological significance of the granitic gneiss in Balong area, east section of East Kunlun. Acta Petrol. Sin. 2015, 31, 2230–2244. (In Chinese) [Google Scholar]
- Meng, F.C.; Zhang, J.X.; Cui, M.H. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China, its tectonic significance. Gondwana Res. 2013, 23, 825–836. [Google Scholar] [CrossRef]
- Xin, W.; Sun, F.Y.; Li, L.; Yan, J.M.; Zhang, Y.T.; Wang, Y.C.; Shen, T.S.; Yang, Y.J. The Wulonggou metaluminous A2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust, implications for post-collision extension. Lithos 2018, 312–313, 108–127. [Google Scholar] [CrossRef]
- Kong, H.L.; Li, J.C.; Li, Y.Z.; Jia, Q.Z.; Yang, B.R. Geochemistry and zircon U-Pb geochronology of Annage diorite in the eastern section of East Kunlun in Qinghai Province. Geol. Sci. Technol. Inf. 2014, 33, 11–17. (In Chinese) [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, G.C.; Li, X.B.; Chen, Y.X.; Liu, C.J.; Wei, B. Geochemistry and Tectonic Setting of Qingquangou Forearc Basalts in Central Tectonic Mélange of East Kunlun Orogen. J. Earth Sci. 2018, 43, 4521–4535. (In Chinese) [Google Scholar]
- Xiong, F.H.; Ma, C.Q.; Jiang, H.a.; Liu, B.; Huang, J. Geochronology, geochemistry of Middle Devonian mafic dykes in the East Kunlun orogenic belt, Northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny. Geochemistry 2014, 74, 225–235. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Zhang, Y.M.; Wang, M.; Li, X.B.; et al. Age and petrogenesis of Jialuhe basic-intermediate pluton in Xiangjia’nanshan granite batholith in the eastern part of East Kunlun Orogenic Belt, and its geological significance. Geotecton. Metallogt. 2017, 41, 1097–1115. (In Chinese) [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Pei, L.; Li, X.B. Age and lithogenesis of Keri syenogranite from the eastern part of East Kunlun Orogenic Belt: Constraint on the Middle Triassic tectonic evolution of East Kunlun. Acta Petrol. Sin. 2018, 34, 567–585. (In Chinese) [Google Scholar]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Chen, Y.X.; Wang, M.; Gao, F.; Wei, J.Q. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt. Earth Sci. Front. 2020, 27, 33–48. (In Chinese) [Google Scholar]
- Chen, N.S.; Sun, M.; Wang, Q.Y.; Zhang, K.X.; Wan, Y.S.; Chen, H.H. Zircon U-Pb dating and tectonic evolution of the middle belt of the East Kunlun Orogenic Belt. Sci. China Earth Sci. 2008, 38, 657–666. (In Chinese) [Google Scholar]
- Qi, X.P.; Yang, J.; Fan, X.G.; Cui, J.T.; Cai, Z.F.; Zeng, X.W.; Wei, W.; Qu, X.X.; Zhai, L.M. Age, Geochemical Characteristics and Tectonic Significance of Changshishan Ophiolite in Central East Kunlun Tectonic Mélange Belt Along the East Section of East Kunlun Mountains. Geol. China 2016, 43, 797–816. (In Chinese) [Google Scholar]
- Wei, B. Study on the Geological Characteristic and Tectonic Attribute of the Ophiolite and Island-Arc-Type Igneous Rocks, Central Belt of East Kunlun (Eastern Section). Ph.D. Thesis, Chang’an University, Xi’an, China, 2015. [Google Scholar]
- Lu, S.N.; Yu, H.F.; Jin, W.; Li, H.I.; Zheng, J.K. Microcontinents on the Eastern Margin of Tarim Paleocontinent. Rock Miner. Geol. J. 2002, 21, 317–326. (In Chinese) [Google Scholar]
- Feng, J.Y.; Pei, X.Z.; Yu, S.L.; Ding, S.P.; Li, R.B.; Sun, Y.; Zhang, Y.F.; Li, Z.C.; Chen, Y.X.; Zhang, X.F.; et al. The discovery of the mafic-ultramafic melange in Kekesha area of Dulan County, East Kunlun region, and its LA-ICP-MS zircon U-Pb age. Geol. China 2010, 37, 28–38. (In Chinese) [Google Scholar]
- Chen, Y.X. The Composition and Geological Evolution of Pre-Cambrian Metamorphic Rocks in the Eastern Region of East Kunlun Orogenic Belt. Ph.D. Thesis, Chang’an University, Xi’an, China, 2016. [Google Scholar]
- Pei, L.; Li, R.B.; Pei, X.Z.; Liu, J.L.; Li, Z.C.; Liu, C.J.; Chen, Y.X.; Liu, Z.Q.; Chen, G.C.; Hu, N.; et al. Sediment Source Analysis for the Maérzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region: Evidence from Detrital Zircon U-Pb Geochronology. Acta Geol. Sin. 2017, 91, 1326–1344. (In Chinese) [Google Scholar]
- Zhang, Y.F.; Pei, X.Z.; Ding, S.P.; Li, R.B.; Feng, J.Y.; Sun, Y.; Li, Z.C.; Chen, Y.X. LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China, and Its Significance. Chin. Sci. Bull. 2010, 29, 79–85. (In Chinese) [Google Scholar]
- Jiang, C.F.; Yang, J.S.; Feng, B.G.; Chai, Y.C. Kunlun Kaihe Structure; Beijing Geol. Publ. House: Beijing, China, 1992; pp. 1–217. (In Chinese) [Google Scholar]
- Li, R.B.; Pei, X.Z.; Zhou, R.J.; Li, Z.C.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J. Magmatic response to the closure of the Proto-Tethys Ocean: A case study from the middle Paleozoic granitoids in the Kunlun Orogen, western China. J. Asian Earth Sci. 2023, 242, 105–513. [Google Scholar] [CrossRef]
- Chen, F.K.; Hegner, E.; Todt, W. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc. Int. J. Earth Sci. 2000, 88, 791–802. [Google Scholar] [CrossRef]
- Chen, F.K.; Siebel, W.; Satir, M.; Terzioğlu, M.; Saka, K. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int. J. Earth Sci. 2002, 91, 469–481. [Google Scholar] [CrossRef]
- Yuan, H.L.; Gao, S.; Liu, X.M.; Günther, D.; Wu, F.Y. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 2004, 28, 353–370. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Zircon Genetic Mineralogy and Its Constraints on the Interpretation of U-Pb. Age. Sci. Bull. 2004, 49, 1589–1604. (In Chinese) [Google Scholar] [CrossRef]
- Le Maitre, R.W. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks; Blackwell: Oxford, UK, 1989. [Google Scholar]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Winchester, J.; Floyd, P. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Pearce, J.A.; Lippard, S.J.; Roberts, S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol. Soc. Lond. (Spec. Publ.) 1984, 16, 77–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, G.Q. Chinese Ophiolite; Beijing Science Press: Beijing, China, 2001; pp. 1–200. (In Chinese) [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processed. Magmatism in Ocean Basins. Geol. Soc. Lond. Spec. Public. 1989, 42, 313. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In The Crust; Rudnick, R.L., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Sun, Y.; Feng, J.Y.; Chen, G.C.; Liu, C.J.; Chen, Y.X.; Pei, L. Geochemical Features, Age, and Tectonic Significance of the Kekekete Mafic-ultramafic Rocks, East Kunlun Orogen, China. Acta Geol. Sin. 2013, 87, 13–33. [Google Scholar]
- Li, Y.L.; Han, J.; Zhao, Z.Y.; Li, J.Q.; Wang, T.; Wang, B.Z.; Wang, T.S. Zircon U-Pb Chronology, Geochemistry, and Geological Significance of Gabbros in Southern Dagele Farm, East Kunlun. Geotecton. Metallog. 2024, 48, 172–187. (In Chinese) [Google Scholar]
- Douce, A.E.; McCarthy, T.C. Melting of crustal rocksduring continental collision and subduction. When Cont. Collide Geodyn. Geochem. Ultrah. Press. Rocks 1998, 10, 27–55. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; pp. 1–2. [Google Scholar]
- Weaver, B.L. The Origin Of Ocean Island Basalt End-Member Compositions: Traceelement And Isotopic Con-Straints. Earth Planet. Sci. Lett. 1991, 104, 381–397. [Google Scholar] [CrossRef]
- Barth, M.G.; Mcdonough, W.F.; Rudnick, R.L. Racking The Budget Of Nb And Ta In The Continental Crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Lassiter, J.C.; DePaolo, D.J. Plume/lithosphere interaction in the generation if continental and oceanic flood basalts Chemical and isotopic constraints. In Largelgneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism; Mahoney, J., Coffin, M.F., Eds.; Geophysical Monograph; American Geophysical Union: Washington, WA, USA, 1997; pp. 335–355. [Google Scholar]
- Zhao, J.H.; Zhou, M.F. Geochemistry of Neoproterozoic mafic ntrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Res. 2007, 152, 27–47. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis; Unwim Hyman: London, UK, 1989; pp. 1–366. [Google Scholar]
- Graham, I.J.; Cole, J.W.; Briggs, R.M.; Gamble, J.A.; Smith, I.E.M. Petrology and petrogenesis of volcanic rocks from the Taupo Volcanic Zone: A review. J. Volcanol. Geotherm. Res. 1995, 68, 59–87. [Google Scholar] [CrossRef]
- Naumann, T.R.; Geist, D.J. Generation of alkalic basalt by crystal fractionation of tholeiitic magma. J. Geol. 1999, 27, 423–426. [Google Scholar] [CrossRef]
- Mir, A.R.; Alvi, S.H.; Balaram, V. Geochemistry of the mafic dykes in parts of the Singhbhum granitoid complex: Petrogenesis and tectonic setting. Arabian J. Geosci. 2011, 4, 933–943. [Google Scholar] [CrossRef]
- Depaolo, D.J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 1981, 53, 189–202. [Google Scholar] [CrossRef]
- Halama, R.; Marks, M.; Brügmann, G.; Siebel, W.; Wenzel, T.; Markl, G. Crustal contamination of mafic magmas: Evidence from a petrological, geochemical and Sr-Nd-Os-O isotopic study of the Proterozoic Isortoq dike swarm, South Greenland. Lithos 2004, 74, 199–232. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R Soc. Edinburgh. 1992, 83, 1–26. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol. 1987, 95, 405–419. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Zorpi, M.J.; Coulon, C.; Orsini, J.B. Hybridization between felsic and mafic magmas in calc-alkaline granitoids: A case study in northern Sardinia, Italy. Chem. Geol. 1991, 92, 45–86. [Google Scholar] [CrossRef]
- Pearce, J.A. Trace elements characteristics of lavas from destructive plate boundaries. In Andesites: Orogenic Andesites and Related Rocks; Thorpe, R.S., Ed.; Wiley: Chichester/London, UK, 1982; pp. 525–548. [Google Scholar]
- Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Menshagin, Y.V.; Pisarevsky, S.A. Neoproterozoic mafic dike swarms of the sharyzhalgai metamorphic massif, southern siberian craton. Precambrian Res. 2003, 122, 359–376. [Google Scholar] [CrossRef]
- Ormerod, D.S.; Hawkesworth, C.J.; Rogers, N.W.; Leeman, W.P.; Menzies, M.A. Tectonic and magmatic transitions in the Western Great Basin, USA. Nature 1988, 333, 349–353. [Google Scholar] [CrossRef]
- Ewart, A.; Milner, S.C.; Armstrong, R.A.; Dungan, A.R. Etendeka volcanism of the Goboboseb Mountains and Messum igneous complex, Namibia. Part I: Geochemical evidence of Early Cretaceous Tristan plume melts and the role of crustal contamination in the Paraná-Etendeka CFB. J. Petrol. 1998, 39, 191–225. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hergt, J.M.; Davidson, J.P.; Eggins, S.M. Hafnium isotope evidence for “conservative” element mobility during subduction zone processes. Earth Planet. Sci. Lett. 2001, 192, 331–346. [Google Scholar] [CrossRef]
- Hawkins, J.W.; Ishizuka, O. Petrologic evolution of Palau, a nascent island arc. Isl. Arc. 2009, 18, 599–641. [Google Scholar] [CrossRef]
- Xu, Y.G.; Ma, J.L.; Frey, F.A.; Feigenson, M.D.; Liu, J.F. Role of litho-sphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, west-ern North China Craton. Chem. Geol. 2005, 224, 247–271. [Google Scholar] [CrossRef]
- Gribble, R.F.; Stern, R.J.; Sally, N.; Bloomer, S.H.; Tim, O. Chemical and isotopic composition of lavas from the northern Mariana Trough: Implications for magmatogenesis in back-arc basins. J. Petrol. 1998, 39, 125–154. [Google Scholar] [CrossRef]
- Bea, F.; Arzamastsev, A.; Montero, P.; Arzamastseva, L.V. Anomalous alkaline rocks of Soustov, Kola: Evidence of mantle-derived metasomatic fluids affecting crustal materials. Contrib. Mineral. Petrol. 2001, 140, 554–566. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Atherton, M.P.; Petford, N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 1993, 362, 144–146. [Google Scholar] [CrossRef]
- Yogodzinski, G.M.; Kay, R.W.; Volynets, O.N.; Koloskov, A.V.; Kay, S.M. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull. 1995, 107, 505–519. [Google Scholar] [CrossRef]
- Zeng, R.; Allen, M.B.; Mao, X.; Lai, J.; Yan, J.; Wan, J. Whole-rock and zircon evidence for evolution of the Late Jurassic high-Sr/Y Zhoujiapuzi granite, Liaodong Peninsula, North China Craton. Solid Earth 2022, 13, 1259–1280. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Cashman, K.V.; Sparks, R.S.J.; Blundy, J.D. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 2017, 355, eaag3055. [Google Scholar] [CrossRef]
- Reichardt, H.; Weinberg, R.F.; Andersson, U.B.; Fanning, C.M. Hybridization of granitic magmas in the source: The origin of the Karakoram batholith, Ladakh, NW India. Lithos 2010, 116, 249–272. [Google Scholar] [CrossRef]
- Clemens, J.D.; Stevens, G. Melt segregation and magma interactions during crustal melting: Breaking out of the matrix. Earth Sci. Rev. 2016, 160, 333–349. [Google Scholar] [CrossRef]
- Jiang, C.Y.; Ling, J.L.; Zhou, W.; Du, W.; Wang, Z.X.; Fan, Y.Z.; Song, Y.F.; Song, Z.B. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment. Acta Petrol. Sin. 2015, 31, 1117–1136. (In Chinese) [Google Scholar]
- Wood, D.A. Avariably veined suboceanic upper mantle—Genetic significance for mid-ocean ridge basalts from geochemical evidence. J. Geol. 1979, 7, 499–503. [Google Scholar] [CrossRef]
- Cabanis, B.; Lecolle, M. The La/10-Y/15-Nb/8 diagram: A tool for discriminating volcanic series and evidencing continental crust magmatic mixtures and/or contamination. Comptes Rendus De L’académie Des Sci. Ser. II 1989, 309, 2023–2029. [Google Scholar]
- Floyd, J.A. Winchester, Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. 1975, 27, 211–218. [Google Scholar] [CrossRef]
- Rogers, G.; Hawkesworth, C.J. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge. Earth Planet. Sci. Lett. 1990, 1, 129–133. [Google Scholar] [CrossRef]
- Qi, S.S. Petrotectonic Assemblages and Tectonic Evolution of the East Kunlun Orogenic Belt in Qinghai Province. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Pei, X.; Li, Z.; Li, R.; Pei, L.; Chen, Y.; Liu, C. The Initial Subduction Time of the Proto-Tethys Ocean in the Eastern Section of the East Kunlun Orogen: The Constraints from the Zircon U-Pb Ages and the Geochemistry of the Kekesha Intrusion. Minerals 2025, 15, 127. https://doi.org/10.3390/min15020127
Song J, Pei X, Li Z, Li R, Pei L, Chen Y, Liu C. The Initial Subduction Time of the Proto-Tethys Ocean in the Eastern Section of the East Kunlun Orogen: The Constraints from the Zircon U-Pb Ages and the Geochemistry of the Kekesha Intrusion. Minerals. 2025; 15(2):127. https://doi.org/10.3390/min15020127
Chicago/Turabian StyleSong, Jian, Xianzhi Pei, Zuochen Li, Ruibao Li, Lei Pei, Youxin Chen, and Chengjun Liu. 2025. "The Initial Subduction Time of the Proto-Tethys Ocean in the Eastern Section of the East Kunlun Orogen: The Constraints from the Zircon U-Pb Ages and the Geochemistry of the Kekesha Intrusion" Minerals 15, no. 2: 127. https://doi.org/10.3390/min15020127
APA StyleSong, J., Pei, X., Li, Z., Li, R., Pei, L., Chen, Y., & Liu, C. (2025). The Initial Subduction Time of the Proto-Tethys Ocean in the Eastern Section of the East Kunlun Orogen: The Constraints from the Zircon U-Pb Ages and the Geochemistry of the Kekesha Intrusion. Minerals, 15(2), 127. https://doi.org/10.3390/min15020127