The Formation of Cavansite and Pentagonite in the Wagholi Quarries, Pune, India
Abstract
:1. Introduction
2. Geological Setting and Mineralogy
3. Sampling and Method
3.1. Sampling and Visual Evaluation of Minerals
3.2. Analytical Methods
4. Results
4.1. Geology
4.2. Minerals
4.2.1. Native Copper Cu and Djurleite Cu31S16
4.2.2. Silica Polymorphs (Opal C, Cristobalite, Chalcedony, and Quartz) SiO2
4.2.3. Calcite CaCO3
4.2.4. Cavansite Ca(VO)Si4O10 · 4H2O
4.2.5. Pentagonite Ca(VO)Si4O10 · 4H2O
4.2.6. Fluorapophyllite-(K) KCa4(Si8O20)(F,OH) · 8H2O
4.2.7. Heulandite-Ca (Ca,Na)5(Si27Al9)O72 · 26H2O
4.2.8. Stilbite-Ca NaCa4[Al9Si27O72] · nH2O
4.2.9. Mordenite (Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
4.2.10. Mineralization Sequence and Frequency
5. Discussion
5.1. Thermobarometric Conditions
5.2. Mineralization Model
5.3. Comparison with Other Cavansite and Pentagonite Localities
6. Conclusions
- There are two lava flows outcropping in the Wagholi quarry area. The lower lava is massive and contains flow top breccias, in which the mineralization of cavansite and pentagonite occurs.
- Pentagonite occurs occasionally together with cavansite, the latter precipitated first.
- Pentagonite occasionally occurs together with stilbite, which crystallized later.
- Cavansite, pentagonite, stilbite, and calcite in the Wagholi quarries crystallized in several generations.
- The deposition of cavansite, pentagonite, stilbite, and mordenite was controlled by ascending fluids whose temperature decreased towards the flow and breccia surface and immigration distance.
- A multistage mineralization model applies to the formation of the secondary minerals in the Wagholi quarry:
- ○
- Stage I—Deposition of heulandite by burial diagenesis in isolated vesicles and interconnected open spaces.
- ○
- Stage II—Multiple pulses of ascending vanadium-bearing hydrothermal fluids through interconnected open spaces. Deposition of cavansite, pentagonite, and stilbite induced by decreasing temperature and constant pressure in a semi-open system. Cavansite and pentagonite formed at pressure 0.1 GPa to 0.3 GPa and temperature ˂ 200 °C, which are conditions that also apply to low-temperature zeolites.
- ○
- Stage III—Ascending of Si-rich fluids, with deposition of silica varieties and mordenite.
- Cavansite crystals are always singles and reach up to 2 cm in length. Cavansite crystals that are embedded in mordenite develop characteristic sheaf-like-shaped crystals with heavily curved faces. Pentagonite, on the contrary, are predominantly twinned and reach up to 7 cm.
- Further work is required to determine the different conditions for the formation of the two dimorphic minerals cavansite and pentagonite. The actual mineralization sequences and the joint geological conditions of cavansite, pentagonite, and their associated minerals have to be taken into account.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staples, L.W.; Evans, H.T., Jr.; Lindsay, J.R. Cavansite, a new calcium vanadium silicate mineral (abstr.). Geol. Soc. Am. Program Annu. Meet. 1967, 211–212. [Google Scholar]
- Evans, H.T. The crystal structures of cavansite and pentagonite. Am. Mineral. 1973, 58, 412–424. [Google Scholar]
- Staples, L.W.; Evans, H.T., Jr.; Lindsay, J.R. Cavansite and pentagonite, new dimorphous calcium vanadium silicate minerals from Oregon. Am. Mineral. 1973, 58, 405–411. [Google Scholar]
- Birch, W. Cavansite from the Poonah district, India. Mineral. Rec. 1977, 8, 61. [Google Scholar]
- Kothavala, R.Z. The Wagholi cavansite locality near Poona, India. Mineral. Rec. 1991, 22, 415–420. [Google Scholar]
- Wilke, H.-J.; Schnorrer-Köhler, G.; Bahle, A. Cavansit aus Indien. Lapis 1989, 14, 39–42. [Google Scholar]
- Blass, G.; Graf, H.W.; Ottens, B. Cavansit und Pentagonit. Miner. Welt 2000, 2, 59–62. [Google Scholar]
- Mookherjee, A.; Phadke, A.V. Thermo-Dilametric Study of Cavansite from Wagholi. India-Gondwana Geol. Mag. 1998, 13, 23–27. [Google Scholar]
- Phadke, A.V.; Apte, A. Thermal behavior of cavansite from Wagholi, India. Mineral. Mag. 1994, 58, 501. [Google Scholar] [CrossRef]
- Powar, K.B.; Byrappa, K. X-ray, thermal and infrared studies of cavansite from Wagholi western Maharashtra, India. J. Mineral. Petrol. Sci. 2001, 96, 1–6. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Prasad, K.S. Dehydration behavior of natural cavansite: An in-situ FTIR and Raman spectroscopic study. Mater. Chem. Phys. 2007, 105, 395–400. [Google Scholar] [CrossRef]
- White, J. Cavansite or Pentagonite? Rocks Miner. 2002, 77, 274–275. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Mookherjee, A.; Kunwar, A. Pressure-induced phase transition in cavansite—A rare zeolite from the Deccan Trap, India. Geochim. Cosmochim. Acta 2008, 73, 999. [Google Scholar]
- Ishida, N.; Kimata, M.; Nishida, N.; Hatta, T.; Shimizu, M.; Akasaka, T. Polymorphic relation between cavansite and pentagonite: Genetic implications of oxonium ion in cavansite. J. Mineral. Petrol. Sci. 2009, 104, 241–252. [Google Scholar] [CrossRef]
- Hughes, J.M.; Derr, R.S.; Cureton, F.; Campana, C.F.; Druschel, G. The crystal structure of cavansite: Location of the H2O molecules and hydrogen atoms in Ca(VO)(Si4O10)·4H2O. Can. Mineral. 2011, 49, 1267–1272. [Google Scholar] [CrossRef]
- Danisi, R.M.; Armbruster, T.; Lazic, B. In situ dehydration behavior of zeolite-like pentagonite: A single-crystal X-ray study. J. Solid State Chem. 2012, 197, 508–516. [Google Scholar] [CrossRef]
- Danisi, R.M.; Armbruster, T.; Arletti, R.; Gatta, G.D.; Vezzalini, G.; Quartieri, S.; Dmitriev, V. Elastic behavior and pressure-induced structural modifications of the microporous Ca(VO)Si4O10·4H2O dimorphs cavansite and pentagonite, Microporous and Mesoporous. Materials 2015, 204, 257–268. [Google Scholar] [CrossRef]
- Frost, R.L.; Xi, Y. Vibrational spectroscopic study of the minerals cavansite and pentagonite Ca(V4+O)Si4O10·4H2O. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 95, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Martucci, A.; Rodeghero, E.; Cruciani, G. Continuous dehydration of cavansite under dynamic conditions: An in situ synchrotron powder-diffraction study. Eur. J. Mineral. 2016, 28, 5–13. [Google Scholar] [CrossRef]
- Pujari, B.S.; Gehlot, S.; Arjunwadkar, M.; Kanhere, D.G.; Duraiswami, R.A. On the relative abundances of Cavansite and Pentagonite. Phys. Scr. 2024, 99, 055979. [Google Scholar] [CrossRef]
- Praszkier, T.; Siuda, R. The Lonavala quarry: Pune district, Maharashtra, India. Mineral. Rec. 2007, 38, 185. [Google Scholar]
- Praszkier, T. Cavansit und Pentagonit aus Indien. Mineralien-Welt 2009, 20, 16. [Google Scholar]
- Frank, H.T.; Formoso, M.L.L.; Devouard, B. Cavansite in Rio Grande do Sul (Brazil). Int. Geol. Congr. 2004, 326, 1440–1441. [Google Scholar]
- Frank, H.; Thornton, J. Cavansit: Neu aus Südbrasilien und Neuseeland. Lapis 2004, 29, 41–42. [Google Scholar]
- Duraiswami, R.A.; Gadpallu, P.; Shaikh, T.N.; Cardin, N. Pahoehoe–a’a transitions in the lava flow fields of the western DeccanTraps, India-implications for emplacement dynamics, flood basalt architecture and volcanic stratigraphy. J. Asian Earth Sci. 2014, 84, 146–166. [Google Scholar] [CrossRef]
- Jay, A.E.; Widdowson, M. Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: Implications for eruptive extent and volumes. J. Geol. Soc. Lond. 2008, 165, 177–188. [Google Scholar] [CrossRef]
- Gadpallu, P. Volcanic Facies Architecture of Lava Flows and Associated Interflow Horizon from Pune-Duane Section, Western Deccan Traps, India. Unpublish Ph.D. Thesis, Savitribai Phule Pune University, Pune, India, 2021. [Google Scholar]
- Pakulla, J.J.; Jansen, M.W.; Duraiswami, R.A.; Gadpallu, P.; Jentzsch, C.; Tusch, J.; Braukmüller, N.; Wombacher, F.; Münker, C. Trace elements and Sr-Nd-Hf-Pb isotopes indicate a multi-magma chamber system beneath the Deccan Volcanic Province, India. Chem. Geol. 2023, 640, 121749. [Google Scholar] [CrossRef]
- Duraiswami, R.A.; Sheth, H.C.; Gadpallu, P.; Youbi, N.; Chella, E.H. A simple recipe for red bole formation in continental flood basalt provinces: Weathering of flow-top and flow-bottom breccias. Arab. J. Geosci. 2020, 13, 953. [Google Scholar] [CrossRef]
- Walker, G.P.L. Some Observations and Interpretations on the Deccan Traps. Memoir Geol. Soc. India 1969, 43, 367–395. [Google Scholar]
- Sukheswala, R.N.; Avasia, R.K. and Gangopadhyay, M. Observations on the occurrence of secondary minerals in the Deccan Trap of Western India. Ind. Mineral. 1972, 13, 50–68. [Google Scholar]
- Sukheswala, R.N.; Avasia, R.K.; Gangopadhyay, M. Zeolites and associated secondary minerals in the Deccan Traps of Western India. Mineral. Mag. 1974, 39, 658–671. [Google Scholar] [CrossRef]
- Jeffery, K. Mineral Chemistry of Zeolites from the Deccan Basalts. Ph.D. Thesis, Royal Holloway and Bedford New College, University of London, London, UK, 1988; 238p. [Google Scholar]
- Sabale, A.B.; Vishvarkarma, L.L. Zeolites and Associated Secondary Minerals in Deccan Volcanics: Study of their Distribution, Genesis and Economic Importance. Gondwana Geol. Mag. 1996, 2, 511–518. [Google Scholar]
- Ottens, B.; Götze, J.; Schuster, R.; Krenn, K.; Hauzenberger, C.H.; Zsolt, B.; Vennemann, T. Exceptional multi-stage mineralization of secondary minerals in cavities of flood basalts from the Deccan Volcanic Province, India. Minerals 2019, 9, 351. [Google Scholar] [CrossRef]
- Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, J.D.; Liebau, F.; Mandarino, J.A.; Minato, H.; et al. Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the Mineralogical Association, Commission on New Minerals and Mineral Names. Eur. J. Mineral. 1998, 10, 1037–1081. [Google Scholar] [CrossRef]
- Sebastian, U. Metamorphe Gesteine. In Gesteinskunde; Springer Spektrum: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Rossman, G.R. Optical spectroscopy of green vanadium apophyllite from Poona, India. Am. Mineral. 1974, 59, 621–622. [Google Scholar]
- Ottens, B. Minerals of the Deccan Traps India. Mineral. Rec. 2003, 34, 1–82. [Google Scholar]
- Melluso, L.; Barbieri, M.; Beccaluva, L. Chemical evolution, petrogenesis, and regional chemical correlations of the flood basalt sequence in the central Deccan Traps, India. J. Earth Syst. Sci. 2004, 113, 587–603. [Google Scholar] [CrossRef]
- Ghodke, S.; Powar, K.; Kanegoankar, N. Trace elements distribution in Deccan trap flows in dive ghat area, Pune district, Maharashtra, in Proc. Symp. on Deccan Traps and Bauxites, Geological Survey of India. Spec. Publ. 1984, 14, 55–62. [Google Scholar]
- Mindat-org, Wagholi. Available online: https://www.mindat.org/loc-56889.html (accessed on 1 November 2024).
- Wagner, W.; Pruß, A. International equations for the saturation properties of ordinary water substances. Revised according to the international temperature scale of 1990. Add. J. Phys. Chem. Ref. Data 1990, 16, 783–787. [Google Scholar] [CrossRef]
- Bakker, R.J. Package Fluids 1 Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Davis, D.W.; Lowenstein, T.K.; Spencer, R.J. Melting behaviour of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geochim. Cosmochim. Acta 1990, 54, 591–601. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematics of fluid inclusions in diagenetic minerals. In SEPM Short Course; SEPM: Tulsa, OK, USA, 1994; Volume 31, 199p. [Google Scholar] [CrossRef]
- Bodnar, R.J. Introduction to aqueous-electrolyte fluid inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; Volume 32, pp. 81–100. [Google Scholar]
- Makki, M.F. Collecting cavansite in the Wagholi quarry complex, Pune, Maharashtra, India. Mineral. Rec. 2005, 36, 507–512. [Google Scholar]
- Roedder, E. Fluid Inclusions: Reviews in Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1984; Volume 12, 664p. [Google Scholar]
- Ottens, B.; Duraiswami, R.A.; Žorž, M.; Makki, M.F. India—The Secondary Minerals from the Deccan Volcanic Province; Weise: München, Germany, 2024; 348p, ISBN 978-3-921656-97-6. [Google Scholar]
- Kitsopoulos, K. The genesis of a mordenite deposit by hydrothermal alteration pf pyroclastics on Polygeos Island, Greece. Clays Clay Miner. 1997, 45, 632–648. [Google Scholar] [CrossRef]
- Neuhoff, P.S.; Fridriksson, T.; Arnorsson, S. Porosity evolution and mineral paragenesis during low-grade metamorphism of basaltic lavas at Teigarhorn, Eastern Iceland. Am. J. Sci. 1999, 299, 467–501. [Google Scholar] [CrossRef]
- Patro, B.P.K.; Sarma, S.V.S. Trap thickness and the subtrappean structures related to mode of eruption in the Deccan Plateau of India: Results from magnetotellurics. Earth Planets Space 2007, 59, 75–81. [Google Scholar] [CrossRef]
- Weisenberger, T.; Selbekk, R.S. Multi-stage zeolite facies mineralization in the Hvalfjördur area, Iceland. Int. J. Earth Sci. 2009, 98, 985–999. [Google Scholar] [CrossRef]
- Jørgensen, O. The regional distribution of zeolites in the basalts of the Faroe Islands and the significance of zeolites as paleotemperature indicators. In Scientific Results from the Deepened Lopra-1 Borehole, Faroe Islands; Chalmers, J.A., Waagstein, R., Eds.; GEUS: København, Denmark, 2006; pp. 123–156. [Google Scholar] [CrossRef]
- Bastias, J.; Fuentes, F.; Aguirre, L.; Hervé, F.; Demant, A.; Deckart, K.; Torres, T. Very low-grade secondary minerals as indicators of palaeo-hydrothermal systems in the Upper Cretaceous volcanic succession of Hannah Point, Livingston Island, Antarctica. Appl. Clay Sci. 2016, 134, 246–256. [Google Scholar] [CrossRef]
- Barth-Wirsching, U.; Holler, H. Experimental studies on zeolite formation conditions. Eur. J. Mineral. 1989, 1, 489–506. [Google Scholar] [CrossRef]
- Kristmannsdóttir, H.; Tómasson, J. Zeolite zones in geothermal areas in Iceland. In Natural Zeolites: Occurrences, Properties, and Use; Sand, L.B., Mumpton, F.A., Eds.; Pergamon: Oxford, UK, 1978; pp. 277–284. [Google Scholar]
- Giret, A.; Verdier, O.; Nativel, P. The zeolitisation of Kerguelen Islands, Southern Indian Ocean. In Recent Progress in Antarctic Earth Science; Yoshida, Y., Kaminuma, K., Shiraishi, K., Eds.; Terra Publishing: Tokyo, Japan, 1992; Volume 32, pp. 457–463. [Google Scholar] [CrossRef]
- Bargar, K.E. Hydrothermal alteration in the SUNEDCO 58-28 geothermal drill hole near Breitenbush Hot Springs, Oregon. Or. Geol. Soc. 1994, 56, 75–87. [Google Scholar] [CrossRef]
- Ottens, B.; Schuster, R.; Benkó, Z. The secondary minerals from the spilite of Mumbai/Salsette, Deccan Volcanic Province, India. Minerals 2022, 12, 444. [Google Scholar] [CrossRef]
- Gottardi, G. The genesis of zeolites. Eur. J. Mineral. 1989, 1, 479–487. [Google Scholar] [CrossRef]
- Kousehlar, M.; Weisenberger, T.B.; Tutti, F.; Mirnejad, H. Fluid control on low-temperature mineral formation in volcanic rocks of Kahrizak, Iran. Geofluids 2012, 12, 295–311. [Google Scholar] [CrossRef]
- Pe-Piper, G. Mode of Occurrence, Chemical Variation and Genesis of Mordenite and Associated Zeolites from the Morden Area, Nova Scotia, Canada. Can. Mineral. 2000, 38, 1215–1232. [Google Scholar] [CrossRef]
- Bargar, K.E.; Beeson, M.H. Hydrothermal Alteration in Research Drill Hole Y-6, Upper Firehole River, Yellowstone National Park, Wyoming; United States Government Publishing Office: Washington, DC, USA, 1984; 24p.
- Bish, D.L.; Variman, D.T.; Byers, F.M.; Broxton, D.E. Summary of the Mineralogy-Petrology of Tuffs from the Yucca Mountain and Tile Secondary-Phase Thermal Stability in Tuffs. Los Alamos Natl Lab Report LA-9321-MS; United States Government Publishing Office: Washington, DC, USA, 1982; 47p.
- Randive, K.; Chaudhary, S.; Dandekar, S.; Deshmukh, K.; Peshve, D.; Belyatski, D.; Belyatsk, B. Characterisation and genesis of the chalcedony occurring within the Deccan lava flows of the LIT hill, Nagpur, India. J. Earth Syst. Sci. 2019, 128, 192. [Google Scholar] [CrossRef]
- Winter, J.D. Principles of Igneous and Metamorphic Petrology, 2nd ed.; Pearson: London, UK, 2021; 745p, ISBN 13-978-0-32-159257-6. [Google Scholar]
- Green, E.C.R. Metamorphic Reactions and Processes. In Encyclopedia of Geochemistry; White, W., Ed.; Encyclopedia of Earth Sciences Series; Springer: Cham, Switzerland, 2018; pp. 906–917. [Google Scholar] [CrossRef]
- Frey, M.; De Captani, D.; Liou, J.G. A new petrogenetic grid for low-grade metabasites. J. Metamorph. Geol. 1991, 9, 497–509. [Google Scholar] [CrossRef]
- Choudhury, M.; Borthakur, P.C.; Bora, T. Synthesis and characterization of silicious mordenite. Indian J. Chem. Technol. 1998, 5, 1–6. [Google Scholar]
- Strunz, H.; Tennyson, C. Mineralogical Tables; Akademische Verlagsgesellschaft Geest & Portig: Leipzig, Germany, 1982; 621p. [Google Scholar]
- Van Valkenburg, A., Jr.; Bule, B.F. Octahedral cristobalite with quartz paramorphs from Ellora caves, India. Amer. Mineral. 1945, 58, 501–505. [Google Scholar]
- Götze, J.; Göbbels, M. Introduction to Applied Mineralogy; Springer Nature: Berlin, Germany, 2023; 266p, ISBN 9783662648667. [Google Scholar]
- Mindat.org, Aranga Quarry. Available online: https://www.mindat.org/loc-15344.html (accessed on 1 November 2024).
Sampl.No. | Minerals (Tested Minerals in Cursive) | XRD | SEM EDX | Raman/ Microsc. | Fl. Incl. | Supplementary Figure |
---|---|---|---|---|---|---|
A 1 | Pen, 2 generations, Mor fibers. | x | x | Figures S1–S4 | ||
A 3 | Pen, 2 generations. | x | x | Figures S5–S7 | ||
D 1 | Pen | x | Figure S8 | |||
Mu 01 | Cal on Pen and Hul. | x | ||||
Mu 02 | Hul with Mor. | x | Figure S9 | |||
Mu 03 | Hul. | x | Figure S10 | |||
Mu 04 | Cal with Mor, Hul and Stb. | x | x | Ram. | Figures S11–S13 | |
Mu 05 | Crs with Pen, Oke | x | x | Ram. | Figures S14–S16 | |
Mu 06 | Pen and Mor. | x | x | Figure S17 | ||
Mu 11 | Mor. | x | Figure S18 | |||
Mu 14 | Pen on Hul. | x | x | Figures S19 and S20 | ||
Mu 15 | Cav. | x | Figure S21 | |||
Mu 16 | Hul with Cav, Mor and Durleite | x | x | Figure S22 | ||
Mu 17 | Stb. | x | x | Figures S23 and S24 | ||
Mu 18 | Cha, Pen and Qtz. | Micr. | ||||
USA 1 | Cav. | x | x | Figures S25 and S26 |
Sample/ Element | Pen A1 A | Pen A1 B | Pen A3 A-D | Pen A3 B-D | Pen * A3 A-R | Pen * A3 B-R | Pen D1 A | Pen Mu 14 A | Cav USA01 |
---|---|---|---|---|---|---|---|---|---|
Al | 0.25 | 0.06 | |||||||
Si | 69.00 | 68.29 | 66.55 | 69.56 | 67.31 | 65.98 | 70.04 | 68.45 | 69.70 |
Ca | 16.06 | 16.04 | 15.67 | 15.62 | 17.74 | 18.91 | 15.54 | 16.05 | 16.06 |
V | 14.94 | 15.34 | 14.24 | 14.51 | 14.50 | 15.78 | 14.10 | 15.25 | 14.23 |
Cu | 0.33 | 3.54 | 0.30 | 0.19 | 0.27 | 0.31 | 0.24 | ||
Total | 100.00 | 100.00 | 100.00 | 100.00 | 99.99 | 101.00 | 100.00 | 100.00 | 100.00 |
Sample/ Element | MU 02-1 Hul-Ca | Mu 02-2 Hul-Ca | Mu 17-1 Stb-Ca | Mu 1-2 Stb-Ca | MU 04-1 Mor | Mu 04-2 Mor |
---|---|---|---|---|---|---|
O | 76.57 | 77.08 | 66.40 | 65.74 | 56.73 | 58.60 |
Si | 16.42 | 16.10 | 22.31 | 22.65 | 32.93 | 31.49 |
Al | 4.04 | 4.10 | 6.20 | 6.40 | 5.98 | 5.63 |
Ca | 2.01 | 1.93 | 4.06 | 3.89 | 1.59 | 1.60 |
Na | 0-91 | 0.78 | 1.03 | 1.32 | 2.71 | 2.63 |
K | 0.05 | 0.02 | 0.05 | 0.05 | ||
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Mineral/Zone | I | II | III | Sub | ||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | a | b | c | a | b | c | d | ||
Heulandite | xxxx | xxxx | xxxx | xxxx | xxxx | xxxx | xxxx | xx | xx | x |
Cavansite | xxx | xxx | xxx | x | ||||||
Stilbite | xxx | xxx | xxx | xxx | x | |||||
Pentagonite | xx | xx | xxx | xxx | xx | x | ||||
Mordenite | x | xx | xxx | xxx | xxxx | xxxx | x | |||
Chalcedony | x | xx | xxx | xxx | xxx | |||||
Quartz | xx | |||||||||
Calcite | x | xx | xx | xx | xx | xx | xx | xx | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ottens, B.; Duraiswami, R.A.; Krenn, K. The Formation of Cavansite and Pentagonite in the Wagholi Quarries, Pune, India. Minerals 2025, 15, 126. https://doi.org/10.3390/min15020126
Ottens B, Duraiswami RA, Krenn K. The Formation of Cavansite and Pentagonite in the Wagholi Quarries, Pune, India. Minerals. 2025; 15(2):126. https://doi.org/10.3390/min15020126
Chicago/Turabian StyleOttens, Berthold, Raymond A. Duraiswami, and Kurt Krenn. 2025. "The Formation of Cavansite and Pentagonite in the Wagholi Quarries, Pune, India" Minerals 15, no. 2: 126. https://doi.org/10.3390/min15020126
APA StyleOttens, B., Duraiswami, R. A., & Krenn, K. (2025). The Formation of Cavansite and Pentagonite in the Wagholi Quarries, Pune, India. Minerals, 15(2), 126. https://doi.org/10.3390/min15020126