Fabrication of Single-Crystalline Calcite Needle-Like Particles Using the Aragonite–Calcite Phase Transition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthetic Procedures and Heat Treatments
2.3. Characterization
3. Results and Discussion
3.1. Elemental Analysis and Carbonation Reaction
3.2. Thermal Analysis
3.3. Identification of Crystallographic Phases
3.4. Particle Characterization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eirich, F.R. Handbook of Fillers and Reinforcements for Plastics; Katz, H.S., Milewski, J.V., Eds.; Litton Educational Publishing, Inc.: New York, NY, USA, 1978. [Google Scholar]
- Bartczak, Z.; Argon, A.S.; Cohen, R.E.; Weinberg, M. Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 1999, 40, 2347–2365. [Google Scholar] [CrossRef]
- Da Silva, A.L.N.; Rocha, M.C.G.; Moraes, M.A.R.; Valente, C.A.R.; Coutinho, F.M.B. Mechanical and rheological properties of composites based on polyolefin and mineral additives. Polym. Test. 2002, 21, 57–60. [Google Scholar] [CrossRef]
- Thio, Y.S.; Argon, A.S.; Cohen, R.E.; Weinberg, M. Toughening of isotactic polypropylene with CaCO3 particles. Polymer 2002, 43, 3661–3674. [Google Scholar] [CrossRef]
- Lama, T.D.; Hoang, T.V.; Quang, D.T.; Kim, J.S. Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites. Mater. Sci. Eng. A 2009, 501, 87–93. [Google Scholar] [CrossRef]
- Roskill Information Services Ltd. Ground and Precipitated Calcium Carbonate: Global Industry Markets and Outlook, 1st ed.; Roskill Information Services Ltd.: London, UK, 2012; pp. 270–359. [Google Scholar]
- Shiraishi, T. Colloidal Calcium Carbonate and Method of Producing the Same. U.S. Patent No. 1,654,099, 27 December 1927. [Google Scholar]
- Shiraishi, T. Method of Manufacturing Colloidal Carbonate of Alkali Earths. U.S. Patent No. 1,863,945, 21 June 1932. [Google Scholar]
- Wray, J.L.; Daniels, F. Precipitation of Calcite and Aragonite. J. Am. Chem. Soc. 1957, 79, 2031–2034. [Google Scholar] [CrossRef]
- Yamada, H.; Hara, N. Formation Process of Colloidal Calcium Carbonate in the Reaction of the System Ca(OH)2-H2O-CO2. Gypsum Lime 1985, 194, 3–12. [Google Scholar]
- Payne, A.R. Dynamic Properties of Filler-Loaded Rubbers. In Reinforcement of Elastomers; Kraus, G., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1965; pp. 69–124. [Google Scholar]
- Fang, Q.; Song, B.; Tee, T.; Sin, L.T.; Hui, D.; Bee, S. Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate. Compos. Part B 2014, 60, 561–567. [Google Scholar] [CrossRef]
- Damusis, A. Pigments in Sealants. In Sealants; Damusis, A., Ed.; Reinhold Publishing Co.: New York, NY, USA, 1967; pp. 52–91. [Google Scholar]
- Hagemeyer, R.W. Pigments for Paper, 1st ed.; O’Shea, J.E., Ed.; Tappi Press: Atlanta, GA, USA, 1997. [Google Scholar]
- Kumar, N.; Bhardwaj, N.K.; Chakrabarti, S.K. Influence of pigment blends of different shapes and size distributions on coated paper properties. J. Coat. Technol. Res. 2011, 8, 605–611. [Google Scholar] [CrossRef]
- García-Carmona, J.; Morales, J.G.; Clemente, R.R. Morphological control of precipitated calcite obtained by adjusting the electrical conductivity in the Ca(OH)2–H2O–CO2 system. J. Cryst. Growth 2003, 249, 561–571. [Google Scholar] [CrossRef]
- Han, Y.S.; Hadiko, G.; Fuji, M.; Takahashi, M. Factors affecting the phase and morphology of CaCO3 prepared by a bubbling method. J. Eur. Ceram. Soc. 2006, 26, 843–847. [Google Scholar] [CrossRef]
- Somani, R.S.; Patel, K.S.; Mehta, A.R.; Jasra, R.V. Examination of the Polymorphs and Particle Size of Calcium Carbonate Precipitated Using Still Effluent (i.e., CaCl2 + NaCl Solution) of Soda Ash Manufacturing Process. Ind. Eng. Chem. Res. 2006, 45, 5223–5230. [Google Scholar] [CrossRef]
- Ota, Y.; Inui, S.; Iwashita, T.; Kasuga, T.; Abe, Y. Preparation of Aragonite whiskers. J. Am. Ceram. Soc. 1995, 78, 1983–1984. [Google Scholar] [CrossRef]
- Park, W.K.; Ko, S.J.; Lee, S.W.; Cho, K.H.; Ahn, J.W.; Han, C. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. J. Cryst. Growth 2008, 310, 2593–2601. [Google Scholar] [CrossRef]
- Hu, Z.; Shao, M.; Cai, Q.; Ding, S.; Zhong, C.; Wei, X.; Deng, Y. Synthesis of needle-like aragonite from limestone in the presence of magnesium chloride. J. Mater. Process. Technol. 2009, 209, 1607–1611. [Google Scholar] [CrossRef]
- Faust, G.T. Differentiation of Aragonite from Calcite by Differential Thermal Analysis. Science 1949, 110, 402–403. [Google Scholar] [CrossRef] [PubMed]
- Omari, H. Thermal stability of calcium carbonate gallstone crystal. J. Jpn. Biliary Assoc. 1989, 3, 109–117. [Google Scholar]
- Rao, M.S.; Yoganarasimhan, S.R. Preparation of pure aragonite and its transformation to calcite. Am. Mineral. 1965, 50, 1489–1493. [Google Scholar]
- Rao, G.V.S.; Natarajan, M.; Rao, C.N.R. Effect of Impurities on the Phase Transformations and Decomposition of CaCO3. J. Am. Ceram. Soc. 1968, 51, 179–181. [Google Scholar] [CrossRef]
- Yoshioka, S.; Kitano, Y. Transformation of aragonite to calcite through heating. Geochem. J. 1985, 19, 245–249. [Google Scholar] [CrossRef]
- Beruto, D.; Giordani, M. Calcite and aragonite formation from aqueous calcium hydrogencarbonate solutions: Effect of induced electromagnetic field on the activity of CaCO3 Nuclei Precursors. J. Chem. Soc. Faraday Trans. 1993, 89, 2457–24666. [Google Scholar] [CrossRef]
- Bischoff, J.L.; Fyfe, W.S. Catalysis, inhibition, and the calcite-aragonite problem; Part 1, The aragonite–calcite transformation. Am. J. Sci. 1968, 266, 65–79. [Google Scholar] [CrossRef]
- Wada, N.; Okazaki, M.; Tachikawa, S. Effects of calcium-binding polysaccharides from calcareous algae on calcium carbonate polymorphs under conditions of double diffusion. J. Cryst. Growth 1993, 132, 115–121. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Mikhail, R.S.; Brunauer, S. Surface area measurements by nitrogen and argon adsorption. J. Colloid Interface Sci. 1975, 52, 572–577. [Google Scholar] [CrossRef]
- Scherrer, P. Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen 1918, 2, 96–100. [Google Scholar]
Mg | Sr | Si | P | Fe | Na | Al | Mn |
---|---|---|---|---|---|---|---|
2900 | 360 | 450 | 55 | 96 | 65 | 190 | 10 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kezuka, Y.; Kawai, K.; Eguchi, K.; Tajika, M. Fabrication of Single-Crystalline Calcite Needle-Like Particles Using the Aragonite–Calcite Phase Transition. Minerals 2017, 7, 133. https://doi.org/10.3390/min7080133
Kezuka Y, Kawai K, Eguchi K, Tajika M. Fabrication of Single-Crystalline Calcite Needle-Like Particles Using the Aragonite–Calcite Phase Transition. Minerals. 2017; 7(8):133. https://doi.org/10.3390/min7080133
Chicago/Turabian StyleKezuka, Yuki, Kosuke Kawai, Kenichiro Eguchi, and Masahiko Tajika. 2017. "Fabrication of Single-Crystalline Calcite Needle-Like Particles Using the Aragonite–Calcite Phase Transition" Minerals 7, no. 8: 133. https://doi.org/10.3390/min7080133
APA StyleKezuka, Y., Kawai, K., Eguchi, K., & Tajika, M. (2017). Fabrication of Single-Crystalline Calcite Needle-Like Particles Using the Aragonite–Calcite Phase Transition. Minerals, 7(8), 133. https://doi.org/10.3390/min7080133