Following the Amphibolite to Greenschist Metamorphic Path through the Structural Parameters of Spinels from Amsaga (Mauritania)
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Single Crystal Diffraction
2.2. Electron Microprobe Analyses
2.3. Cation Distribution
2.4. Mössbauer Spectroscopy
3. Results
4. Discussion
4.1. Crystal Chemical Considerations
4.2. Thermometric Considerations and Oxidation Evaluation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Irvine, T.N. Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, J.H. Chromian spinel as petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Lenaz, D.; Kamenetsky, V.S.; Crawford, A.J.; Princivalle, F. Melt inclusions in detrital spinels from the SE Alps (Italy-Slovenia): A new approach to provenance studies of sedimentary basins. Contrib. Mineral. Petrol. 2000, 139, 748–758. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef]
- Sack, R.O.; Ghiorso, M.S. Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications. Am. Mineral. 1991, 76, 827–847. [Google Scholar]
- Roeder, P.L. Chromite: From the Fiery rain of chondrules to the Kilauea Iki lava lake. Can. Mineral. 1994, 32, 729–746. [Google Scholar]
- Della Giusta, A.; Princivalle, F.; Carbonin, S. Crystal chemistry of a suite of natural Cr-bearing spinels with 0.15 < Cr < 1.07. N. Jahrb. Min. Abh. 1986, 155, 319–330. [Google Scholar]
- Princivalle, F.; Della Giusta, A.; Carbonin, S. Comparative crystal chemistry of spinels from some suits of ultramafic rocks. Mineral. Petrol. 1989, 40, 117–126. [Google Scholar] [CrossRef]
- Princivalle, F.; De Min, A.; Lenaz, D.; Scarbolo, M.; Zanetti, A. Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos 2014, 188, 3–14. [Google Scholar] [CrossRef]
- Nédli, Z.; Princivalle, F.; Lenaz, D.; Tóth, T.M. Crystal chemistry of clinopyroxene and spinel from mantle xenoliths hosted in late Mesozoic lamprophyres (Villány Mts, S Hungary). N. Jahrb. Min. Abh. 2008, 185, 1–10. [Google Scholar] [CrossRef]
- Lenaz, D.; Youbi, N.; De Min, A.; Boumehdi, M.A.; Ben Abbou, M. Low intra-crystalline closure temperatures of Cr-bearing spinels from the mantle xenoliths of the Middle Atlas Neogene-Quaternary Volcanic Field (Morocco): A mineralogical evidence of a cooler mantle beneath the West African Craton. Am. Mineral. 2014, 99, 267–275. [Google Scholar] [CrossRef]
- Perinelli, C.; Bosi, F.; Andreozzi, G.B.; Conte, A.M.; Armienti, P. Geothermometric study of Cr-spinels of peridotite mantle xenoliths from Northern Victoria Land (Antarctica). Am. Mineral. 2014, 99, 839–846. [Google Scholar] [CrossRef]
- Bosi, F.; Andreozzi, G.B.; Ferrini, V.; Lucchesi, S. Behavior of cation vacancy in kenotetrahedral Cr-spinels from Albanian eastern belt ophiolites. Am. Mineral. 2004, 89, 1367–1373. [Google Scholar] [CrossRef]
- Quintiliani, M.; Andreozzi, G.B.; Graziani, G. Fe2+ and Fe3+ quantification of different approaches and fO2 estimation for Albanian Cr-spinels. Am. Mineral. 2006, 91, 907–916. [Google Scholar] [CrossRef]
- Derbyshire, E.J.; O’Driscoll, B.; Lenaz, D.; Gertisser, R.; Kronz, A. Compositional heterogeneity in chromitite seams from the Shetland Ophiolite Complex (Scotland). Lithos 2013, 162–163, 279–300. [Google Scholar] [CrossRef]
- Lenaz, D.; Adetunji, J.; Rollinson, H. Determination of Fe3+/ΣFe ratios in chrome spinels using a combined Mössbauer and single-crystal X-ray approach: Application to chromitites from the mantle section of the Oman ophiolite. Contrib. Mineral. Petrol. 2014, 167, 958. [Google Scholar] [CrossRef]
- Lenaz, D.; Andreozzi, G.B.; Bidyananda, M.; Princivalle, F. Oxidation degree of chromite from Indian ophiolites: A crystal chemical and 57Fe Mössbauer study. Per. Mineral. 2014, 83, 241–255. [Google Scholar] [CrossRef]
- Basso, R.; Comin-Chiaramonti, P.; Della Giusta, A.; Flora, O. Crystal chemistry of four Mg-Fe-Al-Cr spinels from the Balmuccia peridotite (Western Italian Alps). N. Jahrb. Min. Abh. 1984, 150, 1–10. [Google Scholar]
- Lenaz, D.; De Min, A.; Garuti, G.; Zaccarini, F.; Princivalle, F. Crystal chemistry of Cr-spinels from the lherzolite mantle peridotite of Ronda (Spain). Am. Mineral. 2010, 95, 1323–1328. [Google Scholar] [CrossRef]
- Lenaz, D.; Andreozzi, G.B.; Mitra, S.; Bidyananda, M.; Princivalle, F. Crystal chemical and 57Fe Mössbauer study of chromite from the Nuggihalli schist belt (India). Mineral. Petrol. 2004, 80, 45–57. [Google Scholar] [CrossRef]
- Lenaz, D.; Braidotti, R.; Princivalle, F.; Garuti, G.; Zaccarini, F. Crystal chemistry and structural refinement of chromites from different chromitite layers and xenoliths of the Bushveld Complex. Eur. J. Mineral. 2007, 19, 599–609. [Google Scholar] [CrossRef]
- Lenaz, D.; O’Driscoll, B.; Princivalle, F. Petrogenesis of the anorthosite—Chromitite association: Crystal-chemical and petrological insights from the Rum Layered Intrusion, NW Scotland. Contrib. Mineral. Petrol. 2011, 162, 1201–1213. [Google Scholar] [CrossRef]
- Lenaz, D.; Garuti, G.; Zaccarini, F.; Cooper, R.W.; Princivalle, F. The Stillwater Complex: The response of chromite crystal chemistry to magma injection. Geol. Acta 2012, 10, 33–41. [Google Scholar] [CrossRef]
- Lenaz, D.; Logvinova, A.M.; Princivalle, F.; Sobolev, N.V. Structural parameters of chromite included in diamond and kimberlites from Siberia: A new tool for discriminating ultramafic source. Am. Mineral. 2009, 94, 1067–1070. [Google Scholar] [CrossRef]
- Lenaz, D.; Princivalle, F.; Schmitz, B. First crystal-structure determination of chromites from an acapulcoite and ordinary chondrites. Min. Mag. 2015, 79, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Lenaz, D.; Schmitz, B. Crystal structure refinement of chromites from two achondrites, their T-f(O2) conditions and implications. Meteor. Planet. Sci. 2017, 52, 1763–1775. [Google Scholar] [CrossRef]
- Ashwal, L.D. Anorthosites; Springer: Berlin, Germany, 1993; p. 422. [Google Scholar]
- Carbonin, S.; Menegazzo, G.; Lenaz, D.; Princivalle, F. Crystal chemistry of two detrital Cr-spinels with unusually low values of oxygen positional parameter: Oxidation mechanism and possible origin. N. Jahrb. Min. Mh. 1999, 8, 359–371. [Google Scholar]
- Rollinson, H.; Adetunji, J.; Yousif, A.A.; Gismelseed, A.M. New Mössbauer measurements of Fe3+/ΣFe in chromites from the mantle section of the Oman ophiolites: Evidence for the oxidation of the sub-oceanic mantle. Min. Mag. 2012, 76, 579–596. [Google Scholar] [CrossRef]
- Rollinson, H.; Adetunji, J.; Lenaz, D.; Szilas, K. Archaean chromitites show constant Fe3+/ΣFe in Earth’s asthenospheric mantle since 3.8 Ga. Lithos 2017, 282–283, 316–325. [Google Scholar] [CrossRef]
- Adetunji, J.; Everitt, S.; Rollinson, H. New Mössbauer measurements of Fe3+/ΣFe ratios in chromites from the early Proterozoic Bushveld Compex, South Africa. Precambrian Res. 2013, 228, 194–205. [Google Scholar] [CrossRef]
- Rollinson, H.; Adetunji, J. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos 2013, 177, 314–327. [Google Scholar] [CrossRef]
- Rollinson, H.; Adetunji, J. The geochemistry and oxidation state of podifrom chromitites from the mantle section of the Oman ophiolite: A review. Gondwana Res. 2015, 27, 543–554. [Google Scholar] [CrossRef]
- Potrel, A. Geochemistry of the Amsaga area orthogneisses (Archean Reguibat Rise, Mauritania). Rev. Bras. Geosci. 1996, 27, 211–218. [Google Scholar]
- Auvray, B.; Peucat, J.J.; Potrel, A.; Burg, J.P.; Caruba, C.; Lo, K. Données géochronologiques nouvelles sur 1′Archéen de 1′Amsaga (Dorsale Réguibat, Mauritanie). Comptes Rend. Acad. Sci. 1992, 315, 63–70. [Google Scholar]
- Potrel, A.; Peucat, J.J.; Fanning, C.M. Archean crustal evolution of the west African Craton: Example of the Amsaga area (Reguibat rise). U-Pb and Sm-Nd evidence for crustal growth and recycling. Precambrian Res. 1998, 90, 107–117. [Google Scholar] [CrossRef]
- Key, R.M.; Loughlin, S.C.; Gillespie, M.; Del Rio, M.; Horstwood, M.S.A.; Crowley, Q.G.; Darbyshire, D.P.F.; Pitfield, P.E.J.; Henney, P.J. Two Mesoarchaean terranes in the Reguibat shield of NW Mauritania. Geol. Soc. Lond. Spec. Pub. 2008, 297, 33–52. [Google Scholar] [CrossRef] [Green Version]
- Berger, J.; Diot, H.; Lo, K.; Ohnenstetter, D.; Féménias, O.; Pivin, M.; Demaiffe, D.; Bernard, A.; Charlier, B. Petrogenesis of Archean PGM-bearing chromitites and associated ultramafic-mafic-anorthositic rocks from the Guelb el Azib complex (West African craton, Mauritania). Precambrian Res. 2013, 224, 612–628. [Google Scholar] [CrossRef]
- Rollinson, H.R.; Reid, C.; Windley, B. Chromitites from the Fiskenæsset anorthositic complex, West Greenland: Clues to late Archaean mantle processes. In The Evolving Continents: Understanding Processes of Continental Growth; Kusky, T.M., Zhai, M.-G., Xiao, W., Eds.; Geological Society, Special Publication: London, UK, 2010; Volume 338, pp. 197–212. [Google Scholar]
- Dutta, U.; Bhui, U.K.; Sengupta, P.; Sanyal, S.; Mukhopadhyay, D. Magmatic and metamorphic imprints in 2.9 Ga chromitites from the Sittampundi layered complex, Tamil Nadu, India. Ore Geol. Rev. 2011, 40, 90–107. [Google Scholar] [CrossRef]
- Ghosh, B.; Konar, R. Chromites from meta-anorthosites, Sittampundi layered igneous complex, Tamil Nadu, Southern India. J. Asian Earth Sci. 2011, 42, 1394–1402. [Google Scholar] [CrossRef]
- Della Giusta, A.; Carbonin, S.; Ottonello, G. Temperature-dependant disorder in a natural Mg-Al-Fe2+-Fe3+-Spinel. Min. Mag. 1996, 60, 603–616. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Prince, E. Volume C: Mathematical, Physical and Chemical Tables. In International Tables for X-ray Crystallography, 3rd ed.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Tokonami, M. Atomic scattering factor for O−2. Acta Crystallogr. 1965, 19, 486. [Google Scholar] [CrossRef]
- Carbonin, S.; Russo, U.; Della Giusta, A. Cation distribution in some natural spinels from X-ray diffraction and Mössbauer spectroscopy. Min. Mag. 1996, 60, 355–368. [Google Scholar] [CrossRef]
- Lavina, B.; Salviulo, G.; Della Giusta, A. Cation distribution and structure modelling of spinel solid solutions. Phys. Chem. Min. 2002, 29, 10–18. [Google Scholar] [CrossRef]
- Jernberg, P.; Sundqvist, T. A Versatile Mössbauer Analysis Program; Institute of Physics (UUIP-1090), Uppsala University: Uppsala, Sweden, 1983. [Google Scholar]
- De Grave, E.; Van Alboom, A. Evaluation of ferrous and ferric Mössbauer fractions. Phys. Chem. Min. 1991, 18, 337–342. [Google Scholar] [CrossRef]
- Eeckhout, S.G.; De Grave, E. Evaluation of ferrous and ferric Mossbauer fractions. Part II. Phys. Chem. Min. 2003, 30, 142–146. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H.; Princivalle, F.; Hålenius, U. Structural changes and valence states in the MgCr2O4-FeCr2O4 solid solution series. Phys. Chem. Min. 2004, 31, 633–642. [Google Scholar] [CrossRef]
- Kimball, K.M. Effects of hydrothermal alteration on the compositions of chromian spinels. Contrib. Mineral. Petrol. 1990, 105, 337–346. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome-spinel in progressive metamorphism–A preliminary analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Burkhard, D.J.M. Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta 1993, 57, 1297–1306. [Google Scholar] [CrossRef]
- Barnes, S.J. Chromite in Komatiites, 2. Modifications during greenschist to mid-amphibolite facies metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef]
- Farahat, E.S. Chrome-spinels in serpentinites and talc-carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: Their metamorphism and petrogenetic implications. Chem. Erde 2005, 68, 193–205. [Google Scholar] [CrossRef]
- Mellini, M.; Rumori, C.; Viti, C. Hydrotermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and Chlorite aureoles. Contrib. Mineral. Petrol. 2005, 149, 266–275. [Google Scholar] [CrossRef]
- Merlini, A.; Grieco, G.; Diella, V. Ferritchromite and chromian-chlorite formation in melange-hosted Kalkan chromitite (Southern Uurals, Russia). Am. Mineral. 2009, 94, 1459–1467. [Google Scholar] [CrossRef]
- Princivalle, F.; Della Giusta, A.; De Min, A.; Piccirillo, E.M. Crystal chemistry and significance of cation ordering in Mg–Al rich spinels from high-grade hornfels (Predazzo-Monzoni, NE Italy). Min. Mag. 1999, 63, 257–262. [Google Scholar] [CrossRef]
- Gervilla, F.; Padrón-Navarta, J.A.; Kerestedjian, T.; Sergeeva, I.; González-Jiménez, J.M.; Fanlo, I. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: A two-stage process. Contrib. Mineral. Petrol. 2012, 164, 643–657. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.F.; Green, D.H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Kerestedjian, T.; Proenza, J.A.; Gervilla, F. Metamorphism on chromite ores from the Dobromirtsi ultramafic massif, rhodope mountains (SE Bulgaria). Geol. Acta 2009, 7, 413–429. [Google Scholar]
- Lenaz, D.; Skogby, H.; Logvinova, A.M.; Sobolev, N.V.; Princivalle, F. A micro-Mössbauer study of chromites included in diamond and other mantle-related rocks. Phys. Chem. Min. 2013, 40, 671–679. [Google Scholar] [CrossRef]
- Lenaz, D.; Kamenetsky, V.; Princivalle, F. Cr-spinel supply in the Brkini, Istrian and Krk Island flysch basins (Slovenia, Italy and Croatia). Geol. Mag. 2003, 140, 335–372. [Google Scholar] [CrossRef]
- Lenaz, D.; Mazzoli, C.; Spišiak, J.; Princivalle, F.; Maritan, L. Detrital Cr-spinel in the Šambron-Kamenica Zone (Slovakia): Evidence for an ocean-spreading zone in the Northern Vardar suture? Int. J. Earth Sci. 2009, 98, 345–355. [Google Scholar] [CrossRef]
- Abre, P.; Cingolani, C.; Zimmermann, U.; Cairncross, B. Detrital chromian spinels from Upper Ordovician depostis in the Precordillera terrane, Argentina: A mafic crust input. J. S. Am. Earth Sci. 2009, 28, 407–418. [Google Scholar] [CrossRef]
- Lužar-Oberiter, B.; Mikes, T.; von Eynatten, H.; Babić, L. Ophiolitic detritus in Cretaceous clastic formations of the Dinarides (NW Croatia): Evidence from Cr-spinel chemistry. Int. J. Earth Sci. 2009, 98, 1097–1108. [Google Scholar] [CrossRef]
- Filippov, A.N. Compositions and provenances of Mesozoic sandstones in Sikhote Alin. Lithol. Min. Res. 2012, 47, 70–88. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Nixon, G.T.; Levson, V.M.; Martin, R.F.; Fleet, M.E. Chromian spinel from PGE-bearing placer deposits, British Columbia, Canada: Mineralogical associations and provenance. Can. Mineral. 2013, 51, 501–536. [Google Scholar] [CrossRef]
- Ghosh, B.; Morishita, T.; Bhatta, K. Detrital chromian spinels from beach placers of Andaman Islands, India: A perspective view of petrological characteristics and variations of the Andaman ophiolite. Island Arc 2012, 21, 188–201. [Google Scholar] [CrossRef]
- Lenaz, D.; Princivalle, F. Crystal-chemistry of detrital chromites in sandstones from Trieste (NE Italy). N. Jahrb. Min. Mh. 1996, 9, 429–434. [Google Scholar]
- Lenaz, D.; Princivalle, F. The crystal chemistry of detrital chromian spinel from the Southeastern Alps and Outer Dinarides: The discrimination of supplies from areas of similar tectonic setting? Can. Mineral. 2005, 43, 1305–1314. [Google Scholar] [CrossRef]
Sample | MA422 | MA238 | MA44 | MA400 | MA17 | MA226 | MA440 | MA425 | MA273 |
---|---|---|---|---|---|---|---|---|---|
Matrix | Talc-Serp | Chl | Chl | Chl | Chl | Chl | Amph | Amph | Amph |
a0 | 8.3571 (5) | 8.2933 (3) | 8.2854 (5) | 8.3142 (4) | 8.2770 (4) | 8.2825 (2) | 8.2561 (7) | 8.2635 (6) | 8.2601 (4) |
u | 0.2626 (2) | 0.2634 (2) | 0.2630 (1) | 0.2628 (2) | 0.2633 (1) | 0.2628 (1) | 0.2635 (1) | 0.2638 (2) | 0.2633 (1) |
T–O | 1.9920 (5) | 1.9892 (3) | 1.9800 (6) | 1.9847 (4) | 1.9828 (4) | 1.9764 (2) | 1.9809 (7) | 1.9865 (7) | 1.9788 (3) |
M–O | 1.990 (1) | 1.968 (1) | 1.970 (1) | 1.9575 (9) | 1.965 (1) | 1.9705 (8) | 1.9575 (9) | 1.959 (2) | 1.961 (1) |
m.a.n. T | 24.3 (8) | 24.5 (4) | 21.6 (4) | 20.9 (4) | 21.4 (3) | 19.9 (2) | 22.4 (5) | 23.8 (6) | 20.5 (4) |
m.a.n. M | 22.7 (9) | 19.8 (2) | 20.5 (5) | 21.5 (3) | 19.5 (3) | 20.1 (2) | 18.8 (4) | 18.8 (3) | 19.2 (4) |
U (M) | 0.0054 (2) | 0.0057 (1) | 0.0048 (2) | 0.0050 (2) | 0.0060 (1) | 0.0064 (1) | 0.0061 (2) | 0.0048 (3) | 0.0054 (2) |
U (T) | 0.0076 (3) | 0.0078 (2) | 0.0076 (2) | 0.0078 (4) | 0.0087 (2) | 0.0085 (2) | 0.0081 (2) | 0.0089 (4) | 0.0078 (2) |
U (O) | 0.0072 (5) | 0.0083 (4) | 0.0070 (4) | 0.0071 (5) | 0.0084 (4) | 0.0087 (2) | 0.0084 (4) | 0.0085 (7) | 0.0075 (4) |
Nrefl | 133 | 132 | 137 | 118 | 129 | 166 | 134 | 87 | 137 |
R1 | 3.26 | 2.75 | 2.90 | 3.25 | 2.91 | 3.38 | 2.89 | 3.40 | 3.29 |
wR2 | 6.45 | 5.41 | 5.07 | 5.51 | 5.10 | 6.05 | 5.61 | 5.13 | 5.41 |
GooF | 1.235 | 1.254 | 1.326 | 1.279 | 1.300 | 1.403 | 1.209 | 1.241 | 1.248 |
Sample | MA422 | MA238 | MA44 | MA400 | MA17 | MA226 | MA440 | MA425 | MA273 |
---|---|---|---|---|---|---|---|---|---|
Matrix | Talc-Serp | Chl | Chl | Chl | Chl | Chl | Amph | Amph | Amph |
MgO | 1.9 (2) | 2.3 (1) | 7.2 (1) | 7.7 (2) | 6.4 (1) | 9.6 (5) | 5.3 (2) | 4.5 (1) | 8.8 (1) |
Al2O3 | 6.5 (6) | 20.0 (2) | 17.5 (2) | 12.0 (2) | 22.4 (2) | 19.1 (1) | 25.5 (4) | 25.2 (2) | 24.3 (2) |
TiO2 | 0.33 (8) | 0.0 | 0.28 (4) | 0.33 (4) | 0.32 (5) | 0.30 (6) | 0.24 (1) | 0.26 (9) | 0.33 (5) |
V2O3 | 0.21 (3) | 0.23 (3) | 0.15 (3) | 0.14 (4) | 0.21 (3) | 0.17 (3) | 0.22 (2) | 0.21 (6) | 0.24 (3) |
Cr2O3 | 46.0 (4) | 37.8 (3) | 42.0 (3) | 49.7 (4) | 37.9 (4) | 44.9 (3) | 37.2 (6) | 37.4 (5) | 39.4 (4) |
MnO | 1.2 (1) | 0.82 (7) | 0.36 (3) | 0.35 (3) | 0.43 (4) | 0.40 (8) | 0.36 (3) | 0.34 (3) | 0.32 (3) |
FeOtot | 41.8 (5) | 37.6 (4) | 31.1 (5) | 27.5 (5) | 31.6 (4) | 24.8 (6) | 31.2 (5) | 31.9 (3) | 26.9 (2) |
NiO | 0.08 (3) | 0.10 (3) | 0.07 (3) | 0.08 (3) | 0.09 (2) | 0.12 (2) | 0.07 (3) | 0.11 (4) | 0.15 (3) |
ZnO | 0.37 (4) | 0.64 (5) | 0.45 (4) | 0.31 (4) | 0.31 (5) | 0.17 (8) | 0.27 (5) | 0.28 (8) | 0.28 (8) |
Sum | 98.41 | 99.56 | 99.14 | 98.11 | 99.65 | 99.54 | 100.37 | 100.3 | 100.6 |
FeO | 28.6 (5) | 30.2 (4) | 23.1 (5) | 21.3 (5) | 25.3 (4) | 19.9 (6) | 27.7 (5) | 28.8 (3) | 22.5 (2) |
Fe2O3 | 14.7 | 8.2 | 8.9 | 7.0 | 7.0 | 5.4 | 3.9 | 3.5 | 4.9 |
Sum | 99.88 | 100.4 | 100.03 | 98.80 | 100.35 | 100.08 | 100.70 | 100.76 | 101.00 |
T Site | |||||||||
Mg | 0.056 (4) | 0.104 (6) | 0.285 (5) | 0.360 (8) | 0.260 (5) | 0.434 (18) | 0.215 (7) | 0.185 (5) | 0.351 (4) |
Al | 0.020 (6) | 0.000 (0) | 0.028 (1) | 0.003 (1) | 0.039 (1) | 0.000 (0) | 0.039 (3) | 0.003 (1) | 0.037 (1) |
Fe2+ | 0.841 (16) | 0.800 (8) | 0.626 (10) | 0.577 (11) | 0.676 (8) | 0.482 (14) | 0.696 (11) | 0.735 (7) | 0.582 (6) |
Fe3+ | 0.037 (5) | 0.056 (4) | 0.039 (4) | 0.042 (5) | 0.005 (1) | 0.068 (12) | 0.034 (7) | 0.061 (7) | 0.020 (3) |
Mn | 0.036 (2) | 0.023 (2) | 0.010 (1) | 0.010 (1) | 0.012 (1) | 0.011 (2) | 0.009 (1) | 0.009 (1) | 0.008 (1) |
Zn | 0.009 (1) | 0.016 (1) | 0.011 (1) | 0.008 (1) | 0.007 (1) | 0.004 (2) | 0.006 (1) | 0.007 (2) | 0.002 (1) |
M Site | |||||||||
Al | 0.281 (23) | 0.788 (7) | 0.653 (7) | 0.474 (7) | 0.807 (6) | 0.716 (8) | 0.920 (12) | 0.947 (8) | 0.856 (7) |
Cr | 1.298 (16) | 1.000 (8) | 1.090 (8) | 1.327 (10) | 0.963 (9) | 1.128 (12) | 0.936 (12) | 0.946 (8) | 0.972 (8) |
Mg | 0.048 (6) | 0.011 (2) | 0.064 (3) | 0.029 (2) | 0.045 (2) | 0.025 (4) | 0.034 (3) | 0.032 (2) | 0.056 (2) |
Fe2+ | 0.010 (2) | 0.043 (2) | 0.000 (0) | 0.020 (2) | 0.005 (1) | 0.050 (4) | 0.035 (3) | 0.037 (2) | 0.003 (1) |
Fe3+ | 0.345 (15) | 0.150 (6) | 0.177 (8) | 0.134 (9) | 0.165 (7) | 0.065 (11) | 0.056 (9) | 0.024 (4) | 0.096 (6) |
Ni | 0.002 (1) | 0.003 (1) | 0.003 (1) | 0.003 (1) | 0.002 (1) | 0.003 (1) | 0.002 (1) | 0.003 (1) | 0.004 (1) |
Ti | 0.008 (2) | 0.007 (1) | 0.008 (1) | 0.008 (1) | 0.008 (1) | 0.006 (2) | 0.006 (2) | 0.008 (1) | |
V | 0.006 (1) | 0.006 (1) | 0.004 (1) | 0.004 (1) | 0.005 (1) | 0.004 (1) | 0.005 (1) | 0.006 (2) | 0.007 (1) |
Cr# | 0.81 | 0.56 | 0.62 | 0.74 | 0.53 | 0.61 | 0.49 | 0.50 | 0.52 |
Mg# | 0.11 | 0.12 | 0.36 | 0.39 | 0.31 | 0.46 | 0.26 | 0.22 | 0.41 |
Fe3+# | 0.09 | 0.10 | 0.11 | 0.09 | 0.09 | 0.07 | 0.05 | 0.04 | 0.06 |
F(x) | 0.422 | 0.065 | 0.606 | 0.092 | 0.082 | 0.095 | 0.043 | 0.075 | 0.042 |
Sample | MA422 | MA238 | MA44 | MA400 | MA17 | MA226 | MA440 | MA425 | MA273 |
---|---|---|---|---|---|---|---|---|---|
Assignment | |||||||||
Fe2+ (1) | |||||||||
% Area | 14.9 | 23.2 | 22.9 | 11.1 | 27.8 | 22.7 | 32.9 | 31.0 | 29.5 |
Γ | 0.37 | 0.42 | 0.42 | 0.32 | 0.40 | 0.40 | 0.41 | 0.41 | 0.42 |
δ | 0.92 | 0.90 | 0.91 | 0.95 | 0.91 | 0.92 | 0.91 | 0.92 | 0.92 |
ΔEQ | 1.82 | 1.86 | 1.83 | 1.71 | 1.85 | 1.83 | 1.87 | 1.88 | 1.88 |
Fe2+ (2) | |||||||||
% Area | 21.9 | 27.6 | 23.9 | 28.0 | 25.7 | 28.2 | 27.9 | 32.0 | 28.3 |
Γ | 0.40 | 0.40 | 0.39 | 0.37 | 0.37 | 0.40 | 0.37 | 0.39 | 0.39 |
δ | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
ΔEQ | 1.30 | 1.32 | 1.34 | 1.29 | 1.32 | 1.32 | 1.32 | 1.32 | 1.33 |
Fe2+ (3) | |||||||||
% Area | 36.1 | 24.0 | 21.1 | 32.1 | 20.8 | 23.5 | 23.1 | 22.2 | 20.8 |
Γ | 0.45 | 0.40 | 0.38 | 0.38 | 0.36 | 0.38 | 0.37 | 0.38 | 0.37 |
δ | 0.93 | 0.95 | 0.95 | 0.92 | 0.93 | 0.93 | 0.92 | 0.93 | 0.94 |
ΔEQ | 0.68 | 0.77 | 0.78 | 0.78 | 0.81 | 0.79 | 0.82 | 0.80 | 0.80 |
Fe3+ | |||||||||
% Area | 27.2 | 25.3 | 32.1 | 28.8 | 25.7 | 25.5 | 16.1 | 14.9 | 21.4 |
Γ | 0.31 | 0.38 | 0.35 | 0.29 | 0.31 | 0.32 | 0.30 | 0.32 | 0.34 |
δ | 0.37 | 0.36 | 0.35 | 0.35 | 0.36 | 0.35 | 0.36 | 0.35 | 0.35 |
ΔEQ | 0.52 | 0.58 | 0.57 | 0.53 | 0.59 | 0.55 | 0.60 | 0.60 | 0.58 |
χ2 | 2.71 | 3.30 | 1.65 | 1.65 | 3.01 | 2.12 | 2.81 | 2.23 | 3.10 |
Fe3+/Fetot | 0.224 | 0.208 | 0.268 | 0.239 | 0.211 | 0.210 | 0.129 | 0.119 | 0.174 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenaz, D.; Skogby, H.; Rigonat, N.; Berger, J. Following the Amphibolite to Greenschist Metamorphic Path through the Structural Parameters of Spinels from Amsaga (Mauritania). Minerals 2018, 8, 27. https://doi.org/10.3390/min8010027
Lenaz D, Skogby H, Rigonat N, Berger J. Following the Amphibolite to Greenschist Metamorphic Path through the Structural Parameters of Spinels from Amsaga (Mauritania). Minerals. 2018; 8(1):27. https://doi.org/10.3390/min8010027
Chicago/Turabian StyleLenaz, Davide, Henrik Skogby, Nicola Rigonat, and Julien Berger. 2018. "Following the Amphibolite to Greenschist Metamorphic Path through the Structural Parameters of Spinels from Amsaga (Mauritania)" Minerals 8, no. 1: 27. https://doi.org/10.3390/min8010027
APA StyleLenaz, D., Skogby, H., Rigonat, N., & Berger, J. (2018). Following the Amphibolite to Greenschist Metamorphic Path through the Structural Parameters of Spinels from Amsaga (Mauritania). Minerals, 8(1), 27. https://doi.org/10.3390/min8010027