Origin of Reverse Zoned Cr-Spinels from the Paleoproterozoic Yanmenguan Mafic–Ultramafic Complex in the North China Craton
Abstract
:1. Introduction
2. Geology of the Yanmenguan Mafic–Ultramafic Complex
3. Analytical Methods
4. Zoning Texture of Cr-Spinel
5. Discussion
5.1. Reaction with Melt
5.1.1. Reaction with Non-Homologous Melt
5.1.2. Reaction with Homologous Melt
5.2. Elemental Exchange with Coexisting Silicate Minerals
5.3. Inducement of Elemental Exchange
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part I. Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part II. Petrologic applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef]
- Pagé, P.; Barnes, S.J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Econ. Geol. 2009, 104, 997–1018. [Google Scholar] [CrossRef]
- Abzalov, M.Z. Chrome-spinels in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: Emphasis on alteration features. Lithos 1998, 43, 109–134. [Google Scholar] [CrossRef]
- Merlini, A.; Grieco, G.; Diella, V. Ferritchromite and chromian-chlorite formation in mélange-hosted Kalkan chromitite (Southern Urals, Russia). Am. Mineral. 2009, 94, 1459–1467. [Google Scholar] [CrossRef]
- Aswad, K.J.; Aziz, N.R.; Koyi, H.A. Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros suture zone, Kurdistan region, Iraq. Geol. Mag. 2011, 148, 802–818. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Surour, A.A. Fluid-related modifications of Cr-spinel and olivine from ophiolitic peridotites by contact metamorphism of granitic intrusions in the Ablah area, Saudi Arabia. J. Asian Earth Sci. 2016, 122, 58–79. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome-spinel in progressive metamorphism-a preliminary analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Barnes, S.J. Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol. 2000, 41, 387. [Google Scholar] [CrossRef]
- Su, B.X.; Zhang, H.F.; Sakyi, P.A.; Yang, Y.H.; Ying, J.F.; Tang, Y.J.; Qin, K.Z.; Xiao, Y.; Zhao, X.M.; Mao, Q.; et al. The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contrib. Mineral. Petrol. 2011, 161, 465–482. [Google Scholar] [CrossRef]
- Hu, S.L.; Luo, D.; Chen, L.H. Genesis of sieve-textured rim of spinel in mantle xenoliths. Acta Petrol. Sin. 2017, 33, 69–80. [Google Scholar]
- Colás, V.; González-Jiménez, J.M.; Griffin, W.L.; Fanlo, I.; Gervilla, F.; O’Reilly, S.Y. Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chem. Geol. 2014, 389, 137–152. [Google Scholar] [CrossRef]
- Gervilla, F.; Padrón-Navarta, J.; Kerestedjian, T.; Sergeeva, I.; González-Jiménez, J.; Fanlo, I. Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Eastern Rhodopes, SE Bulgaria: A two-stage process. Contrib. Mineral. Petrol. 2012, 164, 1–15. [Google Scholar] [CrossRef]
- Mukherjee, R.; Mondal, S.K.; Rosing, M.T.; Frei, R. Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, western Dharwar Craton (India): Potential parental melts and implications for tectonic setting. Contrib. Mineral. Petrol. 2010, 160, 865–885. [Google Scholar] [CrossRef]
- O’Hanley, D.S.; Chernosky, J.V.; Wicks, F.J. The stability of lizardite and chrysotile. Can. Mineral. 1989, 27, 483–493. [Google Scholar]
- Barra, F.; Gervilla, F.; Hernández, E.; Reich, M.; Padrón-Navarta, J.A.; González-Jiménez, J.M. Alteration patterns of chromian spinels from La Cabaña peridotite, south-central Chile. Mineral. Petrol. 2014, 108, 819–836. [Google Scholar] [CrossRef]
- El Goresy, A.; Prinz, M.; Ramdohr, P. Zoning in spinels as an indicator of the crystallization histories of mare basalts. In Proceedings of the 7th Lunar Science Conference, Houston, TX, USA, 15–19 March 1976; Volume 7, pp. 1261–1279. [Google Scholar]
- Thy, P. Spinel minerals in transitional and alkali basaltic glasses from Iceland. Contrib. Mineral. Petrol. 1983, 83, 141–149. [Google Scholar] [CrossRef]
- Sinton, J.M. Equilibration history of the Basel alpine-type peridotite, Red Mountain, New Zealand. J. Petrol. 1977, 18, 216–246. [Google Scholar] [CrossRef]
- Yang, K.; Seccombe, P.K. Chemical variation of chromite in the ultramafic cumulates of the Great Serpentinite Belt, Upper Bingara to Doonba, New South Wales, Australia. Can. Mineral. 1993, 31, 75–87. [Google Scholar]
- Ahmed, A.H.; Helmy, H.M.; Arai, S.; Yoshikawa, M. Magmatic unmixing in spinel from late Precambrian concentrically-zoned mafic-ultramafic intrusions, eastern desert, Egypt. Lithos 2008, 104, 85–98. [Google Scholar] [CrossRef]
- Sigurdsson, H. Spinels in Leg 37 basalts and peridotites: Phase chemistry and zoning. In Initial Reports of the Deep Sea Drilling Project; Aumento, F., Melson, W.G., Hall, J.M., Eds.; Texas A&M University: College Station, TX, USA, 1977; Volume 37, pp. 883–891. [Google Scholar]
- Fisk, M.R.; Bence, A.E. Experimental crystallization of chrome spinel in Famous Basalt 527-1-1. Earth Planet. Sci. Lett. 1980, 48, 111–123. [Google Scholar] [CrossRef]
- Liermann, H.P.; Ganguly, J. Diffusion kinetics of Fe2+ and Mg in aluminous spinel: Experimental determination and applications. Geochim. Cosmochim. Acta 2002, 66, 2903–2913. [Google Scholar] [CrossRef]
- Allan, J.F.; Sack, R.O.; Batiza, R. Cr-rich spinels as petrogenetic indicators; MORB-type lavas from the Lamont seamount chain, eastern Pacific. Am. Mineral. 1988, 43, 6–16. [Google Scholar]
- Longhi, J. Experimental petrology and petrogenesis of mare volcanics. Geochim. Cosmochim. Acta 1992, 56, 2235–2251. [Google Scholar] [CrossRef]
- Longhi, J.; Fram, M.S.; Auwera, J.V.; Montieth, J.N. Pressure effects, kinetics, and rheology of anorthositic and related magmas. Am. Mineral. 1993, 78, 1016–1030. [Google Scholar]
- Roeder, P.L.; Poustovetov, A.; Oskarsson, N. Growth forms and composition of chromian spinel in MORB magma: Diffusion-controlled crystallization of chromian spinel. Can. Mineral. 2001, 39, 397–416. [Google Scholar] [CrossRef]
- Agata, T.; Adachi, M. Chrome spinel in normal MORB-type greenstones from the Paleozoic-Mesozoic Mino Terrane, east Takayama area, central Japan: Crystallization course with a U-turn. Island Arc 2014, 23, 62–73. [Google Scholar] [CrossRef]
- Henderson, P.; Suddaby, P. The nature and origin of the chrome-spinel of the Rhum layered intrusion. Contrib. Mineral. Petrol. 1971, 33, 21–31. [Google Scholar] [CrossRef]
- Hamlyn, P.R.; Keays, R.R. Origin of chromite compositional variation in the Panton Sill, western Australtalia. Contrib. Mineral. Petrol. 1979, 69, 75–82. [Google Scholar] [CrossRef]
- Allan, J.F.; Batiza, R.; Perfit, M.R.; Fornari, D.J.; Sack, R.O. Petrology of lavas from the Lamont seamount chain and adjacent east Pacific rise, 10° N. J. Petrol. 1989, 30, 1245–1298. [Google Scholar] [CrossRef]
- Peltonen, P. Crystallization and re-equilibration of zoned chromite in ultramafic cumulates, Vammala Ni-Belt, Southwestern Finland. Can. Mineral. 1995, 33, 521–535. [Google Scholar]
- Henderson, P.; Wood, R.J. Reaction relationships of chrome-spinels in igneous rocks-further evidence from the layered intrusion of Rhum and Mull, Inner Hebrides, Scotland. Contrib. Mineral. Petrol. 1981, 78, 225–229. [Google Scholar] [CrossRef]
- Zhao, G.C.; Liu, S.W.; Sun, M.; Li, S.Z.; Wilde, S.; Xia, X.P.; Zhang, J.; He, Y.H. What happened in the Trans-North China Orogen in the period 2560–1850 Ma? Acta Geol. Sin. 2006, 80, 790–806. [Google Scholar] [CrossRef]
- Wang, K.Y.; Li, J.L.; Hao, J.; Chai, Y.C.; Zhou, S.P. Late Archean mafic-ultramafic rocks from the Wutaishan, Shanxi Province: A possible ophiolite melange. Acta Petrol. Sin. 1997, 13, 139–151. [Google Scholar]
- Li, J.L.; Wang, K.Y.; Wang, Q.C.; Liu, X.H.; Zhao, Z.Y. Early Proterozoic collision orogenic belt in Wutaishan area China. Sci. Geol. Sin. 1990, 25, 1–11. [Google Scholar]
- Bai, J.; Wang, R.Z.; Guo, J.J. The Major Geological Events of Early Precambrian and Their Age Dating in the Wutai Region; Geological Publishing House: Beijing, China, 1992; pp. 1–52. [Google Scholar]
- Polat, A.; Kusky, T.M.; Li, J.H.; Fryer, B.; Kerrich, R.; Patrick, K. Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China Craton: Implications for geodynamic setting and continental growth. Geol. Soc. Am. Bull. 2005, 117, 1387–1399. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wilde, S.A.; Wan, J. Tectonic setting and significance of 2.3–2.1 Ga magmatic events in the trans-north China orogen: New constraints from the Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area. Precambrian Res. 2010, 178, 27–42. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using Stoichiometric Criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef]
- Wan, J.L.; Wang, Z.H. Geochemistry, petrogenesis and tectonic setting of the Paleoproterozoic Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area. Acta Petrol. Sin. 2012, 28, 2629–2646. [Google Scholar]
- Wendt, A.S.; Altenberger, U.; D’Arco, P. Radiating cracks around chromite inclusions in olivine: Constraints on P-T histories based on the thermoelastic properties of minerals. Schweiz. Mineral. Geosci. Suppl. 1998, 78, 365–374. [Google Scholar]
- Roeder, P.L.; Reynolds, I. Crystallization of chromite and chromium solubility in basaltic melts. J. Petrol. 1991, 32, 909–934. [Google Scholar] [CrossRef]
- Forsythe, L.M.; Fisk, M.R. Comparison of experimentally crystallized and natural spinels from Leg 135. In Proceedings of the Ocean Drilling Program; Hawkins, J., Parson, L., Allan, J., Eds.; Scientific Results; Texas A&M University: College Station, TX, USA, 1994; Volume 135, pp. 585–594. [Google Scholar]
- Agata, T.; Hattori, I. Chromite in greenstone lavas from the Kanakasu area, Nanjo Massif of the Mesozoic Mino terrane, central Japan. Mineral. Mag. 2002, 66, 575–590. [Google Scholar] [CrossRef]
- Henderson, P. Reaction trends shown by chrome-spinels of the Rhum layered intrusion. Geochim. Cosmochim. Acta 1975, 39, 1035–1044. [Google Scholar] [CrossRef]
- Sekerka, R.F. Role of instabilities in determination of the shapes of growing crystals. J. Cryst. Growth 1993, 128, 1–12. [Google Scholar] [CrossRef]
- Roeder, P.L.; Emslie, R.F. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Himmerberg, G.R.; Loney, R.A. Petrology of ultramafic and gabbroic rocks of the Canyon mountain ophiolite, Oregon. Am. J. Sci. 1980, 280, 232–268. [Google Scholar]
- Agata, T. Chrome spinels from the Oura layered igneous complex, central Japan. Lithos 1988, 21, 97–108. [Google Scholar] [CrossRef]
- Ozawa, K. Relationships between tectonite and cumulate in ophiolites: The Miyamori ultramafic complex, Kitakami mountains, northeast Japan. Lithos 1983, 16, 1–16. [Google Scholar] [CrossRef]
- Roeder, P.; Gofton, E.; Thornber, C. Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes. J. Petrol. 2005, 47, 883–900. [Google Scholar] [CrossRef]
- Cameron, E.N. Postcumulus and subsolidus equilibration of chromite and coexisting silicates in the eastern Bushveld Complex. Geochim. Cosmochim. Acta 1975, 39, 1021–1033. [Google Scholar] [CrossRef]
- Sack, R.O.; Ghiorso, M.S. Chromite as a petrogenetic indicator. Rev. Mineral. Geochem. 1991, 25, 323–353. [Google Scholar]
- Ballhaus, C. Redox states of lithospheric and asthenospheric upper mantle. Contrib. Mineral. Petrol. 1993, 114, 331–348. [Google Scholar] [CrossRef]
- Spear, F.S. Metamorphic phase equilibria and pressure-temperature-time paths. Mineral. Soc. Am. 1995, 1, 172–174. [Google Scholar]
- Jackson, E.D. Chemical Variation in coexisting chromite and olivine in chromite zones of the Stillwater complex. Econ. Geol. Monogr. 1969, 4, 41–47. [Google Scholar]
- Wilson, A.H. The geology of the Great “Dyke”, Zimbabwe: The ultramafic rocks. J. Petrol. 1982, 23, 240–292. [Google Scholar] [CrossRef]
- Hatton, C.J.; von Gruenewaldt, G. Chromite from the Swartkop chrome mine-an estimate of the effects of subsolidus re-equilibration. Econ. Geol. 1985, 80, 911–924. [Google Scholar] [CrossRef]
- Xiao, Y.; Teng, F.Z.; Su, B.X.; Hu, Y.; Zhou, M.F.; Zhu, B.; Shi, R.D.; Huang, Q.S.; Gong, X.H.; He, Y.S. Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet. Geochem. Geophys. Geosyst. 2016, 17, 940–953. [Google Scholar] [CrossRef]
- Bai, Y.; Su, B.X.; Chen, C.; Yang, S.H.; Liang, Z.; Xiao, Y.; Qin, K.Z.; Malaviarachchi, S.P.K. Base metal mineral segregation and Fe–Mg exchange inducing extreme compositions of olivine and chromite from the Xiadong Alaskan-type complex in the southern part of the Central Asian Orogenic Belt. Ore Geol. Rev. 2017, 90, 184–192. [Google Scholar] [CrossRef]
- Dickey, J.S.; Yoder, H.S. Partitioning of chromium and aluminium between clinopyroxene and spinel. Carnegie Inst. Wash. Yearb. 1972, 71, 384–392. [Google Scholar]
- Green, D.H.; Ringwood, A.E.; Ware, N.G.; Hibberson, W.O. Experimental petrology and petrogenesis of Apollo 14 basalts. Lunar Planet. Sci. Conf. Proc. 1972, 3, 197. [Google Scholar]
- Herzberg, C.T.; Chapman, N.A. Clinopyroxene geothermometry of spinel-lherzolites. Am. Mineral. 1976, 61, 7–8. [Google Scholar]
- Fujii, T. Fe–Mg partitioning between olivine and spinel. Carnegie Inst. Wash. Yearb. 1977, 75, 566–571. [Google Scholar]
- Buening, D.K.; Buseck, P.R. Fe–Mg lattice diffusion in olivine. J. Geophys. Res. 1973, 78, 6852–6862. [Google Scholar] [CrossRef]
- Freer, R.; O’Reilly, W. The diffusion coefficient of Fe3+ ions in spinels with relevance to the process of maghemitization. Mineral. Mag. 1980, 43, 889–899. [Google Scholar] [CrossRef]
- Lehmann, J. Diffusion between olivine and spinel: Application to geothermometry. Earth Planet. Sci. Lett. 1983, 64, 123–138. [Google Scholar] [CrossRef]
- Sinton, J.M. Structure, Petrology and Metamorphism of the Red Mountain Ophiolite Complex, New Zealand. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 1975. [Google Scholar]
- Dick, H.J.B.; Sinton, J.M. Compositional layering in alpine peridotites: Evidence for pressure solution creep in the mantle. J. Geol. 1979, 87, 403–416. [Google Scholar] [CrossRef]
- Helmy, H.M.; El Mahallawi, M.M. Gabbro Akarem mafic-ultramafic complex, Eastern Desert, Egypt: A Late Precambrian analogue of Alaskan-type complexes. Mineral. Petrol. 2003, 77, 85–108. [Google Scholar] [CrossRef]
- Farahat, E.S.; Helmy, H.M. Abu Hamamid Neoproterozoic Alaskan-type complex, south Eastern Desert, Egypt: Petrogenetic and geotectonic implications. J. Afr. Earth Sci. 2006, 85, 187–197. [Google Scholar] [CrossRef]
- Ozawa, K. Olivine–spinel geospeedometry: Analysis of diffusion-controlled Mg–Fe2+ exchange. Geochim. Cosmochim. Acta 1984, 48, 2597–2611. [Google Scholar] [CrossRef]
- Mallmann, G.; O’Neill, H.S.C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J. Petrol. 2009, 50, 1765–1794. [Google Scholar] [CrossRef]
- Wijbrans, C.H.; Klemme, S.; Berndt, J.; Vollmer, C. Experimental determination of trace element partition coefficients between spinel and silicate melt: The influence of chemical composition and oxygen fugacity. Contrib. Mineral. Petrol. 2015, 169, 1–33. [Google Scholar] [CrossRef]
- Burns, R.G. Crystal field effects in chromium and its partitioning in the mantle. Geochim. Cosmochim. Acta 1975, 39, 857–864. [Google Scholar] [CrossRef]
- Sutton, S.R.; Jones, K.W.; Gordon, B.; Rives, M.L.; Bajt, S.; Smith, J.V. Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochim. Cosmochim. Acta 1993, 57, 461–468. [Google Scholar] [CrossRef]
- Jurewicz, A.J.G.; Watson, E.B. Cations in olivine, Part 2: Diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contrib. Mineral. Petrol. 1988, 99, 186–201. [Google Scholar] [CrossRef]
- Zhou, Y.; Steele, I.M. Chemical zoning and diffusion of Ca, Al, Mn, and Cr in olivine of Springwater pallasite. Lunar Planet. Sci. Conf. 1993, 24, 1573–1574. [Google Scholar]
- Scowen, P.A.H.; Roeder, P.L.; Helz, R.T. Re-equilibration of chromite within Kilauea Iki lava lake, Hawaii. Contrib. Mineral. Petrol. 1991, 107, 8–20. [Google Scholar] [CrossRef]
- Roeder, P.L.; Campbell, I.H.; Jamieson, H.E. A re-evaluation of the olivine-spinel geothermometer. Contrib. Mineral. Petrol. 1979, 68, 325–334. [Google Scholar] [CrossRef]
- Kröner, A.; Wilde, S.A.; Li, J.H.; Wang, K.Y. Age and evolution of a late Archaean to early Palaeozoic upper to lower crustal section in the Wutaishan-Hengshan-Fuping terrain of northern China. J. Asian Earth Sci. 2005, 24, 577–595. [Google Scholar] [CrossRef]
- Faure, M.; Trap, P.; Lin, W.; Monie, P.; Bruguier, O. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt, new insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes 2007, 30, 95–106. [Google Scholar]
- Zhao, G.C.; Cawood, P.A.; Wilde, S.A.; Lu, L.Z. Metamorphism of basement rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res. 2000, 103, 55–88. [Google Scholar] [CrossRef]
- Zhang, J.S.; Dirks, H.G.M.; Passchier, C.W. Extensional collapse and uplift in a polymetamorphic granulite terrain in the Archean and Paleoproterozoic of North China. Precambrian Res. 1994, 67, 3–15. [Google Scholar]
- Zhai, M.G.; Guo, J.H.; Yan, Y.H. Discovery and preliminary study of the Archean high-pressure granulites in the North China. Sci. China B 1992, 12, 1325–1330. [Google Scholar]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Lu, L.Z. Petrology and P–T path of the Fuping mafic granulites: Implications for tectonic evolution of the central zone of the North China Craton. J. Met. Geol. 2000, 18, 375–391. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhai, M.G. Sm-Nd age dating of high-pressure granulites and amphibolites from Sanggan area, North China Craton. Chin. Sci. Bull. 2001, 46, 106–111. [Google Scholar] [CrossRef]
- Guo, J.H.; O’Brien, P.J.; Zhai, M.G. High-pressure granulites in the Sangan area, North China Craton: Metamorphic evolution, P–T paths and geotectonic significance. J. Met. Geol. 2002, 20, 741–756. [Google Scholar] [CrossRef]
- Guo, J.H.; Sun, M.; Zhai, M.G. Sm–Nd and SHRIMP U–Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J. Asian Earth Sci. 2005, 24, 629–642. [Google Scholar] [CrossRef]
- Yu, J.H.; Wang, D.Z.; Wang, X.Y. Ages of the Luliang Group and its main metamorphism in the Luliang Mountains, Shank evidence from single-grain zircon U–Pb ages. Geol. Rev. 1997, 43, 403–408. [Google Scholar]
- Peng, P.; Zhai, M.G.; Zhang, H.F.; Guo, J.H. Geochronological constraints on the Paleoproterozoic evolution of the North China craton: SHRIMP zircon ages of different types of mafic dikes. Int. Geol. Rev. 2005, 47, 492–508. [Google Scholar] [CrossRef]
- Yokoyama, K. Nikubuchi peridotite body in the Sanbagawa metamorphic belt; thermal history of the “Al-pyroxene-rich suite” peridotite body in high pressure metamorphic terrain. Contrib. Mineral. Petrol. 1980, 73, 1–13. [Google Scholar] [CrossRef]
- Gargiulo, M.F.; Bjerg, E.A.; Mogessie, A. Spinel group minerals in metamorphosed ultramafic rocks from Rio de Las Tunas Belt, Central Andes, Argentina. Geol. Acta 2013, 11, 133–148. [Google Scholar]
- Lenaz, D.; Velicogna, M.; Halenius, U.; O’Driscoll., B. Structural parameters of Cr-bearing spinels and pleonaste from the Cuillin Igneous Complex (Isle of Skye, Scotland): Implications for metamorphic and cooling history. Mineral. Mag. 2016, 80, 749–764. [Google Scholar] [CrossRef]
- Roeder, P.L. Chromite from the fiery rain of chondrules to the Kilauea Iki lava lake. Can. Mineral. 1994, 32, 729–746. [Google Scholar]
- González-Jiménez, J.M.; Reich, M.; Camprubí, A.; Gervilla, F.; Griffin, W.L.; Colás, V.; O’Reilly, S.Y.; Proenza, A.J.; Pearson, N.J.; Centeno-García, E. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contrib. Mineral. Petrol. 2015, 170, 15. [Google Scholar] [CrossRef]
- Mussallam, K.; Jung, D.; Burgath, K. Textural features and chemical characteristics of chromites in ultramafic rocks, Chalkidiki complex (Northeastern Greece). Tschermaks Mineralogische und Petrographische Mitteilungen 1981, 29, 75–101. [Google Scholar] [CrossRef]
- Arai, S.; Uesugi, J.; Ahmed, A.H. Upper Crustal Podiform Chromitite from the Northern Oman Ophieolite as the Stratigraphically Shallowest Chromitite in Ophiolite and Its Implication for Cr Concentration. Contrib. Mineral. Petrol. 2004, 147, 145–154. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Su, B.-X.; Xiao, Y.; Lenaz, D.; Asamoah Sakyi, P.; Liang, Z.; Chen, C.; Yang, S.-H. Origin of Reverse Zoned Cr-Spinels from the Paleoproterozoic Yanmenguan Mafic–Ultramafic Complex in the North China Craton. Minerals 2018, 8, 62. https://doi.org/10.3390/min8020062
Bai Y, Su B-X, Xiao Y, Lenaz D, Asamoah Sakyi P, Liang Z, Chen C, Yang S-H. Origin of Reverse Zoned Cr-Spinels from the Paleoproterozoic Yanmenguan Mafic–Ultramafic Complex in the North China Craton. Minerals. 2018; 8(2):62. https://doi.org/10.3390/min8020062
Chicago/Turabian StyleBai, Yang, Ben-Xun Su, Yan Xiao, Davide Lenaz, Patrick Asamoah Sakyi, Zi Liang, Chen Chen, and Sai-Hong Yang. 2018. "Origin of Reverse Zoned Cr-Spinels from the Paleoproterozoic Yanmenguan Mafic–Ultramafic Complex in the North China Craton" Minerals 8, no. 2: 62. https://doi.org/10.3390/min8020062
APA StyleBai, Y., Su, B. -X., Xiao, Y., Lenaz, D., Asamoah Sakyi, P., Liang, Z., Chen, C., & Yang, S. -H. (2018). Origin of Reverse Zoned Cr-Spinels from the Paleoproterozoic Yanmenguan Mafic–Ultramafic Complex in the North China Craton. Minerals, 8(2), 62. https://doi.org/10.3390/min8020062