Deciphering Silicification Pathways of Fossil Forests: Case Studies from the Late Paleozoic of Central Europe
Abstract
:1. Introduction
2. Material and Methods
3. Geological Setting
3.1. Late Paleozoic Environments Capable of Preserving Silicified Woods
3.2. Sampling Locations of Investigated Silicified Woods
4. Results
4.1. Flöha
4.2. Wendishain
4.3. Winnweiler
4.4. Kyffhäuser
4.5. Manebach
5. Discussion
5.1. Specific Characteristics of the Silicified Wood Localities
5.1.1. Flöha
5.1.2. Wendishain
5.1.3. Winnweiler
5.1.4. Kyffhäuser
5.1.5. Manebach
5.2. General CL Characteristics of Silicified Wood
5.3. Occurrence-Specific CL Characteristics of Silicified Wood
- Petrified wood preserved in pyroclastic rocks (Figure 14):
- (a)
- multiphase (Figure 14a). First phase with yellow and/or red CL; second phase with blue CL. Both phases do not differ in anatomical preservation. Additionally, the first phase is replaced by, or even interspersed with the second phase. Anatomical preservation ranges from poorly preserved to well-preserved, with moderate to high preservation quality on average. Examples: Wendishain, Flöha (both this study), Chemnitz [29], petrified woods from tuffs intercalated in the žaltman Arkoses/Czech Republic [31].
- (b)
- monophase (Figure 14d), promoted by short-lived blue CL.
- Petrified wood preserved in epiclastic rocks (Figure 14): two subtypes:
- (c)
- multiphase (Figure 14b). First phase with yellow and red CL; second phase with blue CL. Both phases differ remarkably in anatomical preservation, i.e., the second phase is accompanied by poor preservation of the corresponding wood. Anatomical preservation in the same range as (1). Example: Winnweiler (this study).
- (d)
- Petrified wood preserved in siliciclastic rocks (Figure 14): two subtypes:
- (e)
- multiphase (Figure 14c). First phase with yellow CL; second phase with blue CL. Both phases differ remarkably in anatomical preservation, i.e., the second phase is accompanied by poor preservation of the corresponding wood. Anatomical preservation ranges from poorly to moderately preserved, but is generally lower than in (1) and (2). Examples: Kyffhäuser, Wettin, Siebigerode (all this study).
- (f)
- monophase (Figure 14f), promoted by time-dependent blue-red CL; in places accompanied with yellow CL. CL intensity conspicuously low. Broad range of anatomical preservation, ranging from moderate to high (including permineralizations with preservation of different intracellular fungi, [65,66]). Examples: Manebach, Crock (both this study), Balka/Czech Republic, petrified plants from the štikov Arkoses/Czech Republic and Tocantins/Brazil (the latter three in [31]).
6. Conclusions
- Interpreting the silicification of anatomically preserved wood requires a well-established knowledge of the geological background and stratigraphy, the mineralogy of the wood-bearing host rocks, and possible diagenetic influences.
- CL features and spectra of corresponding silica phases are indispensable to decipher the pathways of silicification and to reveal primary and secondary processes. Features like corroded detrital quartz in siliciclastic host rocks reflect diagenetic overprints capable of providing and/or dissolving silica. Hence, diagenetic processes might be reflected in the CL properties of petrified wood and can indicate possible secondary hydrothermal silicification.
- By now, CL replacement patterns were only observed in petrified woods embedded in ignimbrites. However, such patterns are missing in epiclastic deposits rich in volcanogenic components. Further research is necessary to verify this observation. A possible factor responsible for replacements during silicification of wood could be the temperature, which can be much higher in ignimbrites than in epiclastic/siliciclastic rocks.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dernbach, U.; Tidwell, W.D.I. Secrets of Petrified Plants—Fascination from Millions of Years; D’ORO Publishers: Heppenheim, Germany, 2002; p. 232. ISBN 978-3932181047. [Google Scholar]
- Daniels, F.J.; Dayvault, R.D. Ancient Forests. A Closer Look at Fossil Wood; Western Colorado Publishing Company: Grand Junction, CO, USA, 2006; p. 450. ISBN 978-0966293814. [Google Scholar]
- Schüssler, H.; Simon, T. Aus Holz Wird Stein. Kieselhölzer aus Dem Keuper Frankens; Verlag und Offsetdruck Eppe GmbH: Aulendorf, Germany, 2007; p. 192. ISBN 978-3890890913. [Google Scholar]
- Niemirowska, A. Skamieniałe Drewno Drzew Gatunków Lisciastych, Iglastych Oraz Paproci; Wydawnictwo Poligraf: Brzezia Łaka, Poland, 2013; p. 384. ISBN 978-8378560838. [Google Scholar]
- Kerp, H. Organs and tissues of Rhynie chert plants. Philos. Trans. R. Soc. B 2017, 373. [Google Scholar] [CrossRef] [PubMed]
- Akahane, H.; Furuno, T.; Miyama, H.; Yoshikawa, T.; Yamamoto, S. Rapid wood silicification in hot spring water: An explanation of silicification of wood during the Earth’s history. Sediment. Geol. 2004, 169, 219–228. [Google Scholar] [CrossRef]
- Rößler, R.; Zierold, T.; Feng, Z.; Kretzschmar, R.; Merbitz, M.; Annacker, V.; Schneider, J.W. A snapshot of an early Permian ecosystem preserved by explosive volcanism: New results from the Chemnitz Petrified Forest, Germany. Palaios 2012, 27, 814–834. [Google Scholar] [CrossRef]
- Philippe, M.; Boonchai, N.; Ferguson, D.K.; Hui, J.; Songtham, W. Giant trees from the Middle Pleistocene of Northern Thailand. Quat. Sci. Rev. 2013, 65, 1–4. [Google Scholar] [CrossRef]
- Mustoe, G.E.; Acosta, M. Origin of petrified wood color. Geosciences 2016, 6, 25. [Google Scholar] [CrossRef]
- Mustoe, G.E. Late Tertiary Petrified Wood from Nevada, USA: Evidence of multiple silicification pathways. Geosciences 2015, 5, 286–309. [Google Scholar] [CrossRef]
- Mustoe, G.E. Wood Petrifaction: A New View of Permineralization and Replacement. Geosciences 2017, 7, 119. [Google Scholar] [CrossRef]
- St. John, R.N. Replacement vs. impregnation in petrified wood. Econ. Geol. 1927, 22, 729–739. [Google Scholar] [CrossRef]
- Buurman, P. Mineralization of fossil wood. Scr. Geol. 1972, 12, 1–35. [Google Scholar]
- Leo, R.F.; Barghoorn, E.S. Silicification of wood. Harvard Univ. Bot. Mus. Leafl. 1976, 25, 1–47. [Google Scholar]
- Sigleo, A.C. Geochemistry of silicified wood and associated sediments, Petrified Forest National Monument, Arizona. Chem. Geol. 1979, 26, 151–163. [Google Scholar] [CrossRef]
- Ballhaus, C.T.; Gee, K.; Greef, K.; Bockrath, C.; Mansfield, T.; Rhede, D. The silicification of trees in volcanic ash: An experimental study. Geochim. Cosmochim. Acta 2012, 84, 62–74. [Google Scholar] [CrossRef]
- Hellawell, J.; Balhaus, C.; Gee, C.T.; Mustoe, G.E.; Nagel, T.J.; Wirth, R.; Rethemeyer, J.; Tomaschek, F.; Geisler, T.; Greef, K.; Mansfeldt, T. Incipient silicification of recent conifer wood at a Yellowstone hot spring. Geochim. Cosmochim. Acta 2015, 149, 79–87. [Google Scholar] [CrossRef]
- Dietrich, D.; Viney, M.; Lampke, T. Petrifactions and wood-templated ceramics: Comparisons between natural and artificial silicification. IAWA J. 2015, 36, 167–185. [Google Scholar] [CrossRef]
- Channing, A.; Edwards, D. Experimental silicification of plants in Yellowstone hot-spring environments. Trans. R. Soc. Edinb. Earth Sci. 2004, 94, 503–521. [Google Scholar] [CrossRef]
- Channing, A.; Edwards, D. Wetland megabias: Ecological and ecophysiological filtering dominates the fossil record of hot spring floras. Palaeontology 2013, 56, 523–556. [Google Scholar] [CrossRef]
- Dietrich, D.; Lampke, T.; Rößler, R. Microstructure study on silicified wood from the Permian Petrified Forest of Chemnitz. Paläontol. Z. 2013, 87, 397–407. [Google Scholar] [CrossRef]
- Sippel, R.F. Sandstone petrology, evidence from luminescence petrography. J. Sediment. Petrol. 1968, 38, 530–554. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Habermann, D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: A review. Mineral. Petrol. 2001, 71, 225–250. [Google Scholar] [CrossRef]
- Richter, D.K.; Götte, T.; Götze, J.; Neuser, R.D. Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineral. Petrol. 2003, 79, 127–166. [Google Scholar] [CrossRef]
- Götze, J. Chemistry, textures and physical properties of quartz—Geological interpretation and technical application. Mineral. Mag. 2009, 73, 645–671. [Google Scholar] [CrossRef]
- Zinkernagel, U. Cathodoluminescence of quartz and its application to sandstone petrology. Contrib. Sedimentol. 1978, 8, 1–69. [Google Scholar]
- Ramseyer, K.; Baumann, J.; Matter, A.; Mullis, J. Cathodoluminescence colours of alpha-quartz. Mineral. Mag. 1988, 52, 669–677. [Google Scholar] [CrossRef]
- Ramseyer, K.; Mullis, J. Factors influencing short-lived blue cathodoluminescence of alpha quartz. Am. Mineral. 1990, 75, 791–800. [Google Scholar]
- Götze, J.; Rößler, R. Kathodolumineszenz-Untersuchungen an Kieselhölzern—I. Silifizierungen aus dem Versteinerten Wald von Chemnitz (Perm, Deutschland). Veröff. Mus. Naturkunde Chemnitz 2000, 23, 35–50. [Google Scholar]
- Matysova, P.; Leichmann, J.; Grygar, T.; Rößler, R. Cathodoluminescence of silicified trunks from the Permo-Carboniferous basins in eastern Bohemia, Czech Republic. Eur. J. Mineral. 2008, 20, 217–231. [Google Scholar] [CrossRef]
- Matysová, P.; Rössler, R.; Götze, J.; Leichmann, J.; Forbes, G.; Taylor, E.L.; Sakala, J.; Grygar, T. Alluvial and volcanic pathways to silicified plant stems (Upper Carboniferous-Triassic) and their taphonomic and palaeoenvironmental meaning. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 292, 127–143. [Google Scholar] [CrossRef]
- Matysová, P.; Booi, M.; Crow, M.C.; Hasibuan, F.; Perdono, A.P.; Van Waveren, I.M.; Donovan, S.K. Burial and preservation of a fossil forest on an early Permian (Asselian) volcano (Merangin River, Sumatra, Indonesia). Geol. J. 2017, 154, 1–19. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Fuchs, H.; Habermann, D. Defect structure and luminescence behaviour of agate ö results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineral. Mag. 1999, 63, 149–163. [Google Scholar] [CrossRef]
- Götze, J.; Pan, Y.; Stevens-Kalceff, M.; Kempe, U.; Müller, A. Origin and significance of the yellow cathodoluminescence (CL) of quartz. Am. Mineral. 2015, 100, 1469–1482. [Google Scholar] [CrossRef]
- Rößler, R.; Zierold, T. Back to the roots of palaeobotany—Chemnitz and its palaeontological collection. In Paleontological Collections of Germany, Austria and Switzerland; Beck, L.A., Joger, U., Eds.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-77400-8. [Google Scholar]
- Schneider, J.W.; Werneburg, R.; Rößler, R.; Voigt, S.; Scholze, F. Example for the description of basins in the CPT Nonmarine-Marine Correlation Chart Thuringian Forest Basin, East Germany. Permophiles 2015, 61, 29–35. [Google Scholar]
- Neuser, R.D.; Bruhn, F.; Götze, J.; Habermann, D.; Richter, D.K. Kathodolumineszenz: Methodik und Anwendung. Zentral. Geol. Paläontol. 1995, 1, 287–306. [Google Scholar]
- DiMichele, W.A.; Aronson, R.B. The Pennsylvanian-Permian vegetational transition: A terrestrial analogue to the onshore-offshore hypothesis. Evolution 1992, 46, 807–824. [Google Scholar] [CrossRef] [PubMed]
- DiMichele, W.A.; Pfefferkorn, H.W.; Gastaldo, R.A. Response of late Carboniferous and early Permian plant communities to climate change. Annu. Rev. Earth Planet. Sci. 2001, 29, 461–487. [Google Scholar] [CrossRef]
- McCann, T.; Pascal, C.; Timmermann, M.J.; Krzywiec, P.; López-Gómez, J.; Wetzel, A.; Krawczyk, C.M.; Rieke, H.; Lamarche, J. Post-Variscan (end Carboniferous–Early Permian) basin evolution in Western and Central Europe. In European Lithosphere Dynamics; Gee, G., Stephenson, R.A., Eds.; Geological Society Memoir No. 32; Geological Society: London, UK, 2006; pp. 355–388. ISBN 9781 86239 212 0. [Google Scholar]
- Kroner, U.; Romer, R.L. Two plates—Many subduction zones: The Variscan orogeny reconsidered. Gondwana Res. 2013, 24, 298–329. [Google Scholar] [CrossRef]
- Schulmann, K.; Schaltegger, U.; Jezek, J.; Thompson, A.B.; Edel, J.-B. Rapid burial and exhumation during orogeny: Thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan Orogen in Western Europe). Am. J. Sci. 2002, 302, 856–879. [Google Scholar] [CrossRef]
- Rößler, R.; Barthel, M. Rotliegend taphocoenoses preservation favoured by rhyolithic explosive volcanism. Freib. Forsch. 1998, C474, 59–101. [Google Scholar]
- Luthardt, L.; Rößler, R.; Schneider, J.W. Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz—Sedimentological, geochemical and palaeobotanical evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 627–652. [Google Scholar] [CrossRef]
- Roscher, M.; Schneider, J.W. Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. In Non-Marine Permian Biostratigraphy and Biochronology; Lucas, S.G., Cassinis, G., Schneider, J.W., Eds.; Geological Society London Special Publications: London, UK, 2006; Volume 265, pp. 95–136. [Google Scholar]
- Schneider, J.W.; Körner, F.; Roscher, M.; Kroner, U. Permian climate development in the northern peri-Tethys area—The Lodève basin, French Massif Central, compared in a European and global context. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 240, 161–183. [Google Scholar] [CrossRef]
- Barthel, M. Die Rotliegendflora des Thüringer Waldes; Naturhist. Mus. Schleusingen: Schleusingen, Germany, 2009; p. 170. [Google Scholar]
- Schneider, J.W.; Romer, R.L. The late Variscan molasses (late Carboniferous to late Permian) of the Saxo-Thuringian Zone. In Pre-Mesozoic Geology of Saxo-Thuringia—From the Cadomian Active Margin to the Variscan Orogen; Linnemann, U., Romer, R.L., Eds.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2010; pp. 323–346. ISBN 3510652592. [Google Scholar]
- Löcse, F.; Meyer, J.; Klein, R.; Linnemann, U.; Weber, J.; Rößler, R. Neue Florenfunde in einem Vulkanit des Oberkarbons von Flöha—Querschnitt durch eine ignimbritische Abkühlungseinheit. Veröff. Mus. Naturkunde Chemnitz 2013, 36, 85–142. [Google Scholar]
- Löcse, F.; Linnemann, U.; Schneider, G.; Annacker, V.; Zierold, T.; Rößler, R. 200 Jahre Tubicaulis solenites (Sprengel) Cotta—Sammlungsgeschichte, Paläobotanik und Geologie eines oberkarbonischen Baumfarn-Unikats aus dem Schweddey-Ignimbrit vom Gückelsberg bei Flöha. Veröff. Mus. Naturkunde Chemnitz 2015, 38, 5–46. [Google Scholar]
- Löcse, F.; Zierold, T.; Rößler, R. Provenance and collection history of Tubicaulis solenites (Sprengel) Cotta—A unique fossil tree fern and its 200-year journey through the international museum landscape. J. Hist. Collect. 2018, 30, 241–251. [Google Scholar] [CrossRef]
- Gothan, W. Die Altersstellung des Karbons von Flöha i. Sa. im Karbonprofil auf Grund der Flora. Abh. Sächs. Geol. Landesamt 1932, 12, 5–16. [Google Scholar]
- Walter, H.; Rößler, R. Ein großer Kieselholz-Stamm aus dem Rotliegend Sachsens (Kohren-Formation, Nordwestsächsische Senke). Veröff. Mus. Naturkunde Chemnitz 2006, 29, 177–188. [Google Scholar]
- Röllig, G. Zur Petrogenese und Vulkanotektonik der Pyroxenquarzporphyre (Ignimbrite) des Nordsächsischen Vulkanitkomplexes. Jahrb. Geol. 1976, 5/6, 175–268. [Google Scholar]
- Walter, H. Rotliegend im Nordwestsächsischen Becken. In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken; Lützner, H., Kowalczyk, G., Eds.; E. Schweitzerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2012; pp. 517–529. ISBN 3510492250. [Google Scholar]
- Haneke, J.; Lorenz, V.; Stollhofen, H. Donnersberg-Formation. In Stratigraphie Von Deutschland X. Rotliegend. Teil I: Innervariscische Becken; Lützner, H., Kowalczyk, G., Eds.; E. Schweitzerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2012; pp. 254–377. ISBN 3510492250. [Google Scholar]
- Lorenz, V.; Haneke, J. Relationship between diatremes, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. Geol. Soc. Lond. Spec. Publ. 2004, 234, 75–124. [Google Scholar] [CrossRef]
- Charpentier, J.F.W. Mineralogische Geographie der Chursächsischen Lande Mit Kupfern; Verlag Siegfried Lebrecht Crusius: Leipzig, Germany, 1778; p. 432. [Google Scholar]
- Trümper, S.; Rößler, R. Neues vom Kyffhäuser: Geologische Untersuchungen erhellen die Taphonomie vom Wald zum Holzlagerplatz (Oberkarbon, N-Thüringen). Geowiss. Mitt. 2017, 67, 20–21. [Google Scholar]
- Mägdefrau, K. Die Kieselhölzer im obersten Oberkarbon des Kyffhäusergebirges. Ber. Deutsch. Bot. Ges. 1958, 71, 133–142. [Google Scholar]
- Meister, J. Sedimentpetrographische und lithologische Untersuchungen im Siles des Kyffhäusers. Hallesches Jahrb. Mitteldtsch. Erdgesch. 1967, 9, 75–92. [Google Scholar]
- Schneider, J.W.; Rößler, R.; Gaitzsch, B.G.; Gebhardt, U.; Kampe, A. Saale-Senke. In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken; Lützner, H., Kowalczyk, G., Eds.; E. Schweitzerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2012; pp. 447–460. ISBN 3510492250. [Google Scholar]
- Lützner, H. Sedimentologie der Manebach-Formation in den fossilführenden Aufschlüssen bei Manebach. Beitr. Geol. Thüring. 2001, 8, 67–91. [Google Scholar]
- Lützner, H.; Andreas, D.; Schneider, J.W.; Voigt, S.; Werneburg, W. Stefan und Rotliegend im Thüringer Wald und seiner Umgebung. In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken; Lützner, H., Kowalczyk, G., Eds.; E. Schweitzerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2012; pp. 418–487. ISBN 3510492250. [Google Scholar]
- Barthel, M.; Krings, M.; Rößler, R. Die schwarzen Psaronien von Manebach, ihre Epiphyten, Parasiten und Pilze. Semana 2010, 25, 41–60. [Google Scholar]
- Krings, M.; Harper, C.J.; White, J.F.; Barthel, M.; Heinrichs, J.; Taylor, E.L.; Taylor, T.N. Fungi in a Psaronius root mantle from the Rotliegend (Asselian, Lower Permian) of Thuringia, Germany. Rev. Palaeobot. Palynol. 2017, 239, 14–30. [Google Scholar] [CrossRef]
- Noll, R.; Rößler, R.; Wilde, V. 150 Jahre Dadoxylon. Zur Anatomie fossiler Koniferen- und Cordaitenhölzer aus dem Rotliegend des euramerischen Florengebietes. Veröffentlichungen des Museums für Naturkunde 2005, 28, 29–48. [Google Scholar]
- Heaney, P.J. A proposed mechanism for the growth of chalcedony. Contrib. Mineral. Petrol. 1993, 115, 66–74. [Google Scholar] [CrossRef]
- Götze, J.; Möckel, R.; Langhof, N.; Hengst, M.; Klinger, M. Silicification of wood in the laboratory. Ceram. Silik. 2008, 52, 268–277. [Google Scholar]
- Owen, M.R. Radiation-damage halos in quartz. Geology 1988, 16, 529–532. [Google Scholar] [CrossRef]
- Meunier, J.D.; Sellier, E.; Pagel, M. Radiation-damage rims in quartz from uranium-bearing sandstones. J. Sediment. Petrol. 1990, 60, 53–58. [Google Scholar] [CrossRef]
- Kremer, B.; Kazmierczak, J.; Łukomska-Kowalczyk, M.; Kempe, S. Calcification and silicification: Fossilization potential of cyanobacteria from stromatolites of Niuafo‘ou’s Caldera Lakes (Tonga) and implications for the early fossil record. Astrobiology 2012, 12, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Barthel, M. Pflanzengruppen und Vegetationseinheiten der Manebach-Formation. Beitr. Geol. Thüring. 2001, 8, 93–123. [Google Scholar]
- Mencl, V.; Matysová, P.; Sakala, J. Silicified wood from the Czech part of the Intra Sudetic Basin (Late Pennsylvanian, Bohemian Massif, Czech Republic): Systematics, silicification, and palaeoenvironment. Neues Jahrb. Geol. Paläontol. Abh. 2009, 253, 269–288. [Google Scholar] [CrossRef]
- Pratt, B.R. Stromatolite decline—A reconsideration. Geology 1982, 10, 512–515. [Google Scholar] [CrossRef]
- Werneburg, R. Ein See-Profil aus dem Unter-Rotliegend des (Unter-Perm) von Manebach (Thüringer Wald). Veröff. Naturhist. Mus. Schleus. 1997, 12, 63–67. [Google Scholar]
- Werneburg, R. Ein Pelycosaurier aus dem Rotliegend des Thüringer Waldes. Veröff. Naturhist. Mus. Schleus. 1999, 14, 55–58. [Google Scholar]
- Luthardt, L.; Hofmann, M.; Linnemann, U.; Gerdes, A.; Marko, L.; Rößler, R. A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest. Int. J. Earth Sci. 2018, 107, 2465–2489. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trümper, S.; Rößler, R.; Götze, J. Deciphering Silicification Pathways of Fossil Forests: Case Studies from the Late Paleozoic of Central Europe. Minerals 2018, 8, 432. https://doi.org/10.3390/min8100432
Trümper S, Rößler R, Götze J. Deciphering Silicification Pathways of Fossil Forests: Case Studies from the Late Paleozoic of Central Europe. Minerals. 2018; 8(10):432. https://doi.org/10.3390/min8100432
Chicago/Turabian StyleTrümper, Steffen, Ronny Rößler, and Jens Götze. 2018. "Deciphering Silicification Pathways of Fossil Forests: Case Studies from the Late Paleozoic of Central Europe" Minerals 8, no. 10: 432. https://doi.org/10.3390/min8100432
APA StyleTrümper, S., Rößler, R., & Götze, J. (2018). Deciphering Silicification Pathways of Fossil Forests: Case Studies from the Late Paleozoic of Central Europe. Minerals, 8(10), 432. https://doi.org/10.3390/min8100432