An Alternative Scenario on the Origin of Ultra-High Pressure (UHP) and Super-Reduced (SuR) Minerals in Ophiolitic Chromitites: A Case Study from the Mercedita Deposit (Eastern Cuba)
Abstract
:1. Introduction
2. Geological Setting
2.1. Eastern Cuba Ophiolites
2.2. The Moa-Baracoa Ophiolitic Massif
2.3. The Mercedita Deposit
3. Materials and Methods
3.1. Sampling
3.2. Hydroseparation
3.3. Scanning Electron Microscopy (SEM)
3.4. MicroRAMAN Spectroscopy
3.5. Electron Microprobe Analysis (EMP)
3.6. X-ray Micro Diffraction
4. Results
4.1. Ore Texture and Mineralogy
4.2. Mineral Inclusions Identified In Situ in the Chromitite
4.2.1. Oriented Clinopyroxene and Rutile Lamellae in Chromite
4.2.2. Mineral Inclusions in Healed Fractures in Chromite
4.2.3. Moissanite in the Silicate Matrix
4.3. Mineralogy of Heavy Mineral Concentrates Obtained by Hydroseparation
5. Discussion
5.1. Origin of Oriented Clinopyroxene and Rutile Lamellae in Chromite
5.2. The SuR Assemblage
5.3. Minerals Typical of the Continental Crust
5.4. Pros and Cons of Existing Models in Order to Explain the SuR and Associated Minerals in Mercedita
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robinson, P.T.; Bai, W.J.; Malpas, J.; Yang, J.S.; Zhou, M.F.; Fang, Q.S.; Hu, X.F.; Cameron, S.; Staudigel, H. Ultra-high pressure minerals in the Luobusa ophiolite, Tibet, and their tectonic implications. Geol. Soc. Lond. Spec. Publ. 2004, 226, 247–271. [Google Scholar] [CrossRef]
- Yang, J.S.; Dobrzhinetskaya, L.; Bai, W.J.; Fang, Q.S.; Robinson, P.T.; Zhang, J.; Green, H.W. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology 2007, 35, 875–878. [Google Scholar] [CrossRef]
- Dobrzhinetskaya, L.F.; Wirth, R.; Yang, J.; Hutcheon, I.D.; Weber, P.K.; Green, H.W. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc. Natl. Acad. Sci. USA 2009, 106, 19233–19238. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.T.; Trumbull, R.B.; Schmitt, A.; Yang, J.S.; Li, J.W.; Zhou, M.F.; Erzinger, J.; Dare, S.; Xiong, F. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res. 2015, 27, 486–506. [Google Scholar] [CrossRef]
- Xu, X.; Yang, J.; Robinson, P.T.; Xiong, F.; Ba, D.; Guo, G. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Res. 2015, 27, 686–700. [Google Scholar] [CrossRef]
- Yang, J.S.; Meng, F.; Xu, S.; Robinson, P.T.; Dilek, Y.; Makeyev, A.B.; Wirth, R.; Wiedenbeck, M.; Cliff, J. Diamonds, native elements and metal alloys from chromitite of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res. 2015, 27, 459–485. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Yang, J.S.; Ernst, W.G.; Jahn, B.M.; Iizuka, Y.; Guo, G.L. Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: New insights into the deep upper mantle and mantle transition zone. Am. Mineral. 2016, 101, 1285–1294. [Google Scholar] [CrossRef]
- Xiong, F.; Yang, J.; Robinson, P.T.; Xu, X.; Ba, D.; Li, Y.; Zhang, Z.; Rong, H. Diamonds and other exotic minerals recovered from peridotites of the Dangqiong Ophiolite, western Yarlung–Zangbo suture zone, Tibet. Acta Geol. Sin. 2016, 90, 425–439. [Google Scholar]
- Xiong, F.; Yang, J.; Dilek, Y.; Xu, X.; Zhang, Z. Origin and significance of diamonds and other exotic minerals in the Dingqing ophiolite peridotites, eastern Bangong-Nujiang suture zone, Tibet. Lithosphere 2017, 10, 142–155. [Google Scholar] [CrossRef]
- Lian, D.; Yang, J.; Dilek, Y.; Wu, W.; Zhang, Z.; Xiong, F.; Liu, F.; Zhou, W. Diamond, moissanite and other unusual minerals in podiform chromitites from Pozanti-Karsanti ophiolite, southern Turkey: Implications for deep mantle origin and ultra-reducing conditions in podiform chromitite. Am. Mineral. 2017, 112, 1101–1114. [Google Scholar]
- Akbulut, M. Investigation of silicate micro-inclusions from Orhaneli and Harmancik chromitites (NW Turkey): New ultrahigh-pressure evidence from Western Tethyan ophiolitic chromitites. Ofioliti 2018, 43, 1–22. [Google Scholar]
- González-Jiménez, J.M.; Camprubí, A.; Colás, V.; Griffin, W.L.; Proenza, J.A.; O’Reilly, S.Y.; Centeno-García, E.; García-Casco, A.; Belousova, E.; Talavera, C.; et al. The recycling of chromitites in ophiolites from southwestern North America. Lithos 2017, 294, 53–72. [Google Scholar] [CrossRef]
- Arai, S. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference. Earth Planet. Sci. Lett. 2013, 397, 81–87. [Google Scholar] [CrossRef]
- McGowan, N.M.; Griffin, W.L.; González-Jiménez, J.M.; Belousova, E.A.; Afonso, J.; Shi, R.; McCammon, C.A.; Pearson, N.J.; O’Reilly, S.Y. Tibetan chromitites: Excavating the slab graveyard. Geology 2015, 43, 179–182. [Google Scholar] [CrossRef]
- Griffin, W.L.; Afonso, J.C.; Belousova, E.A.; Gain, S.E.; Gong, X.H.; González-Jiménez, J.M.; Howell, D.; Huang, J.X.; McGowan, N.; Pearson, N.J.; et al. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J. Petrol. 2016, 57, 655–684. [Google Scholar] [CrossRef]
- Proenza, J.A.; González-Jiménez, J.M.; García-Casco, A.; Belousova, E.; Griffin, W.L.; Talavera, C.; Rojas-Agramonte, Y.; Aiglsperger, T.; Navarro-Ciurana, D.; Pujol-Solà, N.; et al. Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban Ophiolites. Geosci. Front. 2018, in press. [Google Scholar] [CrossRef]
- Yang, J.S.; Robinson, P.T.; Dilek, Y. Diamonds in ophiolites. Elements 2014, 10, 127–130. [Google Scholar] [CrossRef]
- Xiong, F.; Yang, J.; Robinson, P.T.; Xu, X.; Liu, Z.; Li, Y.; Li, J.; Chen, S. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res. 2015, 27, 525–542. [Google Scholar] [CrossRef]
- Zhou, M.F.; Robinson, P.T.; Su, B.X.; Gao, J.F.; Li, J.W.; Yang, J.S.; Malpas, J. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res. 2014, 26, 262–283. [Google Scholar] [CrossRef]
- Johan, Z.; Martin, R.F.; Ettler, V. Fluids are bound to be involved in the formation of ophiolitic chromite deposits. Eur. J. Mineral. 2017, 27, 543–555. [Google Scholar] [CrossRef]
- Ballhaus, C.; Wirth, R.; Fonseca, R.O.C.; Blanchard, H.; Pröll, W.; Bragagni, A.; Nagel, T.; Schreiber, A.; Dittrich, S.; Thome, V.; et al. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochem. Persp. Lett. 2017, 5, 42–46. [Google Scholar] [CrossRef]
- Ballhaus, C.; Fonseca, R.O.C.; Bragagni, A. Reply to Comment on “Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes” by Griffin et al. 2018: No evidence for transition zone metamorphism in the Luobusa ophiolite. Geochem. Persp. Lett. 2018, 7, 3–4. [Google Scholar] [CrossRef]
- Iturralde-Vinent, M. (Ed.) Introduction to Cuban geology and geophysics. In Ofiolitas y Arcos Volcánicos de Cuba; International Geological Correlation Programme: Miami, FL, USA, 1996; Volume 364, pp. 3–35. [Google Scholar]
- Proenza, J.A.; Gervilla, F.; Melgarejo, J.C.; Bodinier, J.L. Al-and Cr-rich chromitites from the Mayarí-Baracoa ophiolitic belt (eastern Cuba); consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Econ. Geol. 1999, 94, 547–566. [Google Scholar] [CrossRef]
- Iturralde-Vinent, M.A.; Díaz-Otero, C.; Rodríguez-Vega, A.; Díaz-Martínez, R. Tectonic implications of paleontologic dating of Cretaceous–Danian sections of Eastern Cuba. Geol. Acta 2006, 4, 89–102. [Google Scholar]
- García-Casco, A.; Torres-Roldán, R.L.; Iturralde-Vinent, M.A.; Millán, G.; Núñez Cambra, K.; Lázaro, C.; Rodríguez Vega, A. High pressure metamorphism of ophiolites in Cuba. Geol. Acta 2006, 4, 63–88. [Google Scholar]
- García-Casco, A.; Iturralde-Vinent, M.A.; Pindell, J. Latest Cretaceous collision/accretion between the Caribbean Plate and Caribeana: Origin of metamorphic terranes in the Greater Antilles. Int. Geol. Rev. 2008, 50, 781–809. [Google Scholar] [CrossRef]
- García-Casco, A.; Lázaro, C.; Torres-Roldán, R.L.; Núñez Cambra, K.; Rojas Agramonte, Y.; Kröner, A.; Neubauer, F.; Millán, G.; Blanco-Quintero, I. Partial melting and counterclockwise P-T path of subducted oceanic crust (Sierra del Convento mélange, Cuba). J. Petrol. 2008, 49, 129–161. [Google Scholar] [CrossRef]
- Lázaro, C.; García-Casco, A.; Rojas-Agramonte, Y.; Kröner, A.; Neubauer, F.; Iturralde-Vinent, M. Fifty-five-million-year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba). J. Metamorph. Geol. 2009, 27, 19–40. [Google Scholar] [CrossRef]
- Blanco-Quintero, I.F.; Gerya, T.V.; García-Casco, A.; Castro, A. Subduction of young oceanic plates: A numerical study with application to aborted thermal-chemical plumes. Geochem. Geophys. 2011, 12, 10. [Google Scholar]
- Blanco-Quintero, I.F.; Proenza, J.A.; Garcia-Casco, A.; Tauler, E.; Galí, S. Serpentinites and serpentinites within a fossil subduction channel: La Corea mélange, eastern Cuba. Geol. Acta 2011, 9, 389–405. [Google Scholar]
- Blanco-Quintero, I.F.; Rojas-Agramonte, Y.; García-Casco, A.; Kröner, A.; Mertz, D.F.; Lázaro, C.; Blanco-Moreno, J.; Renne, P.R. Timing of subduction and exhumation in a subduction channel: Evidence from slab melts from La Corea mélange (eastern Cuba). Lithos 2011, 127, 86–100. [Google Scholar] [CrossRef]
- Lázaro, C.; Garcia-Casco, A.; Blanco-Quintero, I.F.; Rojas- Agramonte, Y.; Corsini, M.; Proenza, J.A. Did the Turonian–Coniacian plume pulse trigger subduction initiation in the Northern Caribbean? Constraints from 40Ar/39Ar dating of the Moa-Baracoa metamorphic sole (eastern Cuba). Int. Geol. Rev. 2015, 57, 919–942. [Google Scholar] [CrossRef]
- Cárdenas-Párraga, J.; García-Casco, A.; Proenza, J.A.; Harlow, G.E.; Blanco-Quintero, I.F.; Lázaro, C.; Villanova-de-Benavent, C.; Núñez Cambra, K. Trace-element geochemistry of transform-fault serpentinite in high-pressure subduction mélanges (eastern Cuba): Implications for subduction initiation. Int. Geol. Rev. 2017, 59, 2041–2064. [Google Scholar] [CrossRef]
- Iturralde-Vinent, M.A.; Diaz Otero, C.; García-Casco, A.; Van Hinsbergen, D.J.J. Paleogene foredeep basin deposits of North-Central Cuba: A record of arc-continent collision between the Caribbean and North American plate. Int. Geol. Rev. 2008, 50, 863–884. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Iturralde-Vinent, M.A.; Van Geffen, P.W.; García-Casco, A.; Van Benthem, S. Structure of the accretionary prism, and the evolution of the Paleogene northern Caribbean subduction zone in the region of Camagüey, Cuba. J. Struct. Geol. 2009, 31, 1130–1144. [Google Scholar] [CrossRef]
- Lewis, J.F.; Draper, G.; Proenza, J.A.; Espaillat, J.; Jiménez, J. Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: A review of their occurrence, composition, origin, emplacement and nickel laterite soils. Geol. Acta 2006, 4, 237–263. [Google Scholar]
- Marchesi, C.; Garrido, C.J.; Godard, M.; Proenza, J.A.; Gervilla, F.; Blanco-Moreno, J. Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib. Mineral. Petrol. 2006, 151, 717–736. [Google Scholar] [CrossRef]
- Iturralde-Vinent, M.A.; García-Casco, A.; Rojas-Agramonte, Y.; Proenza, J.A.; Murphy, J.B.; Stern, R.G. The geology of Cuba: A brief overview and synthesis. GSA Today 2016, 26, 4–10. [Google Scholar] [CrossRef]
- Proenza, J.A.; Díaz-Martínez, R.; Iriondo, A.; Marchesi, C.; Melgarejo, J.C.; Gervilla, F.; Garrido, C.J.; Rodríguez-Vega, A.; Lozano-Santacruz, R.; Blanco-Moreno, J.A. Primitive island-arc Cretaceous volcanic rocks in eastern Cuba: The Téneme Formation. Geol. Acta 2006, 4, 103–121. [Google Scholar]
- Gervilla, F.; Proenza, J.A.; Frei, R.; González-Jiménez, J.M.; Garrido, C.J.; Melgarejo, J.C.; Meibom, A.; Díaz-Martinez, R.; Lavaut, W. Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib. Mineral. Petrol. 2005, 150, 589–607. [Google Scholar] [CrossRef]
- Marchesi, C.; Garrido, C.J.; Bosch, D.; Proenza, J.A.; Gervilla, F.; Monié, P.; Rodriguez-Vega, A. Geochemistry of Cretaceous magmatism in eastern Cuba: Recycling of North American continental sediments and implications for subduction polarity in the Greater Antilles Paleo-arc. J. Petrol. 2007, 48, 1813–1840. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Proenza, J.A.; Gervilla, F.; Melgarejo, J.C.; Blanco-Moreno, J.A.; Ruiz-Sánchez, R.; Griffin, W.L. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal Ophiolitic Massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum group elements. Lithos 2011, 125, 101–121. [Google Scholar] [CrossRef]
- Proenza, J.A.; Gervilla, F.; Melgarejo, J.C.; Revé, D.; Rodríguez, G. Las cromititas ofiolíticas del yacimiento Mercedita (Cuba). Un ejemplo de cromitas ricas en Al en la zona de transición manto-corteza. Acta Geol. Hisp. 1998, 33, 179–212. [Google Scholar]
- Guild, P.W. Petrology and structure of the Moa Chromite District, Oriente province, Cuba. Trans. Am. Geophys. Union 1947, 28, 218–246. [Google Scholar] [CrossRef]
- Flint, D.E.; de Albear, J.F.; Guild, P.W. Geology and Chromite Deposits of the Camagüey District, Camagüey Province, Cuba; U.S. Geological Survey Bull: Washington, DC, USA, 1948; Volume 954-B, pp. 39–63.
- Leblanc, M.; Violette, J.F. Distribution of aluminium-rich and chromium-rich chromite pods in ophiolite peridotites. Econ. Geol. 1983, 78, 293–301. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Zaccarini, F.; Lewis, J.F.; Garuti, G.; Labrador, M.; Longo, F. Platinum group minerals (PGM) in the Falcondo Ni laterite deposit, Loma Caribe peridotite (Dominican Republic). Miner. Depos. 2015, 50, 105–123. [Google Scholar] [CrossRef]
- Pouchou, J.L.; Pichoir, F. Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In Electron Probe Quantitation; Heinrich, K.J., Newbury, D.E., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 31–75. ISBN 978-1-4899-2619-7. [Google Scholar]
- Proenza, J.A.; Alfonso, P.; Melgarejo, J.C.; Gervilla, F.; Tritlla, J.; Fallick, A.E. D., O and C isotopes in podiform chromitites as fluid tracers for hydrothermal alteration processes of the Mayarí-Baracoa Ophiolitic Belt, eastern Cuba. J. Geochem. Explor. 2003, 78–79, 1–6. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Leblanc, M.; Nicolas, A. Ophiolitic chromitites. Int. Geol. Rev. 1992, 34, 653–686. [Google Scholar] [CrossRef]
- Bonavia, F.F.; Diella, V.; Ferrario, A. Precambrian podiform chromitites from Kenticha Hill, southern Ethiopia. Econ. Geol. 1993, 88, 198–202. [Google Scholar] [CrossRef]
- Arai, S.; Uesugi, J.; Ahmed, A.H. Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contrib. Mineral. Petrol. 2004, 147, 145–154. [Google Scholar] [CrossRef]
- Arai, S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral. Mag. 1992, 56, 173–184. [Google Scholar] [CrossRef]
- Prencipe, M.; Mantovani, L.; Tribaudino, M.; Bersani, D.; Lottici, P.P. The Raman spectrum of diopside: A comparison between ab initio calculated and experimentally measured frequencies. Eur. J. Mineral. 2012, 24, 457–464. [Google Scholar] [CrossRef]
- Shiryaev, A.A.; Griffin, W.L.; Stoyanov, E. Moissanite (SiC) from kimberlites: Polytypes, trace elements, inclusions and speculations on origin. Lithos 2011, 122, 152–164. [Google Scholar] [CrossRef]
- Trumbull, R.B.; Yang, J.S.; Robinson, P.T.; Di Pierro, S.; Vennemann, T.; Wiedenbeck, M. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: New discoveries from ophiolites. Lithos 2009, 113, 612–620. [Google Scholar] [CrossRef]
- Xu, S.T.; Wu, W.P.; Xiao, W.S.; Yang, J.S.; Chen, J.; Ji, S.Y.; Liu, Y.C. Moissanite in serpentinite from the Dabie Mountains in China. Mineral. Mag. 2008, 72, 899–908. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, J.; Robinson, P.T.; Xiong, F.; Yuan, L.I.; Zhang, Z.; Liu, Z.; Liu, F.; Niu, X. Diamond discovered in high-Al chromitites of the Sartohay Ophiolite, Xinjiang Province, China. Acta Geol. Sin. 2015, 89, 332–340. [Google Scholar]
- Yamamoto, S.; Komiya, T.; Hirose, K.; Maruyama, S. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 2009, 109, 314–322. [Google Scholar] [CrossRef]
- Miura, M.; Arai, S.; Ahmed, A.H.; Mizukami, T.; Okuno, M.; Yamamoto, S. Podiform chromitite classification revisited: A comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. J. Asian Earth Sci. 2012, 59, 52–61. [Google Scholar] [CrossRef]
- Arai, S.; Miura, M. Formation and modification of chromitites in the mantle. Lithos 2016, 264, 277–295. [Google Scholar] [CrossRef]
- Ono, S.; Kikegawa, T.; Higo, Y.; Tange, Y. Precise determination of the phase boundary between coesite and stishovite in SiO2. Phys. Earth Planet. Int. 2017, 264, 1–6. [Google Scholar] [CrossRef]
- Satsukawa, T.; Griffin, W.L.; Piazolo, S.; O’Reilly, S.Y. Messengers from the deep: Fossil wadsleyite–chromite microstructures from the Mantle Transition Zone. Sci. Rep. 2015, 5, 16484. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, M.; Jin, Z.; Fei, Y.; Robinson, P.T. Experimental constraints on the formation of the Tibetan podiform chromitites. Lithos 2016, 245, 109–117. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Jin, Z.M.; Griffin, W.L.; Wang, C.; Wu, Y. High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites. Earth Planet. Sci. Lett. 2017, 463, 151–158. [Google Scholar] [CrossRef]
- Chen, M.; Shu, J.; Xie, X.; Mao, H.K. Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochim. Cosmochim. Acta 2003, 67, 3937–3942. [Google Scholar] [CrossRef]
- Cameron, E.N. Titanium-bearing oxide minerals of the Critical Zone of the Eastern Bushveld Complex. Am. Miner. 1979, 64, 140–150. [Google Scholar]
- Arai, S.; Yurimoto, H. Podiform chromitites of the Tari—Misaka ultramafic complex, Southwest Japan, as mantle-melt interaction products. Econ. Geol. 1994, 89, 1279–1288. [Google Scholar] [CrossRef]
- Augé, T. Chromite deposits in the northern Oman ophiolite: Mineralogical constraints. Miner. Depos. 1987, 22, 1–10. [Google Scholar] [CrossRef]
- Xiong, Q.; Griffin, W.L.; Huang, J.X.; Gain, S.E.; Toledo, V.; Pearson, N.J.; O’Reilly, S.Y. Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from Mount Carmel. Eur. J. Mineral. 2017, 29, 557–570. [Google Scholar] [CrossRef]
- Yang, J.S.; Xu, X.Z.; Li, Y.; Li, J.Y.; Ba, D.Z.; Rong, H.; Zhang, Z.M. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence. Acta Petrol. Sin. 2011, 27, 3171–3178. [Google Scholar]
- Xiong, Q.; Henry, H.; Griffin, W.L.; Zheng, J.P.; Satsukawa, T.; Pearson, N.J.; O’Reilly, S.Y. High-and low-Cr chromitite and dunite in a Tibetan ophiolite: Evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean. Contrib. Mineral. Petrol. 2017, 172, 45. [Google Scholar] [CrossRef]
- Xiong, F.; Yang, J.; Robinson, P.T.; Dilek, Y.; Milushi, I.; Xu, X.; Zhou, W.; Zhang, Z.; Rong, H. Diamonds Discovered from High–Cr Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite, Albania. Acta Geol. Sin. Eng. Ed. 2017, 91, 455–468. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Xu, Z.; Tian, Y.; Lai, S. Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar. J. Asian Earth Sci. 2018, 164, 179–193. [Google Scholar] [CrossRef]
- Bai, W.J.; Robinson, P.T.; Fang, Q.; Hu, X.F.; Zhou, M.F. The PGE and base-metal alloys in the podiform chromitites of the Luobusa ophiolite, southern Tibet. Can. Mineral. 2000, 38, 585–598. [Google Scholar] [CrossRef]
- Alexander, C.M.O. Presolar SiC in chondrites: How variable and how many sources? Geochim. Cosmochim. Acta 1993, 57, 2869–2888. [Google Scholar] [CrossRef]
- Moore, R.O.; Otter, M.L.; Rickard, R.S.; Harris, J.W.; Gurney, J.J. The occurrence of moissanite and ferro-periclase as inclusions in diamond. In Proceedings of the 4th International Kimberlite Conference, Perth, Australia, 11–15 August 1986; pp. 409–411. [Google Scholar]
- Moore, R.O.; Gurney, J.J. Mineral inclusions in diamond from the Monastery kimberlite, South Africa. Kimberl. Relat. Rocks 1989, 2, 1029–1041. [Google Scholar]
- Leung, I.S. Silicon carbide cluster entrapped in a diamond from Fuxian, China. Am. Mineral. 1990, 75, 1110–1119. [Google Scholar]
- Kaminsky, F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth Sci. Rev. 2012, 110, 127–147. [Google Scholar] [CrossRef]
- Di Pierro, S.; Gnos, E.; Grobety, B.H.; Armbruster, T.; Bernasconi, S.M.; Ulmer, P. Rock-forming moissanite (natural alpha-silicon carbide). Am. Mineral. 2003, 88, 1817–1821. [Google Scholar] [CrossRef]
- Dobrzhinetskaya, L.; Mukhin, P.; Wang, Q.; Wirth, R.; O’Bannon, E.; Zhao, W.; Eppelbaum, L.; Sokhonchuk, T. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies. Lithos 2017, 310–311, 355–368. [Google Scholar] [CrossRef]
- Machev, P.; O’Bannon, E.; Bozhilov, K.; Wang, Q.; Dobrzhinetskaya, L. Not all moissanites are created equal: New constraints on moissanite from metamorphic rocks of Bulgaria. Earth Planet. Sci. Lett. 2018, 498, 387–396. [Google Scholar] [CrossRef]
- Gnoevaja, N.; Grozdanov, L. Moissanite from Triassic rocks, NW Bulgaria. Proc. Bulg. Geol. Soc. 1965, 26, 89–95. [Google Scholar]
- Shiryaev, A.A.; Wiedenbeck, M.; Reutsky, V.; Polyakov, V.B.; Mel’nik, N.N.; Lebedev, A.A.; Yakimova, R. Isotopic heterogeneity in synthetic and natural silicon carbide. J. Phys. Chem. Solids 2008, 69, 2492–2498. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.W.; Gao, C.; Golubkova, A.; Rohrbach, A.; Connolly, J.A. Natural moissanite (SiC)—A low temperature mineral formed from highly fractionated ultra-reducing COH-fluids. Prog. Earth Planet. Sci. 2014, 1, 27. [Google Scholar] [CrossRef]
- Golubkova, A.; Schmidt, M.W.; Connolly, J.A. Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: A thermodynamic model for moissanite (SiC) formation. Contrib. Mineral. Petrol. 2016, 171, 41. [Google Scholar] [CrossRef]
- Sachan, H.K.; Mukherjee, B.K.; Bodnar, R.J. Preservation of methane generated during serpentinization of upper mantle rocks: Evidence from fluid inclusions in the Nidar ophiolite, Indus Suture Zone, Ladakh (India). Earth Planet. Sci. Lett. 2007, 257, 47–59. [Google Scholar] [CrossRef]
- Kelley, D.S.; Früh-Green, G.L. Abiogenic methane in deep-seated mid-ocean ridge environments: Insights from stable isotope analyses. J. Geophys. Res. 1999, 104, 10439–10460. [Google Scholar] [CrossRef] [Green Version]
- Melcher, F.; Grum, W.; Simon, G.; Thalhammer, T.V.; Stumpfl, E. Petrogenesis of the ophiolitic giant chromite deposit of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. J. Petrol. 1997, 10, 1419–1458. [Google Scholar] [CrossRef]
- Proenza, J.A. Mineralizaciones de Cromita en la Faja Ofiolítica Mayarí-Baracoa (Cuba). Ejemplo del Yacimiento Mercedita. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, February 1998; p. 227. [Google Scholar]
- Rojas-Agramonte, Y.; Williams, I.S.; Arculus, R.; Kröner, A.; García-Casco, A.; Lázaro, C.; Buhre, S.; Wong, J.; Geng, H.; Morales Echevarría, C.; et al. Ancient xenocrystic zircon in young volcanic rocks of the southern Lesser Antilles island arc. Lithos 2017, 290, 228–252. [Google Scholar] [CrossRef]
- Ruskov, T.; Spirov, I.; Georgieva, M.; Yamamoto, S.; Green, H.W.; McCammon, C.A.; Dobrzhinetskaya, L.F. Mossbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: Implications for a highly reduced deep mantle. J. Metamorph. Geol. 2010, 28, 551–560. [Google Scholar] [CrossRef]
- Matveev, S.; Ballhaus, C. Role of water in the origin of podiform chromitite deposits. Earth Planet. Sci. Lett. 2002, 203, 235–243. [Google Scholar] [CrossRef]
- Gerya, T.V.; Yuen, D. Rayleigh–Taylor instabilities from hydration and melting propel ‘‘cold plumes’’ at subduction zones. Earth Planet. Sci. Lett. 2003, 212, 47–62. [Google Scholar] [CrossRef]
- Rojas-Agramonte, Y.; Garcia-Casco, A.; Kemp, A.; Kröner, A.; Proenza, J.A.; Lázaro, C.; Liu, D. Recycling and transport of continental material through the mantle wedge above subduction zones: A. Caribbean example. Earth Planet. Sci. Lett. 2016, 436, 93–107. [Google Scholar] [CrossRef]
Sample | G-12-27 | G-12-6 | G-12-2 | G-12-8 | G-12-12 | G-12-18 | G-15-4 | L2-7 | L2-8 | L3-2 | L3-8 | L3-7 | L3-11 | L6-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TiO2 (wt %) | 0.33 | 0.33 | 0.33 | 0.33 | 0.40 | 0.28 | 0.31 | 0.31 | 0.32 | 0.20 | 0.21 | 0.29 | 0.20 | 0.28 |
Al2O3 | 31.03 | 31.02 | 31.77 | 30.53 | 31.38 | 30.49 | 30.44 | 29.37 | 29.56 | 32.04 | 32.78 | 31.19 | 32.98 | 26.19 |
V2O3 | 0.16 | 0.16 | 0.15 | 0.19 | 0.18 | 0.14 | 0.10 | 0.19 | 0.15 | 0.14 | 0.09 | 0.16 | 0.07 | 0.19 |
Cr2O3 | 37.02 | 36.49 | 35.88 | 37.25 | 38.30 | 35.80 | 37.42 | 36.88 | 37.09 | 35.11 | 35.29 | 36.20 | 35.77 | 41.22 |
Fe2O3 * | 3.38 | 3.43 | 3.19 | 3.14 | 0.00 | 3.14 | 3.35 | 4.61 | 3.56 | 4.18 | 3.74 | 2.88 | 2.01 | 4.18 |
FeO * | 11.73 | 11.62 | 11.12 | 11.98 | 14.47 | 16.92 | 11.09 | 12.29 | 12.55 | 11.37 | 9.88 | 11.85 | 11.35 | 11.17 |
MgO | 16.59 | 16.50 | 16.90 | 16.29 | 14.10 | 12.96 | 16.82 | 15.84 | 15.55 | 16.82 | 17.84 | 16.21 | 16.75 | 16.26 |
MnO | 0.17 | 0.21 | 0.12 | 0.11 | 0.18 | 0.30 | 0.13 | 0.25 | 0.26 | 0.08 | 0.16 | 0.16 | 0.20 | 0.17 |
NiO | 0.17 | 0.13 | 0.18 | 0.20 | 0.24 | 0.10 | 0.14 | 0.13 | 0.14 | 0.20 | 0.20 | 0.18 | 0.24 | 0.23 |
Sum | 100.59 | 99.90 | 99.64 | 100.02 | 99.25 | 100.13 | 99.81 | 99.89 | 99.21 | 100.14 | 100.18 | 99.12 | 99.57 | 99.89 |
Ti (a.p.f.u.) | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.05 | 0.05 | 0.06 | 0.06 | 0.04 | 0.04 | 0.05 | 0.03 | 0.05 |
Al | 8.48 | 8.52 | 8.70 | 8.41 | 8.75 | 8.56 | 8.37 | 8.16 | 8.26 | 8.74 | 8.85 | 8.63 | 9.00 | 7.35 |
V | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.04 | 0.03 | 0.03 | 0.02 | 0.03 | 0.01 | 0.04 |
Cr | 6.78 | 6.72 | 6.59 | 6.88 | 7.17 | 6.74 | 6.90 | 6.87 | 6.95 | 6.42 | 6.40 | 6.72 | 6.55 | 7.76 |
Fe3+ | 0.59 | 0.60 | 0.56 | 0.55 | 0.00 | 0.56 | 0.59 | 0.82 | 0.64 | 0.73 | 0.64 | 0.51 | 0.35 | 0.75 |
Fe2+ | 5.73 | 5.73 | 5.85 | 5.67 | 4.97 | 4.60 | 5.85 | 5.56 | 5.49 | 5.80 | 6.10 | 5.67 | 5.78 | 5.77 |
Mg | 0.03 | 0.04 | 0.02 | 0.02 | 0.04 | 0.06 | 0.03 | 0.05 | 0.05 | 0.01 | 0.03 | 0.03 | 0.04 | 0.03 |
Mn | 2.27 | 2.27 | 2.16 | 2.34 | 2.86 | 3.37 | 2.16 | 2.42 | 2.49 | 2.20 | 1.89 | 2.33 | 2.20 | 2.22 |
Ni | 0.03 | 0.02 | 0.03 | 0.04 | 0.04 | 0.02 | 0.03 | 0.02 | 0.03 | 0.04 | 0.04 | 0.03 | 0.04 | 0.04 |
#Cr | 0.44 | 0.44 | 0.43 | 0.45 | 0.45 | 0.44 | 0.45 | 0.46 | 0.46 | 0.42 | 0.42 | 0.44 | 0.42 | 0.51 |
#Mg | 0.72 | 0.72 | 0.73 | 0.71 | 0.63 | 0.58 | 0.73 | 0.70 | 0.69 | 0.73 | 0.76 | 0.71 | 0.72 | 0.72 |
Ophiolite | Luobusa (Tibet) | Dingqing (Tibet) | Purang (Tibet) | Zedang (Tibet) | Ray-Iz (Polar Urals) | Semail (Oman) | Mirdita (Albania) | Pozanti- Karsanti (Turkey) | Orhaneli- Harmancik (Turkey) | Myitkyina (Myanmar) | Baja California (Mexico) | Moa-Baracoa (Cuba) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Host Rock | Chrom, Harz | Harz | Peridotite | Chrom, Dun | Chrom, Harz | Chrom | Chrom | Chrom | Chrom | Peridotite | Chrom | Chrom, Harz |
Diamond | × | × | × | × | × | × | × | |||||
Coesite/Stishovite pseudomorph | × | × | ||||||||||
TiO2 II (α-PbO2 structure) | × | |||||||||||
Cubic-BN | × | |||||||||||
Si-rutile | × | |||||||||||
BWJ (inverse-spinel structure) | × | |||||||||||
CF-chromite Clinopyroxene exsolution lamellae | × | × | × | × | × | × | × | |||||
Amorphous carbon | × | × | × | |||||||||
Moissanite (SiC) | × | × | × | × | × | × | × | × | × | |||
Fe-carbide (FeC) | × | × | ||||||||||
W-carbide (WC) | × | × | ||||||||||
Ti-carbide (TiC) | × | × | ||||||||||
Fe-silicide (FeSi) | × | × | ||||||||||
Ti-nitride (TiN) | × | × | ||||||||||
TAZ (Ti4Al2(Zr,Si)O11) | × | |||||||||||
Native Si | × | × | × | |||||||||
Native Ni, Co, Ce, Fe, Cr, Zn, PGE | × | × | × | × | ||||||||
Iron-Wustite (Fe-FeO) | × | × | × | × | ||||||||
Alloys (Fe-Mn, Fe-Cr, Fe-Co) | × | × | × | |||||||||
Alm garnet | × | × | × | |||||||||
Andalusite | × | × | ||||||||||
Amphibole | × | × | × | × | ||||||||
Apatite | × | × | × | |||||||||
Biotite | × | |||||||||||
Corundum | × | × | × | × | × | × | ||||||
K-feldspar | × | × | ||||||||||
Kyanite | × | × | ||||||||||
Ilmenite | × | × | ||||||||||
Muscovite | × | |||||||||||
Plagioclase | × | × | ||||||||||
Quartz | × | × | × | × | ||||||||
Rutile | × | × | × | × | × | × | ||||||
Titanite | × | × | × | |||||||||
Zircon | × | × | × | × | × | × | × | × | × |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujol-Solà, N.; Proenza, J.A.; Garcia-Casco, A.; González-Jiménez, J.M.; Andreazini, A.; Melgarejo, J.C.; Gervilla, F. An Alternative Scenario on the Origin of Ultra-High Pressure (UHP) and Super-Reduced (SuR) Minerals in Ophiolitic Chromitites: A Case Study from the Mercedita Deposit (Eastern Cuba). Minerals 2018, 8, 433. https://doi.org/10.3390/min8100433
Pujol-Solà N, Proenza JA, Garcia-Casco A, González-Jiménez JM, Andreazini A, Melgarejo JC, Gervilla F. An Alternative Scenario on the Origin of Ultra-High Pressure (UHP) and Super-Reduced (SuR) Minerals in Ophiolitic Chromitites: A Case Study from the Mercedita Deposit (Eastern Cuba). Minerals. 2018; 8(10):433. https://doi.org/10.3390/min8100433
Chicago/Turabian StylePujol-Solà, Núria, Joaquín A. Proenza, Antonio Garcia-Casco, José María González-Jiménez, Aleu Andreazini, Joan Carles Melgarejo, and Fernando Gervilla. 2018. "An Alternative Scenario on the Origin of Ultra-High Pressure (UHP) and Super-Reduced (SuR) Minerals in Ophiolitic Chromitites: A Case Study from the Mercedita Deposit (Eastern Cuba)" Minerals 8, no. 10: 433. https://doi.org/10.3390/min8100433
APA StylePujol-Solà, N., Proenza, J. A., Garcia-Casco, A., González-Jiménez, J. M., Andreazini, A., Melgarejo, J. C., & Gervilla, F. (2018). An Alternative Scenario on the Origin of Ultra-High Pressure (UHP) and Super-Reduced (SuR) Minerals in Ophiolitic Chromitites: A Case Study from the Mercedita Deposit (Eastern Cuba). Minerals, 8(10), 433. https://doi.org/10.3390/min8100433