Carbonaceous Materials in the Longmenshan Fault Belt Zone: 3. Records of Seismic Slip from the Trench and Implications for Faulting Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-Ray Fluorescence (XRF) Analysis
3.2. X-Ray Diffraction (XRD) Analysis
3.3. Raman Spectroscopy
4. Discussion and Conclusions
- The mineralogical and geochemical analyses show the presence of dickite as well as a relative chemical enrichment of Ti and a relative depletion of K within the yellowish HIZ, possibly suggesting the presence of high-temperature fluid–rock interactions.
- The spectrometric spectra exhibit the absence of CM within the HIZ, possibly resulting from CM pyrolysis.
- The occurrence of the yellowish gouge suggests its formation is limited to a narrow and localized process. Both the sharp boundary within the very recent coseismic rupture zone of the 2008 MW-7.9 Wenchuan earthquake and the presence of dickite, which is kinetically unstable on the surface, strongly imply that the yellow/altered gouge likely formed from a recent coseismic event as the consequence of hydrothermal fluid penetration.
- The RSCM of the CM-bearing gouge falls within the recognized range of graphitization in the FZ760 of WFSD-1, implying a correlation with the Yingxiu–Beichuan fault. We further surmise that the CM characteristics varied according to a driving reaction, e.g., transient hydrothermal heating versus long-term geological metamorphism and sedimentation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sibson, R.H.; Scott, J. Stress-fault controls on the containment and release of overpressured fluids: Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand. Ore Geol. Rev. 1998, 13, 293–306. [Google Scholar] [CrossRef]
- Di Luccio, F.; Ventura, G.; Di Giovambattista, R.; Piscini, A.; Cinti, F.R. Normal faults and thrusts reactivated by deep fluids: The 6 April 2009 Mw 6.3 L’Aquila earthquake, central Italy. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Lachenbruch, A.H.; Sass, J.H. Heat flow and energetics of the San Andreas fault zone. J. Geophys. Res. 1980, 85, 6185–6222. [Google Scholar] [CrossRef]
- Chester, F.M.; Logan, J.M. Composite planar fabric of gouge from the Punchbowl fault, California. J. Struct. Geol. 1986, 9, 621–634. [Google Scholar] [CrossRef]
- Chester, F.M.; Evans, J.P.; Biegel, R.L. Internal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res. 1993, 98, 771–786. [Google Scholar] [CrossRef]
- Hickman, S.; Sibson, R.; Bruhn, R. Introduction to special section: Mechanical involvement of fluids in faulting. J. Geophys. Res. 1995, 100, 12831–12840. [Google Scholar] [CrossRef]
- Sibson, R.H. Earthquake rupturing in fluid-overpressured crust: How common? Pure Appl. Geophys. 2014, 171, 2867–2885. [Google Scholar] [CrossRef]
- Engelder, T. The role of pore water circulation during the deformation of foreland folds and thrust belts. J. Geophys. Res. 1984, 89, 4319–4325. [Google Scholar] [CrossRef]
- Kerrich, R. Fluid infiltration into fault zones: Chemical, isotopic and mechanical effects. Pure Appl. Geophys. 1986, 124, 225–268. [Google Scholar] [CrossRef]
- Reynolds, S.J.; Lister, G. Structural aspects of fluid-rock interactions in detachment zones. Geology 1987, 15, 362–365. [Google Scholar] [CrossRef]
- Mccaig, A.M. Deep fluid circulation in fault zones. Geology 1988, 16, 865–960. [Google Scholar] [CrossRef]
- Forster, C.B.; Evans, J.P. Hydrogeology of thrust faults and crystalline thrust sheets: Results of combined field and modeling studies. Geophys. Res. Lett. 1991, 18, 979–982. [Google Scholar] [CrossRef] [Green Version]
- Menzies, C.D.; Teagle, D.A.H.; Niedermann, S.; Cox, S.C.; Craw, D.; Zimmer, M.; Cooper, M.J.; Erzinger, J. The fluid budget of a continental plate boundary fault: Quantification from the Alpine Fault, New Zealand. Earth Planet. Sci. Lett. 2016, 445, 125–135. [Google Scholar] [CrossRef]
- Smeraglia, L.; Berra, F.; Billi, A.; Boschi, C.; Carminati, E.; Doglioni, C. Origin and role of fluids involved in the seismic cycle of extensional faults in carbonate rocks. Earth Planet. Sci. Lett. 2016, 450, 292–305. [Google Scholar] [CrossRef]
- Sibson, R.H. Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 1987, 15, 701–704. [Google Scholar] [CrossRef]
- Brantley, S.L.; Evans, B.; Hickman, S.H.; Crerar, D.A. Healing of microcracks in quartz: Implications for fluid flow. Geology 1990, 18, 136–139. [Google Scholar] [CrossRef]
- Glazner, A.F.; Bartley, J.M. Volume loss, fluid flow and state of strain in extensional mylonits from the central Mojave Desert, California. J. Struct. Geol. 1991, 13, 587–594. [Google Scholar] [CrossRef]
- Chen, W.M.D.; Tanaka, H.; Huang, H.J.; Lu, C.B.; Lee, C.Y.; Wang, C.Y. Fluid infiltration associated with seismic faulting: Examining chemical and mineralogical compositions of fault rocks from the active Chelungpu fault. Tectonophysic 2007, 443, 243–254. [Google Scholar] [CrossRef]
- Fu, B.H.; Wang, P.; Kong, P.; Shi, P.L. Preliminary study of coseismic fault gouge occurred in the slip zone of Wenchuan Ms 8.0 earth-quake and its tectonic implications. Acta Petrol. Sin. 2008, 24, 2237–2243. (In Chinese) [Google Scholar]
- Fu, B.H.; Shi, P.L.; Guo, H.D.; Satoshi, O.; Yoshiki, N.; Sarah, W. Surface deformation related to the 2008 Wenchuan earthquake, and mountain building of the Longmenshan, eastern Tibetan Plateau. J. Asian Earth Sci. 2011, 40, 805–824. [Google Scholar] [CrossRef]
- Li, H.B.; Fu, X.F.; Jerone, V.D.W.; Si, J.L.; Wang, Z.X.; Hou, L.W.; Qiu, Z.L.; Li, N.; Wu, F.Y.; Tapponnier, P. Co-seismic surface rupture and dextral-slip oblique thrusting of the Ms 8.0 Wenchuan earthquake. Acta Geol. Sin. 2008, 82, 1623–1643. (In Chinese) [Google Scholar]
- Liu, J.; Zhang, Z.H.; Wen, L.; Sun, J.; Xing, X.C.; Hu, G.Y.; Xu, Q.; Tapponnire, P.; Zeng, L.S.; Ding, L.; et al. The Ms 8.0 Wenchuan earthquake co-seismic rupture and its tectonic implications: An out of sequence thrusting event with slip partitioned on multiple faults. Acta Geol. Sin. 2008, 82, 1707–1722. (In Chinese) [Google Scholar]
- Xu, X.W.; Wen, X.Z.; Yu, G.H.; Chen, G.H.; Klinger, Y.; Hubbard, J.; Shaw, J. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology 2009, 37, 515–518. [Google Scholar] [CrossRef]
- Kuo, L.W.; Li, H.B.; Smith, S.A.F.; Toro, G.D.T.; Suppe, J.; Song, S.R.; Nielsen, S.; Sheu, H.S.; Si, J.L. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology 2014, 42, 47–50. [Google Scholar] [CrossRef]
- Kuo, L.W.; Felice, F.D.; Spagnuolo, E.; Toro, G.D.T.; Song, S.R.; Aretusini, S.; Li, H.B.; Suppe, J.; Si, J.L.; Wen, C.Y. Fault gouge graphitization as evidence of past seismic slip. Geology 2017, 45, 979–982. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.L.; Li, H.B.; Lee, T.Q.; Chou, Y.M.; Song, S.R.; Sun, Z.M.; Chevalier, M.L.; Si, J.L. Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop, Sichuan Province, China. Tectonophysics 2014, 619–620, 58–69. [Google Scholar] [CrossRef]
- Lin, A.M.; Maruyama, T.; Kobayashi, K. Tectonic implications of damage zone-related fault-fracture networks revealed in drill core through the Nojima fault, Japan. Tectonophysics 2007, 443, 16–173. [Google Scholar] [CrossRef]
- Sibson, R.H. Fault rocks and fault mechanisms. J. Geol. Soc. 1977, 133, 191–213. [Google Scholar] [CrossRef]
- Caine, J.S. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Li, H.B.; Wang, H.; Yang, G.; Xu, Z.Q.; Li, T.F.; Si, J.L.; Sun, Z.M.; Huang, Y.; Chevalier, M.L.; Zhang, W.J.; et al. Lithological and structural characterization of the Longmenshan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scienti c Drilling project (WFSD-3). Int. J. Earth Sci. 2015, 105, 2253–2272. [Google Scholar] [CrossRef]
- Kuo, L.W.; Song, S.R.; Huang, L.; Yeh, E.C.; Chen, H.F. Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Tectonophysics 2011, 502, 315–327. [Google Scholar] [CrossRef]
- Wopenka, B.; Pasteris, J.D. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman micro-probe spectroscopy. Am. Mineral. 1993, 78, 533–557. [Google Scholar]
- Beyssac, O.; Goffe, B.; Chopin, C.; Rouzaud, J.N. Raman spectra of carbonaceous material in metasediments: A new geothermometer. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Ssdezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials-spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Furuichi, H.; Ujiie, K.; Kouketsu, Y.; Saito, T.; Tsutsumi, A.; Wallis, S. Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments. Earth Planet. Sci. Lett. 2015, 424, 191–200. [Google Scholar] [CrossRef]
- Liu, Z.; Colin, C.; Huang, W.; Le, K.P.; Tong, S.; Chen, Z.; Trentesaux, A. Climatic and tectonic controls on weathering in South China and the Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochem. Geophys. Geosyst. 2007, 8, Q05005. [Google Scholar] [CrossRef]
- Kuo, L.W.; Song, S.R.; Yeh, E.C.; Chen, H.F. Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophys. Res. Lett. 2009, 36, L18306. [Google Scholar] [CrossRef]
- Kuo, L.W.; Song, S.R.; Yeh, E.C.; Chen, H.F.; Si, J.L. Clay mineralogy and geochemistry investigations in the host rocks of the Chelungpu fault, Taiwan: Implication for faulting mechanism. J. Asian Earth Sci. 2012, 59, 208–218. [Google Scholar] [CrossRef]
- Lunsdorf, N.K.; Dunkl, I.; Schmidt, B.C.; Rantitsch, G.; van Eynatten, H. Towards a higher comparibility of geothermetric data obtained by ramen spectroscopy of carbonaceous material. Part 1: Evaluation of biasing factors. Geostand. Geoanal. Res. 2014, 38, 73–94. [Google Scholar] [CrossRef]
- Lunsdorf, N.K.; Dunkl, I.; Schmidt, B.C.; Rantitsch, G.; van Eynatten, H. Towards a higher comparibility of geothermetric data obtained by ramen spectroscopy of carbonaceous material. Part 2: A revised geothermometer. Geostand. Geoanal. Res. 2017, 41, 593–612. [Google Scholar] [CrossRef]
- Kuo, L.W.; Huang, J.R.; Fang, J.N.; Si, J.L.; Song, S.R.; Li, H.B.; Yeh, E.C. Carbonaceous materials in the fault zone of the Longmenshan Fault belt: 2. From drilling and implications for fault maturity. Minerals 2018, 8, 393. [Google Scholar] [CrossRef]
- Evans, J.P.; Chester, F.M. Fluid–rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault rock geochemistry and microstructures. J. Geophys. Res. 1995, 100, 13007–13020. [Google Scholar] [CrossRef]
- Goddard, J.V.; Evans, J.P. Chemical changes and fluid–rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A. J. Struct. Geol. 1995, 17, 533–547. [Google Scholar] [CrossRef]
- Tanaka, H.; Fujimoto, K.; Ohtani, T.; Ito, H. Structural and chemical characterization of shear zones in the freshly activated Nojima fault, Awaji Island, southwest Japan. J. Geophys. Res. 2001, 106, 8789–8810. [Google Scholar] [CrossRef] [Green Version]
- Grim, R.E. Clay Mineralogy, 2nd ed.; McGraw-Hill Company: New York, NY, USA, 1969; 596p. [Google Scholar]
- Keller, W.D. Environmental aspects of clay minerals. J. Sediment. Petrol. 1970, 4, 788–813. [Google Scholar]
- Lin, S.B.; Wang, Y.R. Mineralogy and tectonic implication of the dickites from Hengchun Peninsula, southern Taiwan. Acta Geol. Taiwan 1989, 27, 19–32. [Google Scholar]
- Barker, C.E.; Goldstein, R.H. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology 1990, 18, 1003–1006. [Google Scholar] [CrossRef]
- Beyssac, Q.; Goffeé, B.; Petitet, J.P.; Froigneux, E.; Moreau, M.; Rouzaud, J.N. On the characterization of disordered and heterogeneous carbonaceousmaterials by Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2267–2276. [Google Scholar] [CrossRef]
- Kouketsu, Y.; Shimizu, I.; Wang, Y.; Ma, S.L.; Shimamoto, T. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks. Tectonophysics 2017, 699, 129–145. [Google Scholar] [CrossRef]
- Ma, K.F.; Song, T.R.A.; Lee, S.J.; Wu, H.I. Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, Earthquake (Mw 7.6)—inverted from teleseismic data. Geophys. Res. Lett. 2000, 27, 3417–3420. [Google Scholar] [CrossRef]
- Chen, Y.G.; Chen, W.S.; Lee, J.C.; Lee, Y.H.; Lee, C.T.; Chang, H.C.; Lo, C.H. Surface rupture of the 1999 Chi-Chi earthquake yields insights on the active tectonics of central Taiwan. Bull. Seismol. Soc. Am. 2001, 91, 977–985. [Google Scholar] [CrossRef]
- Ishikawa, T.; Tanimizu, M.; Nagaishi, K.; Matsuoka, J.; Tadai, O.; Sakaguchi, M.; Kikuta, H. Coseismic fluid–rock interactions at high temperatures in the Chelungpu fault. Nat. Geosci. 2008, 1, 679. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Takahashi, M.; Tanikawa, W.; Masuda, K.; Song, S.R.; Soh, W. Frictional strength of fault gouge in Taiwan Chelungpu fault obtained from TCDP Hole, B. Tectonophysics 2008, 460, 198–205. [Google Scholar] [CrossRef]
- Hirono, T.; Maekawa, Y.; Yabuta, H. Investigation of the records of earthquake slip in carbonaceous materials from the Taiwan Chelungpu fault by means of infrared and Raman spectroscopies. Geochem. Geophys. Geosyst. 2015, 16, 1233–1253. [Google Scholar] [CrossRef] [Green Version]
- Viesca, R.C.; Garagash, D.I. Ubiquitous weakening of faults due to thermal pressurization. Nat. Geosci. 2015, 8, 875–879. [Google Scholar] [CrossRef]
- Chen, J.; Yang, X.; Duan, Q.; Shimamoto, T.; Spiers, C.J. Importance of thermochemical pressurization in the dynamic weakening of the Longmenshan fault during the 2008 Wenchuan earthquake: Inferences from experiments and modeling. J. Geophys. Res. 2013, 118, 4145–4169. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, J.; Li, H.; Kuo, L.-W.; Huang, J.-R.; Song, S.-R.; Pei, J.; Wang, H.; Song, L.; Fang, J.-N.; Sheu, H.-S. Carbonaceous Materials in the Longmenshan Fault Belt Zone: 3. Records of Seismic Slip from the Trench and Implications for Faulting Mechanisms. Minerals 2018, 8, 457. https://doi.org/10.3390/min8100457
Si J, Li H, Kuo L-W, Huang J-R, Song S-R, Pei J, Wang H, Song L, Fang J-N, Sheu H-S. Carbonaceous Materials in the Longmenshan Fault Belt Zone: 3. Records of Seismic Slip from the Trench and Implications for Faulting Mechanisms. Minerals. 2018; 8(10):457. https://doi.org/10.3390/min8100457
Chicago/Turabian StyleSi, Jialiang, Haibing Li, Li-Wei Kuo, Jyh-Rou Huang, Sheng-Rong Song, Junling Pei, Huan Wang, Lei Song, Jiann-Neng Fang, and Hwo-Shuenn Sheu. 2018. "Carbonaceous Materials in the Longmenshan Fault Belt Zone: 3. Records of Seismic Slip from the Trench and Implications for Faulting Mechanisms" Minerals 8, no. 10: 457. https://doi.org/10.3390/min8100457
APA StyleSi, J., Li, H., Kuo, L. -W., Huang, J. -R., Song, S. -R., Pei, J., Wang, H., Song, L., Fang, J. -N., & Sheu, H. -S. (2018). Carbonaceous Materials in the Longmenshan Fault Belt Zone: 3. Records of Seismic Slip from the Trench and Implications for Faulting Mechanisms. Minerals, 8(10), 457. https://doi.org/10.3390/min8100457