Helium and Argon Isotopes in the Fe-Mn Polymetallic Crusts and Nodules from the South China Sea: Constraints on Their Genetic Sources and Origins
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Samples
3.2. Mineralogy and Chemistry
3.3. Noble Gases Analysis
4. Results
4.1. Helium and Ar Isotope Compositions of the SCS Crusts and Nodules
4.2. Spatial Differences of He and Ar in the SCS Crusts and Nodules
5. Discussion
5.1. Comparison of the He and Ar Isotope Characteristics with Deep-Sea Samples
5.2. Forms of He and Ar Occurrence in the SCS Crusts and Nodules
5.3. Sources of He and Ar in the SCS Crusts and Nodules
5.3.1. Extraterrestrial Source
5.3.2. Crustal Source
5.3.3. Atmospheric/Seawater Source
5.3.4. Mantle Source
5.4. Petrogenetic Significance for the SCS Crusts and Nodules
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suess, H.E.; Wanke, H. On the possibility of a helium flux through the ocean floor. Prog. Oceanogr. 1965, 3, 347–353. [Google Scholar] [CrossRef]
- Bieri, R.H.; Koide, M.; Goldberg, E.D. Noble gas contents of Pacific seawater. J. Geophys. Res. 1966, 71, 5243–5246. [Google Scholar] [CrossRef]
- Clarke, W.B.; Beg, M.A.; Craig, H. Excess 3He in the sea: Evidence for terrestrial primordial helium. Earth Planet. Sci. Lett. 1969, 6, 213–220. [Google Scholar] [CrossRef]
- Jenkins, W.J.; Clarke, W.B. The distribution of 3He in the Western Atlantic Ocean. Deep-Sea Res. I 1976, 23, 481–494. [Google Scholar] [CrossRef]
- Craig, H.; Lupton, J.E. Helium-3 and mantle volatiles in the ocean and the oceanic crust. In The Sea; Emiliani, C., Ed.; John Wiley & Sons: New York, NY, USA, 1981; Volume 7, pp. 391–428. [Google Scholar]
- Kaneoka, I.; Takaoka, N.; Clague, D.A. Noble gas systematics for coexisting glass and olivine crystals in basalt and dunite xenoliths from Loihi Seamount. Earth Planet. Sci. Lett. 1983, 66, 427–437. [Google Scholar] [CrossRef]
- Lupton, J.E. A far-field hydrothermal plume from Loihi Seamount. Science 1996, 272, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Lupton, J.E. Hydrothermal helium plumes in the Pacific Ocean. J. Geophys. Res. 1998, 103, 15853–15868. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.W.; Humphris, S.E.; Jenkins, W.J.; Kurz, M.D. Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet. Sci. Lett. 1992, 110, 121–131. [Google Scholar] [CrossRef]
- Hilton, D.R.; Hammerschmidt, K.; Loock, G.; Friedrichsen, H. Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: Evidence of crust/mantle interactions in a back-arc basin. Geochim. Cosmochim. Acta 1993, 57, 2819–2841. [Google Scholar] [CrossRef]
- Moreira, M.; Blusztajn, J.; Curtice, J.; Hart, S.; Dick, H.; Kurz, M.D. He and Ne isotopes in oceanic crust: Implications for noble gas recycling in the mantle. Earth Planet. Sci. Lett. 2003, 216, 635–643. [Google Scholar] [CrossRef]
- Jenkins, W.J. Tritium and 3He in the WOCE Pacific Programme. In International WOCE Newsletter; NOAA: Sliver Spring, MD, USA, 1996; Volume 23, pp. 6–8. [Google Scholar]
- Schlosser, P.; Bonisch, G.; Rhein, M.; Bayer, R. Reduction of deep water formation in the Greenland Sea during the 1980s—Evidence from tracer data. Science 1991, 251, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, P. Tritium/3He dating of waters in natural system. In Isotopes of Noble Gases as Tracers in Environmental Studies; Intl Atom Energy Agency: Vienna, Austria, 1992; pp. 123–145. [Google Scholar]
- Merrihue, C. Rare gas evidence for cosmic dust in modern Pacific red clay. Ann. N. Y. Acad. Sci. 1964, 119, 351–367. [Google Scholar] [CrossRef]
- Ozima, M.; Takayanagi, M.; Zashu, S.; Amari, S. High 3He/4He ratios in ocean sediments. Nature 1984, 311, 449–451. [Google Scholar] [CrossRef]
- Takayanagi, M.; Ozima, M. Temporal variation of 3He/4He ratio recorded in deep-sea sediment cores. J. Geophys. Res. 1987, 92, 12531–12538. [Google Scholar] [CrossRef]
- Farley, K.A. Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature 1995, 376, 153–156. [Google Scholar] [CrossRef]
- Farley, K.A.; Patterson, D.B. A 100-kyr periodicity in the flux of extraterrestrial 3He to the sea floor. Nature 1995, 378, 600–603. [Google Scholar]
- Marcantonio, F.; Kumar, N.; Stute, M.; Anderson, R.F.; Seidl, M.A.; Schlosser, P.; Mix, A. A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments. Earth Planet. Sci. Lett. 1995, 133, 549–555. [Google Scholar] [CrossRef]
- Marcantonio, F.; Anderson, R.F.; Stute, M.; Kumar, N.; Schlosser, P.; Mix, A. Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 1996, 383, 705–707. [Google Scholar] [CrossRef]
- Marcantonio, F.; Higgins, S.; Anderson, R.F.; Stute, M.; Schlosser, P.; Rasbury, E.T. Terrigenous helium in deep-sea sediments. Geochim. Cosmochim. Acta 1998, 62, 1535–1543. [Google Scholar] [CrossRef]
- Marcantonio, F.; Anderson, R.F.; Higgins, S.; Stute, M.; Schlosser, P.; Kubik, P. Sediment focusing in the central equatorial Pacific Ocean. Paleoceanography 2001, 16, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, J.; Murota, M.; Nagao, K. He and Ne isotopic studies on the extraterrestrial material in deep-sea sediments. J. Geophys. Res. 1990, 95, 7111–7117. [Google Scholar] [CrossRef]
- Nier, A.O.; Schlutter, D.J.; Brownlee, D.E. Helium and neon isotopes in deep Pacific Ocean sediments. Geochim. Cosmochim. Acta 1990, 54, 173–182. [Google Scholar] [CrossRef]
- Nier, A.O.; Schlutter, D.J. Helium and neon in stratospheric particles. Meteoritics 1990, 25, 263–267. [Google Scholar] [CrossRef]
- Nier, A.O.; Schlutter, D.J. The thermal history of interplanetary dust particles collected in earth’s stratosphere. Meteoritics 1993, 28, 675–681. [Google Scholar] [CrossRef]
- Tilles, D. Atmospheric noble gases from extraterrestrial dust. Science 1966, 151, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Tilles, D. Extraterrestrial excess 36Ar and 38Ar concentrations as possible accumulation-rate indicators for sea sediments. Icarus 1967, 7, 94–100. [Google Scholar] [CrossRef]
- Amari, S.; Ozima, M. Extraterrestrial noble gases in deep-sea sediments. Geochim. Cosmochim. Acta 1988, 52, 1087–1095. [Google Scholar] [CrossRef]
- Halbach, P.; Kriete, C.; Prause, B.; Puteanus, D. Mechanisms to explain the platinum concentration in ferromanganese seamount crusts. Chem. Geol. 1989, 76, 95–106. [Google Scholar] [CrossRef]
- De Carlo, E.H.; McMurtry, G.M. Rare-earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific. Chem. Geol. 1992, 95, 235–250. [Google Scholar] [CrossRef]
- He, G.W.; Sun, X.M.; Xue, T. A Comparative Study of the Geology, Geochemistry and Metallogenetic Mechanism of Polymetallic Nodules and Cobalt-Rich Crusts from the Pacific Ocean; Geological Publishing House: Beijing, China, 2011; pp. 39–45. (In Chinese) [Google Scholar]
- Hein, J.R.; Koschinsky, A.; Bau, M.; Manheim, E.T.; Kang, J.K.; Roberts, L. Cobalt–rich ferromanganese crusts in the Pacific. In Handbook of Marine Mineral Deposits; CRC Press: Boca Raton, FL, USA, 2000; Chapter 9; pp. 239–279. [Google Scholar]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land—Based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Hein, J.R.; Conard, T.; Mizell, K.; Banakar, V.K.; Frey, F.A.; Sager, W.W. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean. Deep-Sea Res. I 2016, 110, 1–19. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 273–291. [Google Scholar]
- De Carlo, E.H. Paleoceanographic implications of rare earth element variability within a Fe-Mn crust from the central Pacific Ocean. Mar. Geol. 1991, 98, 449–467. [Google Scholar] [CrossRef]
- Peucker-Ehrenbrink, B. Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record. Geochim. Cosmochim. Acta 1996, 60, 3187–3196. [Google Scholar] [CrossRef]
- Klemm, V.; Levasseur, S.; Frank, M.; Hein, J.R.; Halliday, A.N. Osmium isotope stratigraphy of a marine ferromanganese crust. Earth Planet. Sci. Lett. 2005, 238, 42–48. [Google Scholar] [CrossRef]
- Sano, Y.; Toyoda, K.; Wakita, H. He-3/He-4 ratios of marine ferromanganese nodules. Nature 1985, 317, 518–520. [Google Scholar] [CrossRef]
- Boltenkov, B.S.; Kapitonov, I.N. Helium and Neon isotopes in abyssal oceanic nodules: Evidence of irregular growth of nodules. Geochem. Int. 1997, 35, 656–661. [Google Scholar]
- Li, Y.H.; Li, J.C.; Song, H.B. A comparative study of helium isotope of polymetallic nodules and cobalt crusts. Acta Geosci. Sin. 1999, 20, 378–384. (In Chinese) [Google Scholar]
- Li, Y.H.; Song, H.B.; Li, J.C. Extraterrestrial 3He in marine polymetallic nodules: A potential method for measuring growth rate of nodules. Sci. China Ser. B-Chem. 2002, 45, 38–46. [Google Scholar] [CrossRef]
- Bu, W.R.; Shi, X.F.; Zhang, M.J.; Liu, J.H. The sources of the noble gases in the oceanic Fe-Mn oxides: The evidences are from the helium isotopes in the polymetallic nodules from the Pacific C-C zone. Acta Mineral. Sin. 2011, 31, 684–685. (In Chinese) [Google Scholar]
- Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R. Helium isotopes in ferromanganese crusts from the central Pacific Ocean. Geochim. Cosmochim. Acta 2006, 70, 3996–4006. [Google Scholar] [CrossRef]
- Sun, X.M.; Xue, T.; He, G.W.; Ye, X.R.; Zhang, M.; Lu, H.F.; Wang, S.W. Noble gas isotopic compositions of cobalt-rich ferromanganese crusts from the western Pacific Ocean and their geological implications. Acta Geol. Sin. 2007, 81, 90–98. [Google Scholar]
- Bu, W.R.; Shi, X.F.; Zhang, M.J.; Liu, J.H.; Glasby, G.P. He, Ne and Ar isotopic composition of Fe-Mn crusts from the western and central Pacific Ocean and implications for their genesis. Sci. China Ser. D-Earth Sci. 2007, 50, 857–868. [Google Scholar] [CrossRef]
- Ye, X.R.; Fang, N.Q.; Ding, L.; Zhang, M.J. The noble gas contents and helium and argon isotopic compositions in the cobalt–rich crusts from the Magellan Seamounts. Acta Petrol. Sin. 2008, 24, 185–192. (In Chinese) [Google Scholar]
- Li, J.S.; Fang, N.Q.; Shi, X.F.; Ren, X.W.; Liu, J.H.; Cui, Y.C. Helium and argon isotopic compositions of various crustal layers of a Co-rich Fe-Mn crust from central Pacific. Earth Sci. J. China Univ. Geosci. 2012, 37, 93–100. (In Chinese) [Google Scholar]
- Wang, S.H.; Yan, W.; Song, H.B. Mapping the thickness of the gas hydrate stability zone in the South China Sea. Terr. Atmos. Ocean. Sci. 2006, 17, 815–828. [Google Scholar] [CrossRef]
- Zhou, D.; Yao, B.C. Tectonics and sedimentary basins of the South China Sea: Challenges and progresses. J. Earth Sci. 2009, 20, 1–12. [Google Scholar] [CrossRef]
- Zhao, F.; Alves, T.M.; Wu, S.G.; Li, W.; Huuse, M.; Mi, L.J.; Sun, Q.L.; Ma, B.J. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth Planet. Sci. Lett. 2016, 445, 79–91. [Google Scholar] [CrossRef]
- Winsner, M.G.; Wang, Y.B.; Zheng, L.F. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo. Geology 1995, 23, 885–888. [Google Scholar] [CrossRef]
- Haeckel, M.; Beusekom, J.V.; Wiesner, M.G.; König, I. The impact of the 1991 Mount Pinatubo tephra fallout on the geochemical environment of the deep sea sediments in the South China Sea. Earth Planet. Sci. Lett. 2001, 193, 151–166. [Google Scholar] [CrossRef]
- Xia, S.H.; Zhao, D.P.; Sun, J.L.; Huang, H.B. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Res. 2016, 36, 46–56. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhang, F.Y.; Chen, R.H.; Zhang, X.Y. Constituents of matter and sedimentation fluxes and sedimentation rates of deep-water sedimentation during the Late Pleistocene in the South China Sea. Acta Sedimentol. Sin. 2002, 20, 668–674. (In Chinese) [Google Scholar]
- Knnett, P. Marine; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Huang, W.; Wang, P.X. Sediment mass and distribution in the South China Sea since the Oligocene. Sci. China Ser. D-Earth Sci. 2006, 49, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.X.; Qiu, Y.; Zhu, B.Y. Atlas of Geology and Geophysics of the South China Sea; China Navigation Publications: Tianjin, China, 2015. [Google Scholar]
- Guan, Y.; Sun, X.M.; Ren, Y.Z.; Jiang, X.D. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea. Ore Geol. Rev. 2017, 89, 206–227. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, X.M.; Shi, G.Y.; Jiang, X.D.; Lu, H.F. Rare earth elements (REE) composition and constraints on the genesis of the polymetallic crusts and nodules in the South China Sea. Acta Geol. Sin. 2017, 91, 1757–1766. [Google Scholar] [CrossRef]
- Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.; Kuhn, T.; Usui, A. Discriminating between different genetic types of marine ferromanganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 2014, 381, 1–9. [Google Scholar] [CrossRef]
- Huh, C.A.; Ku, T.L. Radiochemical observations on manganese nodules from three sedimentary environments in the north Pacific. Geochim. Cosmochim. Acta 1984, 48, 951–963. [Google Scholar]
- Anufriev, G.S.; Boltenkov, B.S. Ferromanganese nodules of the Baltic Sea: Composition, helium isotopes, and growth rate. Lithol. Miner. Resour. 2007, 42, 240–245. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1986; pp. 66–92. [Google Scholar]
- Jaffer, A.H.; Flynn, K.F.; Glendemin, L.E.; Bentley, W.T.; Essling, A.M. Precision measurement of the half-lives and specific activities of 235U and 238U. Phys. Rev. C 1971, 4, 1889–1907. [Google Scholar] [CrossRef]
- Zhai, W.; Sun, X.M.; Wu, Y.S.; Sun, Y.Y.; Hua, R.M.; Ye, X.R. He-Ar isotope geochemistry of the Yaoling-Meiziwo tungsten deposit, north Guangdong Province: Constraints on Yanshanian crust–mantle interaction and metallogenesis in SE China. Chin. Sci. Bull. 2012, 57, 1150–1159. [Google Scholar] [CrossRef]
- Stuart, F.M.; Lee, M.R. Micrometeorites and extraterrestrial He in a ferromanganese crust from the Pacific Ocean. Chem. Geol. 2012, 322, 209–214. [Google Scholar] [CrossRef]
- Nier, A.O.; Schlutter, D.J. Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 1992, 27, 166–173. [Google Scholar] [CrossRef]
- Pepin, R.O.; Plama, R.L.; Schlutter, D.J. Noble gases in interplanetary dust particles, I. The excess of helium-3 problem and estimates of the relative fluxes of solar wind and solar energetic particles in interplanetary space. Meteorit. Planet. Sci. 2000, 35, 495–504. [Google Scholar] [CrossRef]
- Marty, B.; Robert, P.; Zimmermann, L. Nitrogen and noble gases in micrometeorites. Meteorit. Planet. Sci. 2005, 40, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Burnard, P.G.; Hu, R.Z.; Turner, G.; Bi, X.W. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochim. Cosmochim. Acta 1999, 63, 1595–1604. [Google Scholar] [CrossRef]
- Schlosser, P.; Winckler, G. Noble gases in the ocean and ocean floor. Noble Gases in Geochemistry and Cosmochemistry. Rev. Mineral. Geochem. 2002, 47, 701–730. [Google Scholar] [CrossRef]
- Ozima, M.; Podosek, F.A. Noble Gas Geochemistry; Cambridge University Press: London, UK, 2001; 367p. [Google Scholar]
- Takahata, N.; Watanabe, T.; Shirai, K.; Nishizawa, M.; Sano, Y. Helium isotopes of seawater in adjacent sea of Nansei Islands, southwest Japan. Geochem. J. 2004, 38, 593–600. [Google Scholar] [CrossRef]
- Sano, Y.; Takahata, N.; Gamo, T. Helium isotopes in South Pacific deep seawater. Geochem. J. 1995, 29, 377–384. [Google Scholar] [CrossRef]
- Weiss, R.F. Solubility of helium and neon in water and seawater. J. Chem. Eng. Data 1971, 16, 235–241. [Google Scholar] [CrossRef]
- Ballentine, C.J.; Burgess, R.; Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 2002, 47, 539–614. [Google Scholar] [CrossRef]
- Craig, H.; Clarke, W.B.; Beg, M.A. Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Lett. 1975, 26, 125–132. [Google Scholar] [CrossRef]
- Lupton, J.E.; Craig, H. A major helium–3 source at 15° S on the East Pacific Rise. Science 1981, 214, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Takahata, N.; Tokukake, T.; Shirai, K.; Fujio, S.; Tanaka, K.; Sano, Y. Helium isotopes of seawater in the Philippine Sea and the western North Pacific. Geochem. J. 2010, 44, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Sano, Y.; Kosugi, T.; Takahata, N.; Yokochi, R. Helium isotopes in Pacific waters from adjacent region of Honshu, Japan. J. Oceanogr. 2004, 60, 625–630. [Google Scholar] [CrossRef]
- Ballentine, C.J.; Burnard, P.G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 2002, 47, 481–538. [Google Scholar] [CrossRef]
- Poreda, R.J.; Jenden, P.D.; Kaplan, I.R.; Craig, H. Mantle helium in Sacranmento basin natural gas Wells. Geochim. Cosmochim. Acta 1986, 50, 2847–2853. [Google Scholar] [CrossRef]
- Oxburgh, E.R.; O’nions, R.K.; Hill, R.I. Helium isotopes in sedimentary basin. Nature 1986, 324, 632–635. [Google Scholar] [CrossRef]
- Oxburgh, E.R.; O’nions, R.K. Helium loss, tectonics, and the terrestrial heat budget. Science 1987, 237, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Aplin, A.C.; Cronan, D.S. Ferromanganese oxide deposits from the central Pacific Ocean, II. Nodules and associated sediments. Geochim. Cosmochim. Acta 1985, 49, 437–451. [Google Scholar] [CrossRef]
- Halbach, P.; Hebisch, U.; Scherhag, C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control. Chem. Geol. 1981, 34, 3–17. [Google Scholar] [CrossRef]
- Hein, J.R.; Conrad, T.A.; Dunham, R.E. Seamount characteristics and minesite model applied to exploration-and mining-lease-block selection for Cobalt-rich ferromanganese crusts. Mar. Georesour. Geotechnol. 2009, 27, 160–176. [Google Scholar] [CrossRef]
- Konstantinova, N.; Cherkashov, G.; Hein, J.R.; Jose, M.; Luis, D.; Pedro, M.; Vladislav, K.; Fedor, M. Composition and characteristics of the ferromanganese crusts from the western Arctic Ocean. Ore Geol. Rev. 2016, 87, 88–99. [Google Scholar] [CrossRef]
- Muinos, S.B.; Hein, J.R.; Frank, M.; Monteiro, J.H.; Gaspar, L.; Conrad, T.; Pereira, H.G.; Abrantes, F. Deep-sea Fe-Mn crusts from the Northeast Atlantic Ocean: Composition and Resource Considerations. Mar. Georesour. Geotechnol. 2013, 31, 40–70. [Google Scholar] [CrossRef]
- Rajani, R.P.; Banakar, V.K.; Parthiban, G.; Mudholkar, A.V.; Chodankar, A.R. Compositional variation and genesis of ferromanganese crust of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean. J. Earth Syst. Sci. 2005, 114, 51–61. [Google Scholar] [CrossRef]
- Bonatti, E.; Kraemer, T.; Rydell, H. Classification and genesis of submarine iron-manganese deposits. In Ferromanganese Deposits on the Ocean Floor; Horn, D.R., Ed.; National Science Foundation: Washington, DC, USA, 1972; pp. 149–166. [Google Scholar]
Sample | Type | Sampling Location | Water Depth (m) | Nucleus or Substrate | XRD Mineral Compositions | |
---|---|---|---|---|---|---|
ZJ86 | Nodule | 112°31.4679′ E | 15°20.5275′ N | 1945 | Nucleus of clay containing some micro-nodules | δ–MnO2, todorokite, buserite, goethite, feroxyhyte, quartz and plagioclase |
STD275 | Nodule | 118°16.7459′ E | 21°41.4902′ N | 1548 | Nucleus of dense rusty red iron oxide | δ–MnO2, todorokite, goethite, feroxyhyte, quartz and plagioclase |
HYD104 | Nodule | 116°10.9080′ E | 15°33.8074′ N | 815 | Nucleus of biodetritus and some micro-nodules | δ–MnO2, todorokite, buserite, goethite, quartz and plagioclase |
ST1 | Crust | 117°54′37.5″ E 117°54′36.4″ E | 20°28′26.7″ N 20°28′39.2″ N | 1600 | Substrate of altered basalt | δ–MnO2, goethite, feroxyhyte, quartz, plagioclase and calcite |
ZSQD251A-1 | Crust | 118°50.8666′ E | 17°13.1088′ N | 1950 | Substrate of altered basalt | δ–MnO2, goethite, quartz, plagioclase |
ZSQD253A | Crust | 118°36.3659′ E | 16°45.9867′ N | 1150 | Substrate of reef limestone | δ–MnO2, goethite, feroxyhyte, quartz, plagioclase and calcite |
HYD66-1 | Crust | 115°16.3729′ E | 13°40.7307′ N | 1378 | Substrate of amygdaloidal basalt | δ–MnO2, todorokite, goethite, feroxyhyte, quartz and plagioclase |
Type | Sample | Description | Region | 4He (×10−7) | 3He (×10−14) | 3He/4He (×10−7) | R/RA (±1σ) | 40Ar (×10−6) | 40Ar/36Ar (±1σ) | 40Ar* (×10−7) | 40Ar* (%) | 40Ar*/4He |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shallow-water Fe-Mn nodules | ZJ86 | axiolitic | the South China Sea (this stduy) | 1.33 | 4.68 | 3.52 ± 0.14 | 0.25 ± 0.01 | 0.79 | 664.0 ± 0.96 | 4.39 | 55.5 | 3.3 |
STD275 | globular | 3.61 | 9.64 | 2.67 ± 0.28 | 0.19 ± 0.02 | 1.04 | 588.4 ± 0.66 | 5.17 | 49.78 | 1.43 | ||
HYD104 | psephitic | 0.31 | 2.68 | 8.65 ± 0.28 | 0.62 ± 0.02 | 1.5 | 329.0 ± 0.39 | 1.52 | 10.18 | 4.89 | ||
Shallow-water Fe-Mn crusts | ST1 | platy | 2.58 | 10.91 | 4.23 ± 0.14 | 0.30 ± 0.01 | 0.84 | 873.9 ± 1.01 | 5.55 | 66.19 | 2.15 | |
HYD66-1 | platy | 0.69 | 10.36 | 15.10 ± 0.28 | 1.09 ± 0.02 | 0.56 | 664.8 ± 0.82 | 3.11 | 55.55 | 4.53 | ||
ZSQD253A | strumae | 0.49 | 3.89 | 7.94 ± 0.28 | 0.57 ± 0.02 | 0.39 | 467.6 ± 0.65 | 1.44 | 36.81 | 2.95 | ||
ZSQD251A-1 | platy | 0.37 | 3.48 | 9.41 ± 0.28 | 0.67 ± 0.02 | 0.18 | 746.8 ± 0.78 | 1.06 | 60.43 | 2.84 | ||
Shallow-water Fe-Mn nodules | 1 | the Baltic Sea [65] | 137 | 130 | 0.95 | 0.07 | ||||||
2 | 164 | 130 | 0.82 | 0.06 | ||||||||
3 | 117 | 450 | 3.80 | 0.27 | ||||||||
4 | 130 | 130 | 1.00 | 0.07 | ||||||||
5 | 156 | 137 | 0.88 | 0.06 | ||||||||
Oceanic crusts | CL01 | Low 3He/4He crusts | the central and western Pacific Ocean [48] | 4.21 | 31.40 | 2.25 | 10.98 | 457.0 | ||||
CX07 | 0.43 | 40.90 | 2.92 | 0.77 | 543.0 | |||||||
MD53 | 2.16 | 39.00 | 2.79 | 6.97 | 447.0 | |||||||
MH68 | 0.85 | 28.50 | 2.04 | 1.60 | 481.0 | |||||||
MP2-09 | High 3He/4He crusts | 0.10 | 145.0 | 10.30 | 5.78 | 298.0 | ||||||
MP3-20 | 0.08 | 168.0 | 12.0 | 5.35 | 293.0 | |||||||
MP5-17 | 0.17 | 146.0 | 10.40 | 9.05 | 299.0 | |||||||
CA06 | Bulk | Pacific Magellan seamounts [49] | 0.75 | 8.89 | 1.39 | 355.6 | ||||||
CA09 | 0.18 | 4.60 | 5.85 | 305.1 | ||||||||
M18D110 | 0.45 | 5.69 | 4.43 | 299.2 | ||||||||
M19D111 | Outer encrusts | 1.13 | 4.64 | 65.41 | 298.0 | |||||||
M19D112 | Intermediate encrusts | 0.90 | 15.600 | 17.47 | 290.3 | |||||||
M19D113 | Inner crusts | 1.64 | 5.49 | 78.40 | 296.0 | |||||||
M19D121 | Substrate rock | 5.06 | 1.56 | 7.97 | 311.9 | |||||||
MHD79-I | Profile (from old to new) | The central Pacific MH seamount [50] | 0.06 | 260.8 | 18.63 | 263.9 | ||||||
II | 0.02 | 121.7 | 8.69 | 249.8 | ||||||||
III | 0.05 | 135.2 | 9.66 | 295.5 | ||||||||
IV | 0.03 | 4299 | 307.1 | 291.4 | ||||||||
V | 0.03 | 3149 | 224.9 | 292.2 | ||||||||
VI | 0.15 | 51121 | 3651 | 270.4 | ||||||||
VII | 0.03 | 7041 | 503.0 | 288.7 | ||||||||
0303W | Outer encrusts | the western Pacific Ocean [47] | 0.85 | 26.58 | 1.90 | 8.11 | 345 | 11.63 | 14.35 | |||
0303S | Porous encrusts | 0.77 | 394.5 | 28.20 | 5.47 | 310.1 | 2.57 | 4.71 | ||||
0303L | Compact encruts (Phosphatization) | 15.59 | 0.77 | 0.06 | 12.77 | 305.1 | 4.02 | 3.15 | ||||
0321W | Outer encrusts | 0.20 | 31.34 | 2.24 | 0.858 | 349.5 | 1.33 | 15.45 | ||||
0321S | Porous encrusts | 0.95 | 134.0 | 9.58 | 18.08 | 300.9 | 3.24 | 1.79 | ||||
0321L | Compact encrusts (Phosphatization) | 1.63 | 60.3 | 4.31 | 1.07 | 349.5 | 1.65 | 15.45 | ||||
0346W | Outer encrust | 0.23 | 40.01 | 2.86 | 1.43 | 324.6 | 1.28 | 8.97 | ||||
0346S | Porous encrusts | 0.20 | 85.48 | 6.11 | 13.24 | 302 | 2.85 | 2.15 | ||||
0346L | Compact encruts (Phosphatization) | 4.08 | 0.49 | 0.04 | 78.62 | 299.2 | 9.72 | 1.24 | ||||
VA13/2(0-1)a | the central Pacific Ocean [46] | 237.7 | ||||||||||
VA13/2(0-1)b | 1852 | |||||||||||
VA13/2(0-1)c | 312 | |||||||||||
VA13/2(0-1)d | 983 | |||||||||||
VA13/2(1-2) | 106 | |||||||||||
VA13/2(2-3) | 84 | |||||||||||
VA13/2(3-4) | 110.6 | |||||||||||
VA13/2(4-5) | 66.7 | |||||||||||
VA13/2(5-6)a | 297.5 | |||||||||||
VA13/2(5-6)b | 26.2 | |||||||||||
VA13/2(5-6)c | 29.6 | |||||||||||
VA13/2(5-6)d | 32.6 | |||||||||||
VA13/2(6-7) | 251.8 | |||||||||||
VA13/2(7-8) | 159.6 | |||||||||||
VA13/2(8-9) | 240 | |||||||||||
VA13/2(9-10) | 18.5 | |||||||||||
CD29-2(4-5) | 14.9 | |||||||||||
CD29-2(10-11) | 14.6 | |||||||||||
CD29-2(12-13) | 23.9 | |||||||||||
CD29-2(15-16) | 17.9 | |||||||||||
CD29-2(17-18) | 9.2 | |||||||||||
CD29-2(19-20) | 8.3 | |||||||||||
CD29-2(21-22) | 8.4 | |||||||||||
CD29-2(23-24) | 9.7 | |||||||||||
CD29-2(25-26) | 4 | |||||||||||
CD29-2(27-28) | 10.3 | |||||||||||
CD29-2(29-30) | 5.3 | |||||||||||
CD29-2(31-32) | 7.5 | |||||||||||
CD29-2(43-44) | 6.2 | |||||||||||
CD29-2(45-46) | 1.4 | |||||||||||
CD29-2(47-48) | 2.9 | |||||||||||
CD29-2(49-50) | 0.87 | |||||||||||
CD29-2(51-52) | 0.21 | |||||||||||
CD29-2(53-54) | Phosphatization | 0.18 | ||||||||||
CD29-2(55-56) | Phosphatization | 0.14 | ||||||||||
CD29-2(57-58) | Phosphatization | 0.064 | ||||||||||
CD29-2(61-62) | Phosphatization | 0.038 | ||||||||||
CD29-2(67-68) | Phosphatization | 0.12 | ||||||||||
CD29-2(71-72) | Phosphatization | 0.15 | ||||||||||
CD29-2(18-19B) | 0.033 | |||||||||||
CD29-2(16-17B) | 0.062 | |||||||||||
CD29-2(14-15B) | 0.046 | |||||||||||
CD29-2(12-13B) | ||||||||||||
CD29-2(10-11B) | 0.034 | |||||||||||
CD29-2(6-7B) | 3.4 | |||||||||||
CD29-2(2-3B) | ||||||||||||
CD29-2(0-1B) | ||||||||||||
Oceanic nodules | KH-84-1-16-001 | Mariana Trough [41] | 1300 | 44 | 3.15 | 1.2 | 835 | |||||
KH-84-1-19-A | 1300 | 151 | 10.79 | 1.2 | 807 | |||||||
KH-84-1-19-B | 940 | 43 | 3.07 | 1 | 316 | |||||||
KH-84-1-19-C | 1.5 | 333 | ||||||||||
KH-84-1-25 | 490 | 225 | 16.08 | 1.2 | 324 | |||||||
KH-84-1-2-124 | Ogasawara region [41] | 260 | 15 | 1.07 | 1.1 | 311 | ||||||
KH-84-1-3-606 | 98 | 593 | 42.39 | 2.6 | 384 | |||||||
KH-84-1-3-607 | 580 | 59 | 4.22 | 290 | ||||||||
KH-84-1-5-33 | 1200 | 102 | 7.29 | 4.7 | 313 | |||||||
KH-84-1-27-017 | 120 | 60 | 4.29 | 2.3 | 432 | |||||||
ND06 | Cauliflower-like | Pacific CCFZ nodules [33] | 1.52 | 709.5 | 466.8 | 33.34 | 24.9 | 298.6 | ||||
ND105-4 | Cauliflower-like | 0.93 | 370.8 | 399.1 | 28.51 | 21.8 | 299 | |||||
ND05 | Living body-like | 30.5 | 554.2 | 18.17 | 1.298 | 15.1 | 308.4 | |||||
ND02 | Living body-like | 1.14 | 474.9 | 417.3 | 29.81 | 17.1 | 300.4 | |||||
ND105-8 | Cauliflower-like | 1.25 | 371.0 | 296.1 | 21.15 | 12.71 | 307.8 | |||||
ND105-0 | Cauliflower-like | 1.03 | 848.1 | 821.8 | 58.7 | 16.2 | 301.3 | |||||
8251 | Pacific CCFZ nodules [45] | 21.17 | 1620 | 76.53 | 5.47 | |||||||
8202 | 3.55 | 744 | 209.9 | 15 | ||||||||
8096 | 3.01 | 649 | 215.5 | 15.4 | ||||||||
8001 | 0.71 | 239 | 338.6 | 24.2 | ||||||||
5234 | Pacific CCFZ nodules [43] | 2.02 | 349 | 173 | 12.37 | |||||||
5234 | 1.55 | 2055 | 1326 | 94.78 | ||||||||
5420 | 2.44 | 566 | 232 | 16.58 | ||||||||
5420 | 3.24 | 3366 | 1039 | 74.27 | ||||||||
5314 | 3.1 | 1082 | 349 | 24.95 | ||||||||
5314 | 1.63 | 1214 | 745 | 53.25 | ||||||||
5302 | 1.73 | 907 | 524 | 37.46 | ||||||||
5302 | 1.34 | 596 | 445 | 31.81 | ||||||||
5459 | 1.82 | 803 | 441 | 31.52 | ||||||||
5459 | 1.75 | 1005 | 574 | 41.03 | ||||||||
1 | 1.92 | 1448 | 754 | 53.90 | ||||||||
1 | 2.17 | 846 | 390 | 27.88 | ||||||||
2 | 1.98 | 786 | 397 | 28.38 | ||||||||
2 | 1.72 | 351 | 183 | 13.08 | ||||||||
3 | 1.27 | 352 | 277 | 19.80 | ||||||||
3 | 3.21 | 607 | 189 | 13.51 | ||||||||
4 | 5.28 | 1030 | 195 | 13.94 | ||||||||
5 | 3.4 | 357 | 105 | 7.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Ren, Y.; Sun, X.; Xiao, Z.; Guo, Z. Helium and Argon Isotopes in the Fe-Mn Polymetallic Crusts and Nodules from the South China Sea: Constraints on Their Genetic Sources and Origins. Minerals 2018, 8, 471. https://doi.org/10.3390/min8100471
Guan Y, Ren Y, Sun X, Xiao Z, Guo Z. Helium and Argon Isotopes in the Fe-Mn Polymetallic Crusts and Nodules from the South China Sea: Constraints on Their Genetic Sources and Origins. Minerals. 2018; 8(10):471. https://doi.org/10.3390/min8100471
Chicago/Turabian StyleGuan, Yao, Yingzhi Ren, Xiaoming Sun, Zhenglian Xiao, and Zhengxing Guo. 2018. "Helium and Argon Isotopes in the Fe-Mn Polymetallic Crusts and Nodules from the South China Sea: Constraints on Their Genetic Sources and Origins" Minerals 8, no. 10: 471. https://doi.org/10.3390/min8100471
APA StyleGuan, Y., Ren, Y., Sun, X., Xiao, Z., & Guo, Z. (2018). Helium and Argon Isotopes in the Fe-Mn Polymetallic Crusts and Nodules from the South China Sea: Constraints on Their Genetic Sources and Origins. Minerals, 8(10), 471. https://doi.org/10.3390/min8100471