Copper in Natural Oxide Spinels: The New Mineral Thermaerogenite CuAl2O4, Cuprospinel and Cu-Enriched Varieties of Other Spinel-Group Members from Fumaroles of the Tolbachik Volcano, Kamchatka, Russia
Abstract
:1. Introduction
2. Occurrence and Mineral Associations
3. Methods
4. Results
4.1. General Appearance and Physical Properties of Thermaerogenite and Other Cu-Rich Oxide Spinels from Tolbachik
4.2. Optical Data for Thermaerogenite
4.3. Raman Spectroscopy of Thermaerogenite
4.4. Chemical Composition of Cu-Rich Oxide Spinels from Tolbachik
4.5. X-ray Diffraction Data of Cu-Rich Oxide Spinels from Tolbachik
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef] [PubMed]
- Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and classification of the spinel supergroup. Eur. J. Mineral. 2018, in press. [Google Scholar] [CrossRef]
- Nickel, E.H. The new mineral cuprospinel {CuFe2O4} and other spinels from an oxidized ore dump at Baie Verte, Newfoundland. Can. Mineral. 1973, 11, 1003–1007. [Google Scholar]
- Lanteigne, S.; Schindler, M.; McDonald, A.M.; Skeries, K.; Abdu, Y.; Mantha, N.M.; Murayama, M.; Hawthorne, F.C.; Hochella, M.F., Jr. Mineralogy and weathering of smelter-derived spherical particles in soils: Implications for the mobility of Ni and Cu in the surficial environment. Water Air Soil Pollut. 2012, 223, 3619–3641. [Google Scholar] [CrossRef]
- Tropper, P.; Krismer, M.; Goldenberg, G. Recent and ancient copper production in the lower inn valley. An overview of prehistoric mining and primary copper metallurgy in the brixlegg mining. Mitt. Osterr. Miner. Ges. 2017, 163, 97–115. [Google Scholar]
- Mallik, B.; Rautray, T.R.; Nayak, P.K. Characterisation of hot material erupted from Mahandi riverbank using EDXRF and XRD techniques. Indian J. Phys. 2005, 79, 293–296. [Google Scholar]
- Sholeh, A.; Rastad, E.; Huston, D.; Gemmell, J.B.; Taylor, R.D. The chahnaly low-sulfidation epithermal gold deposit, Western Makran Volcanic Arc, Southeast Iran. Econ. Geol. 2016, 111, 619–639. [Google Scholar] [CrossRef]
- Pekov, I.V.; Anikin, L.P.; Chukanov, N.V.; Belakovskiy, D.I.; Yapaskurt, V.O.; Sidorov, E.G.; Britvin, S.N.; Zubkova, N.V. Deltalumite, IMA 2016-027. CNMNC Newsletter No. 32, August 2016, page 919. Mineral. Mag. 2016, 80, 915–922. [Google Scholar]
- Rammelsberg, C. Über den sogenannten octaëdrischen Eisenglanz vom Vesuv, und über die Bildung von Magneteisen durch Sublimation. Ann. Phys. Chem. 1859, 107, 451–454. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals; Longmans: London, UK, 1962; Volume 5. [Google Scholar]
- Stoiber, R.E.; Rose, W.I., Jr. Fumarole incrustations at active Central American volcanoes. Geochim. Cosmochim. Acta 1974, 38, 495–516. [Google Scholar] [CrossRef]
- Yudovskaya, M.A.; Distler, V.V.; Chaplygin, I.V.; Mokhov, A.V.; Trubkin, N.V.; Gorbacheva, S.A. Gaseous transport and deposition of gold in magmatic fluid: Evidence from the active Kudryavy volcano, Kurile Islands. Miner. Deposita 2006, 40, 828–848. [Google Scholar] [CrossRef]
- Balić-Žunić, T.; Garavelli, A.; Jakobsson, S.P.; Jonasson, K.; Katerinopoulos, A.; Kyriakopoulos, K.; Acquafredda, P. Fumarolic minerals: An overview of active European volcanoes. In Updates in Volcanology—From Volcano Modelling to Volcano Geology; IntechOpen: London, UK, 2016; pp. 267–322. [Google Scholar]
- Meniaylov, I.A.; Nikitina, L.P.; Shapar’, V.N. Geochemical Features of Exhalations of the Great Tolbachik Fissure Eruption; Nauka Publishing: Moscow, Russia, 1980. (In Russian) [Google Scholar]
- Africano, F.; Van Rompaey, G.; Bernard, A.; Le Guern, F. Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth Planets Space 2002, 54, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, S.A. The Great Tolbachik Fissure Eruption; Markhinin, Y.K., Ed.; Cambridge University Press: New York, NY, USA, 1983. [Google Scholar]
- Zelenski, M.E.; Zubkova, N.V.; Pekov, I.V.; Boldyreva, M.M.; Pushcharovsky, D.Y.; Nekrasov, A.N. Pseudolyonsite, Cu3(VO4)2, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. Eur. J. Mineral. 2011, 23, 475–481. [Google Scholar] [CrossRef]
- Pekov, I.V.; Zubkova, N.V.; Yapaskurt, V.O.; Belakovskiy, D.I.; Lykova, I.S.; Vigasina, M.F.; Sidorov, E.G.; Pushcharovsky, D.Y. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineral. Mag. 2014, 78, 905–917. [Google Scholar] [CrossRef]
- Pekov, I.V.; Koshlyakova, N.N.; Zubkova, N.V.; Lykova, I.S.; Britvin, S.N.; Yapaskurt, V.O.; Agakhanov, A.A.; Shchipalkina, N.V.; Turchkova, A.G.; Sidorov, E.G. Fumarolic arsenates—A special type of arsenic mineralization. Eur. J. Mineral. 2018, 30, 305–322. [Google Scholar] [CrossRef]
- Britvin, S.N.; Dolivo-Dobrovolsky, D.V.; Krzhizhanovskaya, M.G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zap. Ross. Mineral. Obsh. 2017, 146, 104–107. (In Russian) [Google Scholar]
- D’Ippolito, V.; Andreozzi, G.B.; Bersani, D.; Lottici, P.P. Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectrosc. 2015, 46, 1255–1264. [Google Scholar] [CrossRef]
- Le Nestour, A.; Gaudon, M.; Villeneuve, G.; Andriessen, R.; Demourgues, A. Steric and electronic effects relating to the Cu2+ Jahn-Teller distortion in Zn1−xCuxAl2O4 spinels. Inorg. Chem. 2007, 46, 2645–2658. [Google Scholar] [CrossRef] [PubMed]
- Biagioni, C.; Pasero, M. The systematics of the spinel-type minerals: An overview. Am. Mineral. 2014, 99, 1254–1264. [Google Scholar] [CrossRef]
- Arean, C.O.; Vinuela, J.S.D. Structural study of copper-nickel aluminate (CuxNi1−xAl2O4) spinels. J. Solid State Chem. 1985, 60, 1–5. [Google Scholar] [CrossRef]
- Fregola, R.A.; Bosi, F.; Skogby, S.; Hålenius, U. Cation ordering over short-range and long-range scales in the MgAl2O4-CuAl2O4 series. Am. Mineral. 2012, 97, 1821–1827. [Google Scholar] [CrossRef] [Green Version]
- Jacob, K.T.; Alcock, C.B. Thermodynamics of CuAlO2 and CuAl2O4 and phase-equilibria in system Cu2O-CuO-Al2O3. J. Am. Ceram. Soc. 1975, 58, 192–195. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Navrotsky, A. Simple spinels: Crystallographic parameters, cation radii, lattice energies, and cation distribution. Am. Mineral. 1983, 68, 181–194. [Google Scholar]
- O’Neill, H.S.C.; James, M.; Dollase, W.A.; Redfern, S.A.T. Temperature dependence of the cation distribution in CuAl2O4 spinel. Eur. J. Mineral. 2005, 17, 581–586. [Google Scholar] [CrossRef]
- Symonds, R.B.; Reed, M.H. Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: Calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. Am. J. Sci. 1993, 293, 758–864. [Google Scholar] [CrossRef]
- Churakov, S.V.; Tkachenko, S.I.; Korzhinskii, M.A.; Bocharnikov, R.E.; Shmulovich, K.I. Evolution of composition of high-temperature fumarolic gases from Kudryavy volcano, Iturup, Kuril Islands: The thermodynamic modeling. Geochem. Int. 2000, 38, 436–451. [Google Scholar]
- Pekov, I.V.; Zubkova, N.V.; Yapaskurt, V.O.; Belakovskiy, D.I.; Chukanov, N.V.; Lykova, I.S.; Saveliev, D.P.; Sidorov, E.G.; Pushcharovsky, D.Y. Wulffite, K3NaCu4O2(SO4)4, and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. Can. Mineral. 2014, 52, 699–716. [Google Scholar] [CrossRef]
- Naboko, S.I.; Glavatskikh, S.F. Post-Eruptive Metasomatism and Ore Genesis: Great Tolbachik Fissure Eruption of 1975–76 at Kamchatka; Nauka Publishing: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- O’Neill, H.S.C.; Navrotsky, A. Cation distributions and thermodynamic properties of binary spinel solid solutions. Am. Mineral. 1984, 69, 733–753. [Google Scholar]
- Cooley, R.F.; Reed, J.S. Equilibrium cation distribution in NiAl2O4, CuAl2O4 and ZnAl2O4 spinels. J. Am. Ceram. Soc. 1972, 55, 395–398. [Google Scholar] [CrossRef]
λ (nm) | R | λ (nm) | R |
---|---|---|---|
400 | 16.4 | 560 | 14.0 |
420 | 16.0 | 580 | 13.7 |
440 | 15.7 | 589 | 13.6 |
460 | 15.4 | 600 | 13.4 |
470 | 15.2 | 620 | 13.2 |
480 | 15.1 | 640 | 13.0 |
500 | 14.8 | 650 | 12.9 |
520 | 14.5 | 660 | 12.8 |
540 | 14.2 | 680 | 12.5 |
546 | 14.2 | 700 | 12.3 |
No. | 1 * | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
wt.% | |||||||
MgO | - | - | - | 0.44 | - | 5.50 | - |
CuO | 25.01 (23.64–26.86)/1.46 | 25.47 | 25.67 | 20.25 | 20.07 | 15.00 | 17.55 |
ZnO | 17.45 (14.46–18.71)/2.00 | 18.33 | 17.43 | 18.99 | 23.79 | 18.29 | 21.71 |
Al2O3 | 39.43 (34.59–45.43)/4.60 | 45.43 | 28.30 | 22.79 | 49.05 | 53.90 | 56.08 |
Cr2O3 | 0.27 (0.17–0.33)/0.07 | 0.17 | 0.86 | - | 0.15 | 0.03 | - |
Mn2O3 | - | - | - | 0.36 | - | 0.10 | - |
Fe2O3 | 17.96 (11.47–22.21)/4.76 | 11.47 | 24.48 | 34.29 | 7.72 | 5.99 | 4.63 |
TiO2 | - | - | 2.59 | 2.61 | - | 0.22 | 0.24 |
Total | 100.12 | 100.87 | 99.33 | 99.73 | 100.78 | 99.03 | 100.21 |
formula calculated on the basis of 4 O apfu | |||||||
Mg | - | - | - | 0.023 | - | 0.242 | - |
Cu | 0.619 | 0.609 | 0.673 | 0.540 | 0.472 | 0.334 | 0.396 |
Zn | 0.422 | 0.428 | 0.447 | 0.496 | 0.547 | 0.398 | 0.479 |
Al | 1.523 | 1.695 | 1.156 | 0.949 | 1.801 | 1.874 | 1.973 |
Cr | 0.007 | 0.004 | 0.017 | - | 0.003 | 0.001 | - |
Mn | - | - | - | 0.011 | - | 0.002 | - |
Fe3+ | 0.443 | 0.273 | 0.639 | 0.911 | 0.181 | 0.133 | 0.104 |
Ti | - | - | 0.068 | 0.069 | - | 0.005 | 0.006 |
ΣA2+ | 1.041 | 1.037 | 1.119 | 1.059 | 1.019 | 0.975 | 0.874 |
ΣB3+,4+ | 1.973 | 1.972 | 1.881 | 1.940 | 1.984 | 2.015 | 2.082 |
No. | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
wt.% | |||||||
MgO | 0.42 | - | 0.59 | 2.66 | 13.27 | 17.54 | 19.61 |
NiO | - | - | - | - | 0.87 | - | - |
CuO | 13.72 | 13.06 | 13.02 | 2.94 | 10.89 | 6.86 | 4.83 |
ZnO | 30.66 | 31.91 | 29.25 | 35.66 | 5.98 | 8.42 | 9.37 |
Al2O3 | 44.70 | 54.11 | 44.30 | 55.81 | 32.93 | 61.12 | 48.44 |
Cr2O3 | 0.19 | - | 0.18 | - | - | - | - |
Mn2O3 | 0.16 | - | 0.10 | - | 1.88 | 0.37 | 0.93 |
Fe2O3 | 8.82 | 1.75 | 11.40 | 2.11 | 34.29 | 4.77 | 13.88 |
TiO2 | 1.06 | 0.11 | 0.80 | - | - | 0.41 | 2.02 |
Total | 99.73 | 100.94 | 99.64 | 99.18 | 100.11 | 99.49 | 99.08 |
formula calculated on the basis of 4 O apfu | |||||||
Mg | 0.020 | - | 0.028 | 0.119 | 0.601 | 0.688 | 0.807 |
Ni | - | - | - | - | 0.021 | - | - |
Cu | 0.333 | 0.301 | 0.314 | 0.066 | 0.250 | 0.136 | 0.100 |
Zn | 0.726 | 0.718 | 0.690 | 0.789 | 0.134 | 0.164 | 0.191 |
Al | 1.690 | 1.944 | 1.669 | 1.970 | 1.180 | 1.897 | 1.576 |
Cr | 0.004 | - | 0.004 | - | - | - | - |
Mn | 0.004 | - | 0.003 | - | 0.048 | 0.008 | 0.022 |
Fe3+ | 0.213 | 0.040 | 0.274 | 0.048 | 0.784 | 0.094 | 0.288 |
Ti | 0.025 | 0.003 | 0.019 | - | - | 0.008 | 0.042 |
ΣA2+ | 1.079 | 1.019 | 1.033 | 0.974 | 1.006 | 0.989 | 1.098 |
ΣB3+,4+ | 1.935 | 1.987 | 1.969 | 2.018 | 2.012 | 2.008 | 1.928 |
No. | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
wt.% | |||||||
MgO | 21.94 | 16.04 | 17.43 | 17.65 | 10.56 | 20.81 | 8.54 |
NiO | - | - | - | - | 0.35 | - | - |
CuO | 2.18 | 4.34 | 5.90 | 3.22 | 14.73 | 1.26 | 7.91 |
ZnO | 5.24 | 12.28 | 3.09 | 0.60 | 0.94 | 0.60 | 17.99 |
Al2O3 | 59.10 | 58.36 | 5.30 | 0.66 | 5.51 | 5.72 | 20.24 |
Cr2O3 | - | 0.09 | 0.33 | - | - | - | 0.17 |
Mn2O3 | 1.56 | 0.26 | 0.24 | 1.32 | 1.01 | 1.24 | 2.29 |
Fe2O3 | 8.76 | 8.10 | 66.24 | 77.29 | 66.64 | 69.46 | 36.51 |
TiO2 | 0.48 | 0.24 | 0.92 | - | - | - | 5.50 |
Total | 99.26 | 99.70 | 99.45 | 100.74 | 99.74 | 99.09 | 99.15 |
formula calculated on the basis of 4 O apfu | |||||||
Mg | 0.843 | 0.640 | 0.873 | 0.884 | 0.552 | 1.014 | 0.424 |
Ni | - | - | - | - | 0.010 | - | - |
Cu | 0.042 | 0.088 | 0.150 | 0.082 | 0.391 | 0.031 | 0.199 |
Zn | 0.100 | 0.243 | 0.077 | 0.015 | 0.024 | 0.015 | 0.443 |
Al | 1.796 | 1.842 | 0.210 | 0.026 | 0.228 | 0.220 | 0.795 |
Cr | - | 0.002 | 0.006 | - | - | - | 0.005 |
Mn | 0.031 | 0.005 | 0.007 | 0.034 | 0.027 | 0.031 | 0.058 |
Fe3+ | 0.170 | 0.163 | 1.675 | 1.953 | 1.760 | 1.709 | 0.915 |
Ti | 0.009 | 0.005 | 0.023 | - | - | - | 0.138 |
ΣA2+ | 0.986 | 0.971 | 1.099 | 0.980 | 0.977 | 1.060 | 1.066 |
ΣB3+,4+ | 2.006 | 2.018 | 1.922 | 2.013 | 2.015 | 1.960 | 1.910 |
No. | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
wt.% | |||||||
MgO | 0.75 | 0.63 | 4.31 | 3.68 | 2.32 | 0.48 | 5.05 |
NiO | 0.70 | - | - | - | - | - | - |
CuO | 28.55 | 27.13 | 24.48 | 24.36 | 25.92 | 20.81 | 23.44 |
ZnO | 3.51 | 7.76 | 3.39 | 2.48 | 4.53 | 18.82 | 1.94 |
Al2O3 | 4.82 | 7.52 | 3.44 | 1.69 | 4.12 | 18.69 | 3.46 |
Cr2O3 | - | 0.22 | - | 0.23 | - | 0.24 | 0.27 |
Mn2O3 | 1.65 | 0.94 | 2.15 | 0.85 | 1.38 | 0.33 | 1.20 |
Fe2O3 | 59.49 | 53.49 | 59.77 | 65.82 | 61.51 | 37.06 | 63.40 |
TiO2 | 0.28 | 1.75 | 1.54 | - | 0.30 | 2.63 | 0.41 |
Total | 99.75 | 99.44 | 99.08 | 99.11 | 100.08 | 99.06 | 99.17 |
formula calculated on the basis of 4 O apfu | |||||||
Mg | 0.043 | 0.036 | 0.244 | 0.211 | 0.133 | 0.026 | 0.283 |
Ni | 0.022 | - | - | - | - | - | - |
Cu | 0.831 | 0.781 | 0.704 | 0.707 | 0.748 | 0.573 | 0.665 |
Zn | 0.100 | 0.219 | 0.096 | 0.071 | 0.128 | 0.506 | 0.054 |
Al | 0.219 | 0.338 | 0.154 | 0.076 | 0.185 | 0.802 | 0.153 |
Cr | - | 0.005 | - | 0.006 | - | 0.005 | 0.006 |
Mn | 0.048 | 0.030 | 0.069 | 0.027 | 0.045 | 0.010 | 0.038 |
Fe3+ | 1.725 | 1.535 | 1.711 | 1.902 | 1.768 | 1.016 | 1.793 |
Ti | 0.008 | 0.050 | 0.044 | - | 0.008 | 0.072 | 0.011 |
ΣA2+ | 0.996 | 1.036 | 1.044 | 0.988 | 1.008 | 1.105 | 1.002 |
ΣB3+,4+ | 2.000 | 1.958 | 1.979 | 2.012 | 2.006 | 1.904 | 2.002 |
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
wt.% | ||||
MgO | 10.48 | 7.28 | 7.52 | 2.60 |
FeO | 2.30 | 6.19 | 16.38 | 1.07 |
CuO | 8.97 | 6.25 | 5.86 | 3.96 |
ZnO | 8.54 | 12.83 | 2.16 | 27.88 |
Al2O3 | 11.32 | 11.52 | 11.06 | 10.44 |
V2O3 | 0.19 | 0.14 | 0.16 | 0.19 |
Cr2O3 | 47.45 | 46.06 | 48.20 | 43.42 |
Fe2O3 | 10.73 | 9.70 | 7.56 | 10.61 |
TiO2 | 0.83 | 0.89 | 0.88 | 0.81 |
Total | 100.82 | 100.86 | 99.78 | 100.98 |
formula calculated on the basis of 4 O apfu with A + B = 3.00 apfu * | ||||
Mg | 0.524 | 0.374 | 0.388 | 0.140 |
Fe2+ | 0.058 | 0.160 | 0.427 | 0.029 |
Cu | 0.227 | 0.163 | 0.153 | 0.108 |
Zn | 0.212 | 0.326 | 0.056 | 0.745 |
Al | 0.448 | 0.467 | 0.451 | 0.445 |
V | 0.005 | 0.004 | 0.004 | 0.006 |
Cr | 1.259 | 1.254 | 1.319 | 1.243 |
Fe3+ | 0.246 | 0.228 | 0.179 | 0.263 |
Ti | 0.021 | 0.023 | 0.023 | 0.022 |
ΣA2+ | 1.021 | 1.023 | 1.023 | 1.022 |
ΣB3+,4+ | 1.979 | 1.977 | 1.977 | 1.978 |
Mineral Species | Ideal Formula | CuO, wt.% | Cu, apfu |
---|---|---|---|
Cuprospinel | CuFe3+2O4 | 28.6 | 0.83 |
Thermaerogenite | CuAl2O4 | 26.9 | 0.69 |
Gahnite | ZnAl2O4 | 21.4 | 0.51 |
Magnesioferrite | MgFe3+2O4 | 14.7 | 0.39 |
Spinel | MgAl2O4 | 10.9 | 0.25 |
Magnesiochromite | MgCr2O4 | 9.0 | 0.23 |
Franklinite | ZnFe3+2O4 | 7.9 | 0.20 |
Chromite | Fe2+Cr2O4 | 5.9 | 0.15 |
Zincochromite | ZnCr2O4 | 4.8 | 0.13 |
Thermaerogenite | Synthetic CuAl2O4 * | h k l | |||
---|---|---|---|---|---|
Imeas | dmeas | dcalc | Icalc | dcalc | |
3 | 4.659 | 4.694 | 2 | 4.664 | 111 |
65 | 2.873 | 2.875 | 51 | 2.856 | 220 |
100 | 2.451 | 2.452 | 100 | 2.436 | 311 |
1 | 2.329 | 2.347 | 0.2 | 2.332 | 222 |
10 | 2.033 | 2.033 | 17 | 2.020 | 400 |
6 | 1.865 | 1.865 | 1 | 1.853 | 331 |
16 | 1.660 | 1.660 | 12 | 1.649 | 422 |
28 | 1.565 | 1.565 | 31 | 1.555 | 511 |
30 | 1.438 | 1.437 | 38 | 1.428 | 440 |
4 | 1.286 | 1.286 | 3 | 1.277 | 620 |
6 | 1.240 | 1.240 | 6 | 1.232 | 533 |
1 | 1.226 | 1.226 | 1 | 1.218 | 622 |
1 | 1.174 | 1.174 | 1 | 1.166 | 444 |
Mineral/Compound | a | V | Method * | Source |
---|---|---|---|---|
Thermaerogenite | 8.093(9) | 530.1(10) | SCXRD | this work |
Thermaerogenite | 8.131(1) | 537.6(2) | PXRD | this work |
Synthetic CuAl2O4 | 8.079(3) | 527(3) | SCXRD | [24] |
Cuprospinel | 8.402(11) | 593(1) | SCXRD | this work |
Cuprospinel ** | 8.369 | 586 | PXRD | [3] |
Gahnite | 8.124(4) | 536.2(5) | SCXRD | this work |
Gahnite | 8.1327(6) | 537.9(1) | PXRD | this work |
Spinel | 8.149(1) | 541.2(2) | PXRD | this work |
Magnesioferrite | 8.344(13) | 581(1) | SCXRD | this work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pekov, I.V.; Sandalov, F.D.; Koshlyakova, N.N.; Vigasina, M.F.; Polekhovsky, Y.S.; Britvin, S.N.; Sidorov, E.G.; Turchkova, A.G. Copper in Natural Oxide Spinels: The New Mineral Thermaerogenite CuAl2O4, Cuprospinel and Cu-Enriched Varieties of Other Spinel-Group Members from Fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals 2018, 8, 498. https://doi.org/10.3390/min8110498
Pekov IV, Sandalov FD, Koshlyakova NN, Vigasina MF, Polekhovsky YS, Britvin SN, Sidorov EG, Turchkova AG. Copper in Natural Oxide Spinels: The New Mineral Thermaerogenite CuAl2O4, Cuprospinel and Cu-Enriched Varieties of Other Spinel-Group Members from Fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals. 2018; 8(11):498. https://doi.org/10.3390/min8110498
Chicago/Turabian StylePekov, Igor V., Fedor D. Sandalov, Natalia N. Koshlyakova, Marina F. Vigasina, Yury S. Polekhovsky, Sergey N. Britvin, Evgeny G. Sidorov, and Anna G. Turchkova. 2018. "Copper in Natural Oxide Spinels: The New Mineral Thermaerogenite CuAl2O4, Cuprospinel and Cu-Enriched Varieties of Other Spinel-Group Members from Fumaroles of the Tolbachik Volcano, Kamchatka, Russia" Minerals 8, no. 11: 498. https://doi.org/10.3390/min8110498
APA StylePekov, I. V., Sandalov, F. D., Koshlyakova, N. N., Vigasina, M. F., Polekhovsky, Y. S., Britvin, S. N., Sidorov, E. G., & Turchkova, A. G. (2018). Copper in Natural Oxide Spinels: The New Mineral Thermaerogenite CuAl2O4, Cuprospinel and Cu-Enriched Varieties of Other Spinel-Group Members from Fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals, 8(11), 498. https://doi.org/10.3390/min8110498