Mantle Evolution from Ocean to Arc: The Record in Spinel Peridotite Xenoliths in Mt. Pinatubo, Philippines
Abstract
:1. Introduction
2. Geologic Background
3. Petrography of the Mt. Pinatubo Xenoliths
4. Analytical Techniques
5. Geochemistry
6. Equilibrium Conditions and Oxygen Fugacity
7. Discussion
7.1. Characterization of the Mt. Pinatubo Spinel Peridotite Xenoliths
7.2. Possible Origin of the Mt. Pinatubo Spinel Peridotite Xenoliths
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ozawa, K. Melting and melt segregation in the mantle wedge above a subduction zone: Evidence from the chromite-bearing peridotites of the Miyamori ophiolite complex, northeastern Japan. J. Petrol. 1994, 35, 647–678. [Google Scholar] [CrossRef]
- Jean, M.; Shervais, J.W. The distribution of fluid mobile and other incompatible trace elements in orthopyroxene from mantle wedge peridotites. Chem. Geol. 2017, 457, 118–130. [Google Scholar] [CrossRef]
- Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman). Earth Planet. Sci. Lett. 2018, 484, 213–228. [Google Scholar] [CrossRef]
- Arai, S.; Kida, M. Origin of fine-grained peridotite xenoliths from Iraya volcano of Batan Island, Philippines: Deserpentinization or metasomatism at the wedge mantle beneath an incipient arc? Isl. ARC 2000, 9, 458–471. [Google Scholar] [CrossRef]
- Satsukawa, T.; Godard, M.; Demouchy, S.; Michibayashi, K.; Ildefonse, B. Chemical interactions in the subduction factory: New insights from an in situ trace element and hydrogen study of the Ichinomegata and Oki-Dodo mantle xenoliths (Japan). Geochim. Cosmochim. Acta 2017, 208, 234–267. [Google Scholar] [CrossRef]
- Polat, A.; Frei, R.; Longstaffe, F.J.; Thorkelson, D.J.; Friedman, E. Petrology and geochemistry of the Tasse mantle xenoliths of the Canadian Cordillera: A record of Archean to Quaternary mantle growth, metasomatism, removal, and melting. Tectonophysics 2018, 737, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Dick, H.J.B.; Bullen, T. Chromian spinel as indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petr. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Arai, S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J. Petrol. 1998, 39, 1577–1618. [Google Scholar] [CrossRef]
- Le Mee, L.; Girardeau, J.; Monnier, C. Mantle segmentation along the Oman Ophiolite fossil mid-ocean ridge. Nature 2004, 282, 58–61. [Google Scholar]
- Arai, S.; Kadoshima, K.; Morishita, T. Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. J. Geol. Soc. Lond. 2006, 163, 869–879. [Google Scholar] [CrossRef]
- Koepke, J.; Schoenborn, S.; Oelze, M.; Wittman, H.; Feig, S.T.; Hellebrand, E.; Boudier, F.; Schoenberg, R. Petrogenesis of crustal wehrlites in the Oman ophiolite: Experiments and natural rocks. Geochem. Geophys. Geosyst. 2009, 10, Q10002. [Google Scholar] [CrossRef]
- Tatsumi, Y.; Hamilton, D.L.; Nesbitt, R.W. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J. Volcanol. Geotherm. Res. 1986, 29, 293–309. [Google Scholar] [CrossRef]
- Vidal, P.; Dupuy, C.; Maury, R.; Richard, C. Mantle metasomatism above subduction zones: Trace-element and radiogenic isotope characteristics of peridotite xenoliths from Batan Island (Philippines). Geology 1989, 17, 1115–1118. [Google Scholar] [CrossRef]
- Maury, R.C.; Defant, M.J.; Joron, J.-L. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature 1992, 360, 661–663. [Google Scholar] [CrossRef]
- Facer, J.; Downes, H.; Beard, A. In situ serpentinization and hydrous fluid metasomatism in spinel dunite xenoliths from the Bearpaw Mountains, Montana, USA. J. Petrol. 2009, 50, 1443–1475. [Google Scholar] [CrossRef]
- Neumann, E.-R.; Abu El-Rus, M.A.; Tiepolo, M.; Ottolini, L.; Vannucci, R.; Whitehouse, M. Serpentinization and deserpentinization reactions in the upper mantle beneath Fuerteventura revealed by peridotite xenoliths with fibrous orthopyroxene and mottled olivine. J. Petrol. 2015, 56, 3–31. [Google Scholar] [CrossRef]
- Arai, S.; Takada, S.; Michibayashi, K.; Kida, M. Petrology of peridotite xenoliths from Iraya volcano, Philippines, and its implication for dynamic mantle-wedge process. J. Petrol. 2004, 45, 369–389. [Google Scholar] [CrossRef]
- Ishimaru, S.; Arai, S. Calcic amphiboles in peridotite xenoliths from Avacha volcano, Kamchatka, and their implications for metasomatic conditions in the mantle wedge. J. Geol. Soc. Lond. 2008, 293, 35–55. [Google Scholar] [CrossRef]
- Gregoire, M.; Jego, S.; Maury, R.C.; Polve, M.; Payot, B.D.; Tamayo, R.A., Jr.; Yumul, G.P., Jr. Metasomatic interactions between slab-derived melts and depleted mantle: Insights from xenoliths within Monglo adakite (Luzon arc, Philippines). Lithos 2008, 103, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Arai, S.; Ishimaru, S. Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: A review. J. Petrol. 2008, 49, 665–695. [Google Scholar] [CrossRef]
- Richard, M.; Maury, R.; Bellon, H.; Stephan, J.F.; Boirat, J.M.; Calderon, A. Geology of Mt. Iraya volcano and Batan Island, northern Philippines. J. Volcanol. 1986, 3, 1–27. [Google Scholar]
- Payot, B.D.; Jego, S.; Maury, R.; Polve, M.; Gregoire, M.; Ceuleneer, C.; Tamayo, R.A., Jr.; Yumul, G.P., Jr.; Bellon, H.; Cotten, J. The oceanic substratum of Northern Luzon: Evidence from xenoliths within Monglo adakite (the Philippines). Isl. ARC 2007, 16, 276–290. [Google Scholar] [CrossRef]
- Kawamoto, T.; Yoshikawa, M.; Kumagai, Y.; Mirabueno, M.H.T.; Okuno, M.; Kobayashi, T. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc. Natl. Acad. Sci. USA 2013, 24, 9663–9668. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Tamura, A.; Arai, S.; Kawamoto, T.; Payot, B.D.; Rivera, D.J.; Bariso, E.B.; Mirabueno, M.H.T.; Okuno, M.; Kobayashi, T. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines. Lithos 2016, 262, 355–368. [Google Scholar] [CrossRef]
- Castillo, P.R.; Janney, P.E.; Solidum, R.U. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Hayes, D.E.; Lewis, S.D. A geophysical study of the Manila Trench, Luzon, Philippines 1. Crustal structure, gravity, and regional tectonic evolution. J. Geophys. Res. 1984, 89, 9171–9195. [Google Scholar] [CrossRef]
- Rangin, C. The Philippine Mobile Belt: A complex plate boundary. J. Southeast Asian Earth Sci. 1991, 6, 209–220. [Google Scholar] [CrossRef]
- Yumul, G.P., Jr.; Dimalanta, C.B.; Tamayo, R.A., Jr.; Maury, R.C. Collision, subduction and accretion events in the Philippines: A synthesis. Isl. ARC 2003, 12, 77–91. [Google Scholar] [CrossRef]
- Lallemand, S.E.; Popoff, M.; Cadet, J.-P.; Bader, A.-G.; Pubellier, M.; Rangin, C.; Deffontaines, B. Genetic relations between the central and southern Philippine Trench and the Sangihe Trench. J. Geophys. Res. 1998, 103, 933–950. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, A.; Tagami, T.; Listanco, E.L.; Arpa, C.B.; Sudo, M. Initiation and propagation of subduction along the Philippine Trench: Evidence from the temporal and spatial distribution of volcanoes. J. Asian Earth Sci. 2004, 23, 105–111. [Google Scholar] [CrossRef]
- Aurelio, M.A. Shear partitioning in the Philippines: Constraints from Philippine Fault and global positioning system data. Isl. ARC 2000, 9, 584–597. [Google Scholar] [CrossRef]
- Defant, M.J.; Jacques, D.; Maury, R.C.; De Boer, J.; Joron, J.L. Geochemistry and tectonic setting of the Luzon arc, Philippines. Geol. Soc. Am. Bull. 1989, 101, 663–672. [Google Scholar] [CrossRef]
- Defant, M.J.; Maury, R.C.; Joron, J.-L.; Feigenson, M.D.; Leterrier, J.; Bellon, H.; Jacques, D.; Richard, M. The geochemistry and tectonic setting of the northern section of the Luzon arc (the Philippines and Taiwan). Tectonophysics 1990, 183, 187–205. [Google Scholar] [CrossRef]
- Yang, T.F.; Lee, T.; Chen, C.-H.; Cheng, S.-N.; Knittel, U.; Punongbayan, R.S.; Rasdas, A.R. A double island arc between Taiwan and Luzon: Consequence of ridge subduction. Tectonophysics 1996, 258, 85–101. [Google Scholar] [CrossRef]
- Bluth, G.J.S.; Doiron, S.D.; Schnetzler, C.C.; Krueger, A.J.; Walter, L.S. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett. 1992, 19, 151–154. [Google Scholar] [CrossRef]
- Daag, A.S.; Dolan, M.T.; Laguerta, E.P.; Meeker, G.P.; Newhall, C.G.; Pallister, J.S.; Solidum, R.U. Growth of a postclimactic lava dome at Mount Pinatubo, July–October 1992. In Fire and Mud: Eruptions and Lahars of Mount Pinatubo; Newhall, C.G., Punongbayan, R.S., Eds.; University of Washington Press: Seattle, WA, USA, 1996; pp. 647–664. [Google Scholar]
- Pallister, J.S.; Hoblitt, R.P.; Reyes, A.G. A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 1992, 356, 426–428. [Google Scholar] [CrossRef]
- Pallister, J.S.; Hoblitt, R.P.; Meeker, G.P.; Knight, R.J.; Siems, D.F. Magma mixing at Mount Pinatubo: Petrographic and chemical evidence from 1991 deposits. In Fire and Mud: Eruptions and Lahars of Mount Pinatubo; Newhall, C.G., Punongbayan, R.S., Eds.; University of Washington Press: Seattle, WA, USA, 1996; pp. 687–732. [Google Scholar]
- Prouteau, G.; Scaillet, B. Experimental constraints on the origin of the 1991 Pinatubo dacite. J. Petrol. 2003, 44, 2203–2241. [Google Scholar] [CrossRef] [Green Version]
- Heuret, A.; Lallemand, S. Luzon Arc Basemap. Scale 1:1,000,000. Basemap Generated by Betchaida Payot; using “Submap 4.1” 2005. Available online: http://www.submap.gm.univ-montp2.fr/maps-index.php (accessed on 1 November 2015).
- Mercier, J.-C.C.; Nicolas, A. Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J. Petrol. 1975, 16, 454–487. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Ishii, T.; Robinson, P.T.; Maekawa, H.; Fiske, R. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In Proceedings of the Ocean Drilling Program Scientific Results 125; Fryer, P., Pearce, J.A., Stokking, L.B., Eds.; Ocean Drilling Program: College Station, TX, USA, 1992; pp. 445–485. [Google Scholar]
- Takahashi, E. Origin of basaltic magmas-implications from peridotite melting experiments and olivine fractionation model. Bull. Volcanol. Soc. Jpn. 1986, 30, S17–S40, (In Japanese with English abstract). [Google Scholar]
- Yumul, G.P., Jr. Petrological characterization of the residual cumulate sequences of the Zambales Ophiolite Complex, Luzon, Philippines. Ofioliti 1989, 14, 253–291. [Google Scholar]
- Sato, H. Nickel content of basaltic magmas: Identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 1977, 10, 113–120. [Google Scholar] [CrossRef]
- Arai, S. Petrological characteristics of the upper mantle peridotites beneath the Japan Island Arcs-Petrogenesis of spinel peridotites. Geol. Geofiz. 1991, 32, 8–26. [Google Scholar]
- Wells, P.R.A. Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol. 1977, 62, 129–139. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.F.; Green, D.H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- Bryndzia, L.T.; Wood, B.J.; Dick, H.J.B. The oxidation state of the Earth’s sub-oceanic mantle from oxygen thermometry of abyssal spinel peridotites. Nature 1989, 341, 526–527. [Google Scholar] [CrossRef]
- Morishita, T.; Hara, K.; Nakamura, K.; Sawaguchi, T.; Tamura, A.; Arai, S.; Okino, K.; Takai, K.; Kumagai, H. Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. J. Petrol. 2009, 50, 1299–1325. [Google Scholar] [CrossRef]
- Blatter, D.L.; Carmichael, I.S.E. Hornblende peridotite xenoliths from central Mexico reveal highly oxidized nature of subarc upper mantle. Geology 1998, 26, 1035–1038. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Arculus, R.J. The redox state of subduction zones: Insights from arc-peridotites. Chem. Geol. 1999, 160, 409–423. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society London Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Johnson, K.T.M.; Dick, H.J.B.; Shimizu, N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 1990, 95, 2661–2678. [Google Scholar] [CrossRef]
- Johnson, K.T.M.; Dick, H.J.B. Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II Fracture Zone. J. Geophys. Res. 1992, 97, 9219–9241. [Google Scholar] [CrossRef]
- Hellebrand, E.; Snow, J.E.; Dick, H.J.B.; Hofmann, A.W. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 2001, 410, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Hellebrand, E.; Snow, J.E.; Hoppe, P.; Hofmann, A.W. Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J. Petrol. 2002, 43, 2305–2338. [Google Scholar] [CrossRef]
- Ross, K.; Elthon, D. Extreme incompatible trace-element depletion of diopside in residual mantle from south of the Kane F.Z. Proc. Ocean Drill. Prog. Sci. Results 1997, 153, 277–284. [Google Scholar]
- Brunelli, D.; Seyler, M.; Cipriani, A.; Ottolini, L.; Bonatti, E. Discontinuous melt extraction and weak refertilization of mantle peridotites at the Vema lithospheric section (Mid-Atlantic Ridge). J. Petrol. 2006, 47, 745–771. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Natland, J.H. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. Proc. Ocean Drill. Prog. Sci. Results 1996, 147, 103–134. [Google Scholar]
- Nixon, P.H. Mantle Xenoliths; John Wiley and Sons Ltd.: Great Britain, UK, 1987; 844p. [Google Scholar]
- Arai, S.; Ishimaru, S.; Okrugin, V.M. Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: Implication for the metasomatic agent. Isl. ARC 2003, 12, 233–246. [Google Scholar] [CrossRef]
- Ishimaru, S.; Arai, S.; Ishida, Y.; Shirasaka, M.; Okrugin, V.M. Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha Volcano, Southern Kamchatka. J. Petrol. 2007, 48, 395–433. [Google Scholar] [CrossRef]
- McInnes, B.I.A.; Gregoire, M.; Binns, R.A.; Herzig, P.M.; Hannington, M.D. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet. Sci. Lett. 2001, 188, 169–183. [Google Scholar] [CrossRef]
- Gregoire, M.; McInnes, B.I.A.; O’Reilly, S.Y. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea Part 2. Trace element characteristics of slab-derived fluids. Lithos 2001, 29, 91–108. [Google Scholar] [CrossRef]
- Yumul, G.P., Jr. Ophiolite-hosted chromite deposits as tectonic setting and melting degree indicators: Examples from the Zambales ophiolite complex, Luzon, Philippines. J. Resour. Geol. (Min. Geol.) 1992, 42, 5–17. [Google Scholar]
- Hawkins, J.W.; Evans, C.A. Geology of the Zambales Range, Luzon, Philippine Islands: Ophiolite derived from an island arc-back arc basin pair. In The Tectonics and Geologic Evolution of Southeast Asian Seas and Islands; Part 2; Hayes, D.E., Ed.; American Geophysical Union Monographs: Washington, DC, USA, 1983; Volume 27, pp. 95–123. [Google Scholar]
- Rossman, D.L.; Castañada, G.C.; Bacuta, G.C. Geology of the Zambales ophiolite, Luzon, Philippines. Tectonophysics 1989, 168, 1–22. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome-spinel in progressive metamorphism: A preliminary analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Andal, E.S.; Arai, S.; Yumul, G.P., Jr. Complete mantle section of a slow-spreading ridge ophiolite: An example from the Isabela ophiolite in the Philippines. Isl. ARC 2005, 14, 272–294. [Google Scholar] [CrossRef]
- Tamayo, R.A., Jr.; Maury, R.C.; Yumul, G.P., Jr.; Polve, M.; Cotton, J.; Dimalanta, C.B.; Olaguera, F.O. Subduction-related magmatic imprint of most Philippine ophiolites: Implications on the early geodynamic evolution of the Philippine archipelago. Bull. Soc. Géol. Fr. 2000, 175, 443–460. [Google Scholar] [CrossRef]
- Deschamps, A.; Monié, P.; Lallemand, S.; Hsu, S.-K.; Yeh, K.H. Evidence for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate. Earth Planet. Sci. Lett. 2000, 179, 503–516. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payot, B.D.; Arai, S.; Yoshikawa, M.; Tamura, A.; Okuno, M.; Rivera, D.J.V. Mantle Evolution from Ocean to Arc: The Record in Spinel Peridotite Xenoliths in Mt. Pinatubo, Philippines. Minerals 2018, 8, 515. https://doi.org/10.3390/min8110515
Payot BD, Arai S, Yoshikawa M, Tamura A, Okuno M, Rivera DJV. Mantle Evolution from Ocean to Arc: The Record in Spinel Peridotite Xenoliths in Mt. Pinatubo, Philippines. Minerals. 2018; 8(11):515. https://doi.org/10.3390/min8110515
Chicago/Turabian StylePayot, Betchaida D., Shoji Arai, Masako Yoshikawa, Akihiro Tamura, Mitsuru Okuno, and Danikko John V. Rivera. 2018. "Mantle Evolution from Ocean to Arc: The Record in Spinel Peridotite Xenoliths in Mt. Pinatubo, Philippines" Minerals 8, no. 11: 515. https://doi.org/10.3390/min8110515
APA StylePayot, B. D., Arai, S., Yoshikawa, M., Tamura, A., Okuno, M., & Rivera, D. J. V. (2018). Mantle Evolution from Ocean to Arc: The Record in Spinel Peridotite Xenoliths in Mt. Pinatubo, Philippines. Minerals, 8(11), 515. https://doi.org/10.3390/min8110515