Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials
Abstract
:1. Introduction
2. A Cautionary Word on Terminology and Analysis
3. Earth Pigments
3.1. Ochres
3.1.1. Red Ochre
3.1.2. Wads: Manganese Ochres
3.1.3. Yellow Ochre
3.2. Green Earth
3.3. White Earths
3.3.1. Calcite and Gypsum
3.3.2. Huntite
3.3.3. Kaolinite
3.3.4. Diatomite and Diatomaceous Earths
3.3.5. Other White Minerals as Pigments
3.4. Blue Earths
3.5. Coal and Hydrocarbon Blacks
4. Blue and Green Mineral Pigments
4.1. Malachite and Azurite
4.2. Copper Salts: “Salt Green”
4.3. Brochantite
4.4. Tyrolite
4.5. Veszelyite
4.6. Lapis Lazuli, Lazurite and Ultramarine
4.7. Maya Blue
4.8. Synthetic Blue Green and Purple Pigments
4.9. Egyptian Blue
4.10. Egyptian Green
4.11. Han Blue and Han Purple
5. Red, Yellow and Orange Mineral Pigments.
5.1. Orpiment, Realgar and Pararealgar
5.2. Cinnabar
6. Mineral Blacks
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hoffman, D.L.; Standish, C.D.; García-Diez, M.; Pettitt, P.B.; Milton, J.A.; Zilhão, J.; Alcolea-González, J.J.; Cantalejo-Duarte, P.; Collado, H.; de Balbín, R.; et al. U–Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 2018, 359, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Eichholz, D.E., Translator; Theophrastus, De Lapidibus; Oxford University Press: Oxford, UK, 1965.
- Granger, F. (Ed.) Vitruvius, on Architecture; Loeb Classical Library; Harvard University Press: Cambridge, UK, 1999. [Google Scholar]
- Rackham, H., Translator; Pliny, Natural History, Books XXXIII-XXXV; Loeb Classical Library; Harvard University Press: Cambridge, UK, 1952.
- Davy, H. Some Experiments and Observations on the Colours Used in Painting by the Ancients. Philos. Trans. R. Soc. Lond. 1815, 105, 97–124. [Google Scholar] [CrossRef]
- Bell, I.M.; Clark, R.J.H.; Gibbs, P.J. Raman spectroscopic library of natural and synthetic pigments (pre~1850 AD). Spectrochim. Acta Part A 1997, 53, 2159–2179. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta Part A 2001, 57, 1491–1521. [Google Scholar] [CrossRef]
- Read, P.G. Gemmology; Butterworth-Heinemann Ltd.: Oxford, UK, 1991; pp. 173–175. [Google Scholar]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium: A Dictionary and Optical Microscopy of Historic Pigments, 1st ed.; Butterworth-Heinemann: London, UK, 2008; 958p. [Google Scholar]
- de Almeida Silva, R.; Salomé dos Santos Menezes, J.C.; Abella Lopes, F.; Kirchheim, A.P.; Schneider, I.A.H. Synthesis of a Goethite Pigment by Selective Precipitation of Iron from Acidic Coal Mine Drainage. Mine Water Environ. 2017, 36, 386–392. [Google Scholar] [CrossRef]
- McCausland, O. Turning Landscape into Colour. Ph.D. Thesis, University College London, London, UK, 2017; 187p. [Google Scholar]
- Roldán, C.; Villaverde, V.; Ródenas, I.; Novelli, F.; Mucia, S. Preliminary analysis of Palaeolithic black pigments in plaquettes from the Parpalló cave (Gandía, Spain) carried out by means of non-destructive techniques. J. Archaeol. Sci. 2013, 40, 744–754. [Google Scholar] [CrossRef]
- Hradil, D.; Grygar, T.; Hradilova, J.; Bezdicka, P. Clay and iron oxide pigments in the history of painting. Appl. Clay Sci. 2003, 22, 223–236. [Google Scholar] [CrossRef]
- David, R.; Edwards, H.G.M.; Farwell, D.W.; De Faria, D.L.A. Raman spectroscopic analysis of Ancient Egyptian Pigments. Archaeometry 2001, 43, 461–473. [Google Scholar]
- Elias, M.; Chartier, C.; Prévot, G.; Garay, H.; Vignaud, C. The colour of ochres explained by their composition. Mater. Sci. Eng. B 2006, 127, 70–80. [Google Scholar] [CrossRef]
- Marshall, L.-J.R.; Williams, J.R.; Almond, M.J.; Atkinson, S.D.M.; Cook, S.R.; Matthews, W.; Mortimore, J.L. Analysis of ochres from Clearwell Caves: The role of particle size in determining colour. Spectrochim. Acta Part A 2005, 61, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Mortimore, J.L.; Marshall, L.-J.R.; Almond, M.J.; Hollins, P.; Matthews, W. Analysis of red and yellow ochre samples from Clearwell Caves and Çatalhöyük by vibrational spectroscopy and other techniques. Spectrochim. Acta Part A 2004, 60, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Young, T. The Paviland ochres: Characterization and sourcing. In Paviland Cave and the “Red Lady”: A Definitive Report; Aldhouse-Green, S., Ed.; Western Academic & Specialist Press Ltd.: Bristol, UK, 2000; pp. 205–225. [Google Scholar]
- Needham, A.; Croft, S.; Kröger, R.; Robson, H.K.; Rowley, C.C.A.; Taylor, B.; Gray Jones, A.; Conneller, C. The application of micro-Raman for the analysis of ochre artefacts from Mesolithic palaeo-lake Flixton. J. Archaeol. Sci. Rep. 2018, 17, 650–656. [Google Scholar] [CrossRef]
- Smith, M.A.; Fankhauser, B.; Jercher, M. The Changing Provenance of Red Ochre at Puritjarra Rock Shelter, Central Australia: Late Pleistocene to Present. Proc. Prehistor. Soc. 1998, 64, 275–292. [Google Scholar] [CrossRef]
- Eiselt, B.S.; Popelka-Filcoff, R.S.; Darling, J.A.; Glascock, M.D. Hematite sources and archaeological ochres from Hohokam and O’odham sites in central Arizona: An experiment in type identification and characterization. J. Archaeol. Sci. 2011, 38, 3019–3028. [Google Scholar] [CrossRef]
- David, B. Cave Art; Thames & Hudson World of Art; Thames & Hudson: London, UK, 2017; 256p. [Google Scholar]
- Henshilwood, C.S.; D’Errico, F.; van Niekerk, K.L.; Coquinot, Y.; Jacobs, Z.; Lauritsen, S.-E.; Menu, M.; Garcia-Moreno, R. A 100,000-Year-Old Ochre-Processing Workshop at Blombos Cave, South Africa. Science 2011, 334, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Roebroeks, W.; Sier, M.J.; Kellberg Nielsen, T.; De Loecker, D.; Parés, J.M.; Arps, C.E.S.; Mücher, H. Use of red ochre by early Neandertals. Proc. Natl. Acad. Sci. USA 2012, 109, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Bar-Yosef Mayer, D.; Vandermeesch, B.; Bar-Yosef, O. Shells and ochre in Middle Paleolithic Qafzeh Cave, Israel: Indications for modern behavior. J. Hum. Evol. 2009, 56, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Peresani, M.; Vanhaeren, M.; Quaggiotto, E.; Queffelec, A.; d’Errico, F. An Ochered Fossil Marine Shell from the Mousterian of Fumane Cave, Italy. PLoS ONE 2013, 8, E68572. [Google Scholar] [CrossRef] [PubMed]
- Pitarch-Martí, A.; Wei, Y.; Gao, X.; Chen, F.; d’Errico, F. The earliest evidence of coloured ornaments in China: The ochred ostrich eggshell beads from Shuidonggou Locality 2. J. Anthropol. Archaeol. 2017, 48, 102–113. [Google Scholar] [CrossRef]
- Clottes, J.; Menu, M.; Walter, P. La préparation des peintures magdaléniennes des cavernes ariégeoises. Bulletin de la Société Préhistorique Française 1990, 87, 170–192. [Google Scholar] [CrossRef]
- Iriarte, E.; Foyo, A.; Sanchez, M.A.; Tomillo, C.; Setién, J. The origin and geochemical characterization of red ochres from the Tito Bustillo and Monte Castillo Caves (northern Spain). Archaeometry 2009, 51, 231–251. [Google Scholar] [CrossRef]
- Aldhouse-Green, S. Paviland Cave and the “Red Lady”: A Definitive Report; Western Academic & Specialist Press Ltd.: Bristol, UK, 2000; 314p. [Google Scholar]
- Formicola, V.; Buzhilova, A.P. Double Child Burial from Sunghir (Russia): Pathology and Inferences for Upper Paleolithic Funerary Practices. Am. J. Phys. Anthropol. 2004, 124, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Çamurcuoğlu, D.S. The Wall Paintings of Çatalhöyük (Turkey): Materials, Technologies and Artists. Ph.D. Thesis, University College London, London, UK, 2015; 279p. Available online: http://discovery.ucl.ac.uk/1471163/1/Camurcuoglu_compressed.pdf.%20COMPLETE.pdf (accessed on 13 April 2018).
- Attard-Montalto, N.; Shortland, A.; Rogers, K. The provenancing of ochres from the Neolithic Temple Period in Malta. J. Archaeol. Sci. 2012, 39, 1094–1102. [Google Scholar] [CrossRef]
- Brecoulaki, H.; Zaitoun, C.; Davis, J.; Stocker, S. An Archer from the Palace of Nestor, a new wall-painting fragment in the Chora Museum. Hesperia 2008, 77, 363–397. [Google Scholar] [CrossRef]
- Brysbaert, A. Painted plaster from Bronze Age Thebes, Boeotia (Greece): A technological study. J. Archaeol. Sci. 2008, 35, 2761–2769. [Google Scholar] [CrossRef]
- Brysbaert, A.; Perdikatsis, V. Bronze Age Painted Plaster from the Greek Mainland: A Comparative Study of its Technology by Means of XRD Analysis and Optical Microscopy Techniques. In Archaeometry Studies in the Aegean: Reviews and Recent Developments, Proceedings of the 4th HSA Symposium on Archaeometry, Athens, Greece, 28–31 May 2008; Facorellis, Y., Zacharias, N., Polikreti, K., Vakoulis, T., Bassiakos, Y., Kiriatzi, V., Aloupi, E., Eds.; British Archaeological Reports, International Series; British Archaeological Reports: Oxford, UK, 2008; Volume 1746, pp. 421–429. [Google Scholar]
- Davies, W.V. (Ed.) Colour and Painting in Ancient Egypt; The British Museum Press: London, UK, 2001; 192p. [Google Scholar]
- Mai, H.; Yang, Y.; Abudurresule, I.; Li, W.; Hu, X.; Wng, C. Characterization of cosmetic sticks at Xiaohe Cemetery in early Bronze Age Xinjiang, China. Nat. Sci. Rep. 2016, 6, 18939. [Google Scholar] [CrossRef] [PubMed]
- Hunter, F.; Henig, M.; Sauer, E.; Gooder, J.; Braby, A.; Campbell, L.; Hill, P.; Humble, J.; Lawson, G.; McGibbon, F.; et al. Mithras in Scotland: A Mithraeum at Inveresk (East Lothian). Britannia 2016, 47, 119–168. [Google Scholar] [CrossRef]
- Walsh, V.W.; Siddall, R.; Eastaugh, N.; Chaplin, T. Pigmenti di Pompei: Verso la definizione di uno standard di riferimento per la ricerca sui pigmenti romani. In Scienze e Archeologia: Le Scienze Ambientali-Le Scienze Chimico Fisiche; Baraldi, P., Ed.; Universita del Sannio, Universita di Modena e Reggio Emilia, Soprintendenza Archeological Pompei: Benevento BN, Italy, 2003; pp. 181–196. [Google Scholar]
- Gliozzo, E.; Cavari, F.; Damiani, D.; Memmi, I. Pigments and plasters from the Roman Settlement of Thamusida (Rabat, Morocco). Archaeometry 2012, 54, 278–293. [Google Scholar] [CrossRef]
- Gutman, M.; Kikelj, M.L.; Zupanek, B.; Kramar, S. Wall paintings from the Roman Emona (Ljubljana, Slovenia): Characterization of mortar layers and pigments. Archaeometry 2016, 58, 297–314. [Google Scholar] [CrossRef]
- Linn, R. Layered pigments and painting technology of the Roman wall paintings of Caesarea Maritima. J. Archaeol. Sci. Rep. 2017, 11, 774–781. [Google Scholar] [CrossRef]
- Uchida, E.; Takubo, Y.; Toyouchi, K.; Miyata, J. Study on the pigments in the cruciform gallery of Angkor Wat, Cambodia. Archaeometry 2012, 54, 549–564. [Google Scholar] [CrossRef]
- Heyes, P.J.; Anastasakis, K.; de Jong, W.; van Hoesel, A.; Roebroeks, W.; Soressi, M. Selection and Use of Manganese Dioxide by Neanderthals. Nat. Sci. Rep. 2016, 6, 22159. [Google Scholar] [CrossRef] [PubMed]
- Soressi, M.; D’Errico, F. Pigments, gravures, parures: Les comportements sym- boliques controversés des Néandertaliens. Les Néandertaliens: Biologie et Cultures, eds Vandermeersch B, Maureille B (Comité des Travaux Historiques et Scientifiques, Paris). Documents Préhistorique 2007, 23, 297–309. [Google Scholar]
- Ford, T. Derbyshire wad and umber. Min. Hist. 2001, 14, 39–45. [Google Scholar]
- Tingry, P.F. The Painter and Colourman’s Complete Guide, 3rd ed.; Sherwood, Gilbert & Piper: London, UK, 1830; 307p. [Google Scholar]
- Valladas, H.; Clottes, J.; Geneste, J.-M.; Garcia, M.A.; Arnold, M.; Cachier, H.; Tisnérat-Laborde, N. Evolution of Prehistoric cave art. Nature 2001, 413, 479. [Google Scholar] [CrossRef] [PubMed]
- Valladas, H. Direct radiocarbon dating of prehistoric cave paintings by accelerator mass spectrometry. Meas. Sci. Technol. 2003, 14, 1487–1492. [Google Scholar] [CrossRef]
- Chalmin, E.; Farges, F.; Vignaud, C.; Susini, J.; Menu, M.; Brown, G.E. Discovery of Unusual Minerals in Paleolithic Black Pigments from Lascaux (France) and Ekain (Spain). In X-ray Absorption Fine Structure, XAFS13: 13th International Conference, Stanford, CA, USA, 9–14 July 2006; Hedman, B., Pianetta, P., Eds.; AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2007; Volume 882, pp. 220–222. [Google Scholar]
- Chalmin, E.; Menu, M.; Vignaud, C. Analysis of rock art painting and technology of Palaeolithic painters. Meas. Sci. Technol. 2003, 14, 1590–1597. [Google Scholar] [CrossRef]
- Chalmin, E.; Vignaud, C.; Menu, M. Palaeolithic painting matter natural or heat-treated pigment? Appl. Phys. Mater. Sci. Process. 2004, 79, 179–191. [Google Scholar] [CrossRef]
- Chalmin, E.; Vignaud, C.; Salomon, H.; Farges, F.; Susini, J.; Menu, M. Minerals discovered in paleolithic black pigments by transmission electron microscopy and micro-X-ray absorption near-edge structure. Appl. Phys. A Mater. Sci. Process. 2006, 83, 213–218. [Google Scholar] [CrossRef]
- Ospitali, F.; Smith, D.C.; Lorblanchet, M. Preliminary investigations by Raman microscopy of prehistoric pigments in the wall-painted cave at Roucadour, Quercy, France. J. Raman Spectrosc. 2006, 37, 1063–1071. [Google Scholar] [CrossRef]
- Sepúlveda, M.; Gutierrez, S.; Campos Vallette, M.; Standen, V.G.; Arriaza, T.; Cárcamo-Vega, J.J. Micro-Raman spectral identification of manganese oxides black pigments in an archaeological context in Northern Chile. Herit. Sci. 2015, 3, 32. [Google Scholar] [CrossRef]
- Wainwright, I.N.M.; Helwig, K.; Rolandi, D.S.; Gradin, C.; Mercedes Podestá, M.; Onetto, M.; Aschero, C.A. Rock paintings, conservation and pigment analysis at Cueva de las Manos and Cerro de los Indios, Santa Cruz (Patagonia), Argentina. In ICOM Committee for Conservation, 13th Triennial Meeting (Rio de Janeiro, 2002) II; Vontobel, R., Ed.; James & James Ltd.: London, UK, 2002; pp. 582–589. [Google Scholar]
- Kakoulli, I. Roman wall paintings in Cyprus: A scientific investigation of their technology. In Roman Wall Painting: Materials, Techniques, Analyses and Conservation, Proceedings of the International Workshop, Fribourg, Switzerland, 7–9 March 1996; Bearat, H., Fuchs, M., Maggetti, M., Paunier, D., Eds.; Institue of Mineralogy and Petrology, Fribourg University: Fribourg, Switzerland, 1997; pp. 131–142. [Google Scholar]
- Scott, D.A.; Scheerer, S.; Reeves, D.J. Technical examination of some rock art pigments and encrustations from the Chumash Indian site of San Emigdio, California. Stud. Conserv. 2002, 47, 184–194. [Google Scholar]
- Colinart, S. Analysis of Inorganic Yellow Colour in Ancient Egyptian Painting. In Colour and Painting in Ancient Egypt; Davies, W.V., Ed.; The British Museum Press: London, UK, 2001; pp. 1–4. [Google Scholar]
- Ambers, J. Raman analysis of pigments from the Egyptian Old Kingdom. J. Raman Spectrosc. 2004, 35, 768–773. [Google Scholar] [CrossRef]
- Pagès-Camagna, S.; Raue, D. Coloured materials used in Elephantine: Evolution and continuity from the Old Kingdom to the Roman Period. J. Archaeol. Sci. Rep. 2016, 7, 662–667. [Google Scholar] [CrossRef]
- Fulcher, K. Painting Amara West: The technology and experience of colour in New Kingdom Nubia. Ph.D. Thesis, University College London, London, UK, 2018; 417p. [Google Scholar]
- Wong, L.; Rickerby, S.; Phenix, A.; Rava, A.; Kamel, R. Examination of the wall paintings in Tutankhamen’s Tomb: Inconsistencies in original technology. Stud. Conserv. 2012, 57, 3223S–3230S. [Google Scholar] [CrossRef]
- Avlonitou, L. Pigments and colours: An inside look at the painted decoration of the Macedonian funerary monuments. J. Archaeol. Sci. Rep. 2016, 7, 668–678. [Google Scholar] [CrossRef]
- Gasanova, S.; Pagès-Camagna, S.; Andreoti, M.; Hermon, S. Non-destructive in situ analysis of polychromy on ancient Cypriot sculptures. Archaeol. Anthropol. Sci. 2018, 10, 83–95. [Google Scholar] [CrossRef]
- Abbe, M.B.; Borromeo, G.E.; Pike, S. A Hellenistic Greek Statue with Ancient Polychromy, reported to be from Knidos. In Interdisciplinary Studies on Ancient Stone; Gutierrez, A., Lapuente, P., Rodà, I., Eds.; ASMOSIA 9; Institut Català d’Arqueologia Clàssica: Tarragona, Spain; pp. 763–771.
- Mazzochin, G.A.; Agnoli, F.; Mazzochin, S.; Colpo, I. Analysis of pigments from Roman wall paintings found in Vicenza. Talanta 2003, 61, 565–572. [Google Scholar] [CrossRef]
- Mazzochin, G.A.; Vianello, A.; Minghelli, S.; Rudello, D. Analysis of Roman wall-Paintings from the Thermae of Iulia Concordia. Archaeometry 2010, 52, 644–655. [Google Scholar]
- Aliatis, I.; Bersani, D.; Campani, E.; Casoli, A.; Lottici, P.P.; Mantovan, S.; Marino, I.G. Pigments used in Roman wall paintings in the Vesuvian area. J. Raman Spectrosc. 2010, 41, 1537–1542. [Google Scholar] [CrossRef]
- Piovesan, R.; Siddall, R.; Mazzoli, C.; Nodari, L. The Temple of Venus (Pompeii): A study of the pigments and painting techniques. J. Archaeol. Sci. 2001, 38, 2633–2643. [Google Scholar] [CrossRef]
- Stodulski, L.; Farrell, E.; Newman, R. Identification of ancient Persian pigments from Persepolis and Pasargadae. Stud. Conserv. 1984, 29, 143–154. [Google Scholar]
- Holakooei, P.; Karimy, A.-H. Early Islamic pigments used at the Masjid-i Jame of Fahraj, Iran: A possible use of black plattnerite. J. Archaeol. Sci. 2015, 54, 217–227. [Google Scholar] [CrossRef]
- Gebremariam, K.F.; Kvittingen, L.; Banica, F.-G. Application of a portable XRF analyzer to investigate the medieval wall paintings of Yemrehanna Krestos Church, Ethiopia. X-ray Spectrom. 2013, 42, 462–469. [Google Scholar] [CrossRef]
- Sultan, S.; Kareem, K.; He, L.; Simon, S. Identification of the authenticity of pigments in ancient polychromed artworks of China. Anal. Methods 2017, 9, 814–825. [Google Scholar] [CrossRef]
- Ravindran, T.R.; Arora, A.K.; Singh, M.; Ota, S.B. On- and off-site Raman study of rock-shelter paintings at world-heritage site of Bhimbetka. J. Raman Spectrosc. 2013, 44, 108–113. [Google Scholar] [CrossRef]
- Dutrisac, J.E.; Jambor, J.L.; O’Reilly, J.B. Man’s first use of jarosite: The pre-Roman mining- metallurgical operations at Rio Tinto, Spain. Can. Min. Metall. Bull. 1983, 76, 78–82. [Google Scholar]
- Basciano, L.C.; Peterson, R.C. The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystal chemistry of the ammoniojarosite_hydronium jarosite solid-solution series. Mineral. Mag. 2007, 71, 427–441. [Google Scholar] [CrossRef]
- Basciano, L.C.; Peterson, R.C. Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy. Am. Mineral. 2008, 93, 853–862. [Google Scholar] [CrossRef]
- Chen, L.; Li, J. 40Ar/39Ar ages and stable isotopes of supergene jarosite from the Baiyin VHMS ore field, NE Tibetan Plateau with paleoclimatic implications. Chin. Sci. Bull. 2014, 59, 2999–3009. [Google Scholar] [CrossRef]
- Maubec, N.; Lahfid, A.; Lerouge, C.; Wille, G.; Michel, K. Characterization of alunite supergroup minerals by Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 925–939. [Google Scholar] [CrossRef] [PubMed]
- Di Lernia, S.; Bruni, S.; Cislaghi, I.; Cremaschi, M.; Gallinaro, M.; Gugliemi, V.; Mercuri, A.-M.; Poggi, G.; Zerboni, A. Colour in context. Pigments and other coloured residues from the Early-Middle Holocene site of Takarkori (SW Libya). Archaeol. Anthropol. Sci. 2016, 8, 381–402. [Google Scholar] [CrossRef]
- Huntley, J.; Aubert, M.; Ross, J.; Brand, H.E.A.; Morwood, M.J. One Colour, (at Least) Two Minerals: A Study of Mulberry Rock Art Pigment and a Mulberry Pigment “Quarry” from the Kimberley, Northern Australia. Archaeometry 2015, 57, 77–99. [Google Scholar] [CrossRef]
- Stuart, B.H.; Thomas, P.S. Pigment characterisation in Australian rock art: A review of modern instrumental methods of analysis. Herit. Sci. 2017, 5, 6. [Google Scholar] [CrossRef]
- El Goresy, A.; Jaksch, H.; Razek, M.A.; Weiner, K. Ancient Pigments in Wall Paintings of Egyptian Tombs and Temples: An Archaeometric Project—Farbpigmente in Altägypschen Wandmalereien in Gräbern und Tempeln: Ein archïsches Projekt; Max-Planck- Institut für Kernphysik: Heidelberg, Germany, 1986. [Google Scholar]
- Holakooei, P.; de Lapérouse, J.-F.; Rugiadi, M.; Caró, F. Early Islamic pigments at Nishapur, north-eastern Iran: Studies on the painted fragments preserved at The Metropolitan Museum of Art. Archaeol. Anthropol. Sci. 2018, 10, 175–195. [Google Scholar] [CrossRef]
- Ospitali, F.; Bersani, D.; Di Lonardo, G.; Lottici, P.P. “Green earths”: Vibrational and elemental characterization of glauconites, celadonites and historical pigments. J. Raman Spectrosc. 2008, 39, 1066–1073. [Google Scholar] [CrossRef]
- Grissom, C.A. Green Earth. In Artists’ Pigments. A Handbook of their History and Characteristics 1; Feller, R.L., Ed.; National Gallery of Art/Washington & Cambridge University Press: Washington, DC, USA, 1986; pp. 141–168. [Google Scholar]
- Ancheta, M. Coloring the Native Northwest Coast. American Indian, Smithsonian Museum of the American Indian. Am. Indian Mag. 2016, 17, 14–19. [Google Scholar]
- Augusti, S. I Colori Pompeiani; De Luca Editore—Ministerio della Pubblica istruzioni, Direzioni Generale delle Antichita e Belle Arti: Rome, Italy, 1967. [Google Scholar]
- Clementi, C.; Ciocan, V.; Vagnini, M.; Doherty, B.; Laurenzi Tabasso, M.; Conti, C.; Brunetti, B.G.; Miliani, C. Non-invasive and micro-destructive investigation of the Domus Aurea wall painting decorations. Anal. Bioanal. Chem. 2011, 401, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Miriello, D.; Bloise, A.; Crisci, G.M.; Luca, R.D.; Nigris, B.D.; Martellone, A.; Osanna, M.; Pace, R.; Pecci, A.; Ruggieri, N. Non-Destructive Multi-Analytical Approach to Study the Pigments of Wall Painting Fragments Reused in Mortars from the Archaeological Site of Pompeii (Italy). Minerals 2018, 8, 134. [Google Scholar] [CrossRef]
- Perez-Rodriguez, J.-L.; Jimenez de Haro, M.-D.-C.; Siguenza, B.; Martinez-Blanes, J.L. Green pigments of Roman mural paintings from Seville Alcazar. Appl. Clay Sci. 2015, 116–117, 211–219. [Google Scholar] [CrossRef]
- Debastiani, R.; Simon, R.; Goettlicher, J.; Heissler, S.; Steininger, R.; Batchelor, D.; Fiederle, M.; Baumbach, T. Identification of green pigments from fragments of Roman mural paintings of three Roman sites from north of Germania Superior. Appl. Phys. A 2016, 122, 871. [Google Scholar] [CrossRef]
- Khan, R.B. Fresco painting of Ajanta. J. Oil Colour Chem. Assoc. 1949, 32, 24–31. [Google Scholar]
- Singh, M.; Arbad, B. Chemistry of Preservation of the Ajanta Murals. Int. J. Conserv. Sci. 2013, 4, 161–176. [Google Scholar]
- Clarke, M. Anglo-Saxon Manuscript Pigments. Stud. Conserv. 2004, 49, 231–244. [Google Scholar]
- Faust, G.T. Huntite, Mg3Ca(CO3)4, a new mineral. Am. Miner. 1953, 38, 4–24. [Google Scholar]
- Yavuz, F.; Kırıkoglu, M.S.; Özden, G. The occurrence and geochemistry of huntite from Neogene lacustrine sediments of the Yalvaç-Yarıkkaya Basin, Isparta, Turkey. J. Mineral. Geochem. 2006, 182, 201–212. [Google Scholar] [CrossRef]
- Uda, M.; Sassa, S.; Yoshimura, S.; Kondo, J.; Nakamura, M.; Ban, Y.; Adachi, M. Yellow, red and blue pigments from ancient Egyptian palace painted walls. Nuclear Instrum. Methods Phys. Res. B 2000, 161–163, 758–761. [Google Scholar] [CrossRef]
- Lee, L.; Quirke, S. Chapter 4. Painting Materials. In Ancient Egyptian Materials and Technology; Nicholson, P.T., Shaw, I., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 104–120. [Google Scholar]
- Heywood, A. The use of huntite as a white pigment in Ancient Egypt. In Colour and Painting in Ancient Egypt; Davies, W.V., Ed.; The British Museum Press: London, UK, 2001; pp. 5–9. [Google Scholar]
- Maravelaki-Kalaitzaki, P.; Kallithrakas-Kontos, N. Pigment and terracotta analyses of Hellenistic figurines in Crete. Anal. Chim. Acta 2003, 497, 209–225. [Google Scholar] [CrossRef]
- Holakooei, P.; Karimy, A.H. Micro-Raman spectroscopy and X-ray fluorescence spectrometry on the characterization of the Persian pigments used in the pre-seventeenth century wall paintings of Masjid-i Jame of Abarqu, central Iran. Spectrochim. Acta A 2015, 134, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Eslamizadeh, A.; Samanirad, S. Petrology of ultramafic rocks and Mg-rich carbonate minerals in southeast of Dehshir, central Iran. Arab. J. Geosci. 2014, 7, 3675–3682. [Google Scholar] [CrossRef]
- Oliveira, C.; Bettencourt, A.M.S.; Araujo, A.; Gonçalves, L.; Kuzniarska-Biernacka, I.; Costa, A.L. Integrated analytical techniques for the study of colouring materials from two megalithic barrows. Archaeometry 2017, 59, 1065–1081. [Google Scholar] [CrossRef]
- Steenbrink, J.; Hilgen, F.J.; Krijgsman, W.; Wijbrans, J.R.; Meulenkamp, J.E. Late Miocene to Early Pliocene depositional history of the intramontane Florina–Ptolemais–Servia Basin, NW Greece: Interplay between orbital forcing and tectonics. Palaeogeography, Palaeoclimatology. Palaeoecology 2006, 238, 151–178. [Google Scholar] [CrossRef]
- Al-Wakeel, M.I. Characterization and process development of the Nile diatomaceous sediment. Int. J. Miner. Process. 2009, 92, 128–136. [Google Scholar] [CrossRef]
- Marks, L.; Salem, A.; Welc, F.; Nitychoruk, J.; Chen, Z.; Blaauw, M.; Zalat, A.; Majecka, A.; Szymanek, M.; Chodyka, M.; et al. Holocene lake sediments from the Faiyum Oasis in Egypt: A record of environmental and climate change. Boreas 2018, 47, 62–79. [Google Scholar] [CrossRef]
- He, L.; Wang, N.; Zhao, X.; Zhou, T.; Xia, Y.; Liang, J.; Rong, B. Polychromic structures and pigments in Guangyuan Thousand-Buddha Grotto of the Tang Dynasty (China). J. Archaeol. Sci. 2012, 39, 1809–1820. [Google Scholar] [CrossRef]
- Fienup-Riordan, A. Yuungnaqpiallerput/The Way We Genuinely Live: Masterworks of Yup’ik Science and Survival; University of Washington Press: Washington, DC, USA, 2007; 360p. [Google Scholar]
- Hamilton, A. The Art Workmanship of the Maori Race in New Zealand; Fergusson & Mitchell: Dunedin, New Zealand, 1986; p. 301. [Google Scholar]
- Hill, R. Traditional paint from Papua New Guinea: Context materials and techniques, and their implications for conservation. Conservator 2001, 25, 49–61. [Google Scholar] [CrossRef]
- Chua, L.; Head, K.; Thomas, P.; Stuart, B. Micro-characterisation of the colour palette of ceremonial objects from the Papua New Guinea Highlands: Transition from natural to synthetic pigments. Microchem. J. 2016, 124, 547–558. [Google Scholar] [CrossRef]
- Scott, D.A.; Eggert, G. The vicissitudes of vivianite as pigment and corrosion product. Stud. Conservation 2007, 52, 3–13. [Google Scholar] [CrossRef]
- Languri, G.M. Molecular Studies of Asphalt, Mummy and Kassel Earth Pigments: Their Characterization, Identification and Effect on the Drying of Traditional Oil Paint; MolArt Report; MolArt: Amsterdam, The Netherlands, 2004; Volume 9, 193p. [Google Scholar]
- Harrell, J.A.; Lewan, M.D. Sources of mummy bitumen in ancient Egypt and Palestine. Archaeometry 2002, 44, 285–293. [Google Scholar] [CrossRef]
- Nissenbaum, A.; Goldberg, M. Asphalts, heavy oils, ozocerite and gases in the Dead Sea Basin. Org. Geochem. 1980, 2, 167–180. [Google Scholar] [CrossRef]
- Bothe, C.I. Asphalt. In Artists’ Pigments: A Handbook of Their History and Characteristics; Berrie, B.H., Ed.; National Gallery of Art, Washington & Archetype Publications: London, UK, 2007; Volume 4, pp. 111–142. [Google Scholar]
- Connan, J.; Nieuwenhuyse, O.P.; van As, A.; Jacobs, L. Bitumen in early ceramic art: Bitumen-painted ceramics from Late Neolithic Tell Sabi Abyad (Syria). Archaeometry 2004, 46, 115–124. [Google Scholar] [CrossRef]
- Connan, J.; van de Velde, T. An overview of bitumen trade in the Near East from the Neolithic (c.8000 BC) to the early Islamic period. Arab. Archaeol. Epigr. 2010, 21, 1–19. [Google Scholar] [CrossRef]
- Siddall, R. Analysis of pigments from the Gurob ship-cart model. In The Gurob Ship-Cart Model and It Mediterranean Context; Wachsmann, S., Ed.; Texas A & M University Press: College Station, TX, USA, 2012; pp. 243–247. [Google Scholar]
- Siddall, R. Asphaltite Pigments in Ancient Egypt. In Proceedings of the Traditional Paint Forum 2011 Conference, London, UK, 13 May 2011; pp. 7–15. [Google Scholar]
- Gettens, R.J.; FitzHugh, E.W. Malachite and Green Verditer, Artists’ Pigments. In A Handbook of Their History and Characteristics 2; Roy, A., Ed.; National Gallery of Art, Washington and Oxford University Press: Oxford, UK, 1993; pp. 183–202. [Google Scholar]
- Gettens, R.J.; FitzHugh, E.W. Azurite and Blue Verditer, Artists’ Pigments. In A Handbook of Their History and Characteristics 2; Roy, A., Ed.; National Gallery of Art, Washington and Oxford University Press: Oxford, UK, 1993; pp. 23–36. [Google Scholar]
- Aru, M.; Burgio, L.; Rumsey, S. Mineral impurities in azurite pigments: Artistic or natural selection? J. Raman Spectrosc. 2014, 45, 1013–1018. [Google Scholar] [CrossRef]
- Scott, D.A. Ancient Egyptian Pigments: The Examination of Some Coffins from the San Diego Museum of Man. MRS Bull. 2014, 35, 390–396. [Google Scholar] [CrossRef]
- Moussa, A.B.; Kantiranis, N.; Voudouris, K.S.; Stratis, J.A.; Ali, M.F.; Christaras, V. Diagnosis of weathered Coptic wall paintings in the Wadi El Natrun region, Egypt. J. Cult. Herit. 2009, 10, 152–157. [Google Scholar] [CrossRef]
- Aloiz, E.; Douglas, J.G.; Nagel, A. Painted plaster and glazed brick fragments from Achaemenid Pasargadae and Persepolis, Iran. Herit. Sci. 2016, 4, 10. [Google Scholar] [CrossRef]
- Jin, P.; Wang, T.; Ma, M.; Yang, X.; Zhu, J.; Nan, P.; Yang, S. Research on the pigments from painted ceramics excavated from the Yangqiaopan Tombs of the late Han Dynasty (48 BC–AD 25). Archaeometry 2012, 54, 1040–1059. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Liu, H.; Wang, X.; Zhang, S. Integrated Analysis of Pigments on Murals and Sculptures in Mogao Grottoes. Anal. Lett. 2015, 48, 2400–2413. [Google Scholar] [CrossRef]
- Garcia Moreno, R.; Mathis, F.; Mazel, V.; Dubus, M.; Calligaro, T.; Strivay, D. Discovery and characterization of an unknown blue-green Maya pigment, veszelyite. Archaeometry 2008, 50, 658–667. [Google Scholar] [CrossRef]
- Carter, E.A.; Perez, F.R.; Garcia, J.M.; Edwards, H.G.M. Raman spectroscopic analysis of an important Visigothic historiated manuscript. Philos. Trans. R. Soc. A 2016, 374, 20160041. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A. Copper and Bronze in Art: Corrosion, Colorants; Conservation Getty Conservation Institute: Los Angeles, CA, USA, 2002; 532p. [Google Scholar]
- Theophilus. On Divers Arts; Translated with Notes by J.G. Hawthorne & C.S. Smith; Dover Publications Inc.: New York, NY, USA, 1963; 216p. [Google Scholar]
- Alejandre, F.J.; Márquez, G. Copper-zinc hydroxychlorides: Origin and occurrence as paint pigments in Arcos de la Frontera’s Chapel of Mercy (Spain). Eur. J. Mineral. 2006, 18, 403–409. [Google Scholar] [CrossRef]
- Pollard, A.M.; Thomas, R.G.; Williams, P.A. Synthesis and stabilities of the basic copper (II) chlorides atacamite, paratacamite, and botallackite. Mineral. Mag. 1989, 53, 557–563. [Google Scholar] [CrossRef]
- Lluveras, A.; Boularand, S.; Andreotti, A.; Vendrell-Saz, M. Degradation of Azurite in Mural Paintings—Distribution of Copper Carbonate, Chloride and Oxalates by SRFTIR. Appl. Phys. 2010, 99, 363–375. [Google Scholar] [CrossRef]
- Scott, D.A. A review of copper chlorides and related salts in bronze corrosion and as painting pigments. Stud. Conserv. 2000, 45, 39–53. [Google Scholar]
- Scott, D.A.; Swartz Dodd, L. Examination, conservation and analysis of a gilded Egyptian bronze Osiris. J. Cult. Herit. 2002, 3, 333–345. [Google Scholar] [CrossRef]
- Nord, A.G.; Tronner, K. The Frequent Occurrence of Atacamite in Medieval Swedish Murals. Stud. Conserv. 2018, 5. [Google Scholar] [CrossRef]
- Martens, W.; Frost, R.L.; Williams, P.A. Raman and infrared spectroscopic study of the basic copper chloride minerals—Implications for the study of the copper and brass corrosion and “bronze disease”. Neues Jahrbuch für Mineralogie Abhandlungen 2003, 178, 197–215. [Google Scholar] [CrossRef]
- Giménez, J. Egyptian Blue and/or atacamite in an ancient Egyptian coffin. Int. J. Conserv. Sci. 2015, 6, 747–749. [Google Scholar]
- Pagès-Camagna, S.; Guichard, H. Egyptian colours and pigments in French collections: Physicochemical analyses on 300 objects. In Decorated Surfaces on Ancient Egyptian Objects: Technology, Deterioration and Conservation, Proceedings of a Conference, Cambridge, UK, 7–8 September 2007; Dawson, J., Rozeik, C., Wright, M.M., Eds.; Archetype in association with the Fitzwilliam Museum and Icon Archaeology Group: London, UK, 2010; pp. 25–31. [Google Scholar]
- Riederer, J. Recently identified Egyptian pigments. Archaeometry 1974, 16, 102–109. [Google Scholar] [CrossRef]
- Brecoulaki, H.; Fiorin, E.; Vigato, P.A. The funerary klinai of tomb 1 from Amphipolis and a sarcophagus from ancient Tragilos, eastern Macedonia: A physico-chemical investigation on the painting materials. J. Cult. Herit. 2006, 7, 301–311. [Google Scholar] [CrossRef]
- Cooke, C.A.; Hintelmann, H.; Ague, J.J.; Burger, R.; Biester, H.; Sachs, J.P.; Engstrom, D.R. Use and Legacy of Mercury in the Andes. Environ. Sci. Technol. 2013, 47, 4181–4188. [Google Scholar] [CrossRef] [PubMed]
- Yong, L. Copper Trihydroxychlorides as Pigments in China. Stud. Conserv. 2012, 57, 106–111. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J. The Usage and Provenance of the Copper Green Pigment in Dunhuang Grottos. Dunhuang Res. 2004, 74, 2328. [Google Scholar]
- Egel, E.; Simon, S. Investigation of the painting materials in Zhongshan Grottoes (Shaanxi, China). Herit. Sci. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Duffy, K.I.; Elgar, J.A. An Investigation of Palette and Color Notations Used to Create a Set of Tibetan Thangkas. In Historical Painting Techniques, Materials, and Studio Practice; Wallert, A., Hermens, E., Peek, M., Eds.; Preprints of a Symposium, University of Leiden, The Netherlands, 26–29 June 1995; The Getty Conservation Institute: Los Angeles, CA, USA, 1995; pp. 78–84. [Google Scholar]
- Valadas, S.; Freire, R.V.; Cardoso, A.; Mirao, J.; Dias, C.B.; Vandenabeele, P.; Candeias, A. On the Use of the Unusual Green Pigment Brochantite (Cu4(SO4)(OH)6) in the 16th-Century Portuguese-Flemish Paintings Attributed to The Master Frei Carlos Workshop. Microsc. Microanal. 2015, 21, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, S.M.; Senin, V.G. Genesis and Composition of Lazurite in Magnesian Skarns. Geochem. Int. 2006, 44, 976–988. [Google Scholar] [CrossRef]
- Brysbaert, A. Lapis Lazuli in an enigmatic “purple” pigment from a thirteenth century BC Greek wall painting. Stud. Conserv. 2006, 51, 252–266. [Google Scholar] [CrossRef]
- Gettens, R.J. The materials in the wall paintings of Bamiyan, Afghanistan. Tech. Stud. Field Fine Arts 1938, 6, 186–193. [Google Scholar]
- Azarpay, G. The Afrasiab Murals: A pictorial narrative reconsidered. Silk Road 2014, 12, 49–56. [Google Scholar]
- Liu, Z.; Han, Y.; Han, L.; Cheng, Y.; Ma, Y.; Fang, L. Micro-Raman analysis of the pigments on painted pottery figurines from two tombs of the Northern Wei Dynasty in Luoyang. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 109, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Kleber, R.; Masschelein-Kleiner, L.; Thissen, J. Study and identification of Maya blue. Stud. Conserv. 1967, 12, 41–56. [Google Scholar]
- García-Moreno, R.; Strivay, D.; Gilbert, B. Maya blue–green pigments found in Calakmul, Mexico: A study by Raman and UV-visible spectroscopy. J. Raman Spectrosc. 2008, 39, 1050–1056. [Google Scholar] [CrossRef]
- Sanchez del Rio, M.; Martinetto, P.; Reyes-Valerio, C.; Dooryhee, E.; Suarez, M. Synthesis and Acid Resistance of Maya Blue Pigment. Archaeometry 2006, 48, 115–130. [Google Scholar] [CrossRef]
- Chiari, G.; Giustetto, R.; Ricchiardi, G. Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction. Eur. J. Mineral. 2003, 15, 21–33. [Google Scholar] [CrossRef]
- Leona, M.; Casadio, F.; Bacci, M.; Picollo, M. Identification of the Pre-Columbian Pigment Maya Blue on Works of Art by Noninvasive UV-Vis and Raman Spectroscopic Techniques. J. Am. Inst. Conserv. 2004, 43, 39–54. [Google Scholar] [CrossRef]
- Accorsi, G.; Verri, G.; Bolognesi, M.; Armaroli, N.; Clementi, C.; Miliani, C.; Romani, A. The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chem. Commun. 2009, 23, 3392–3394. [Google Scholar] [CrossRef] [PubMed]
- Verri, G. The use and distribution of Egyptian blue: A study by visible-induced luminescence imaging. In The Nebamun Wall Paintings: Conservation, Scientific Examination and Display at the British Museum; Middleton, A., Uprichard, K., Eds.; Archetype Publications: London, UK, 2008; pp. 41–50. [Google Scholar]
- Verri, G. The spatial characterization of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging. Anal. Bioanal. Chem. 2009, 394, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Verri, G. The application of visible-induced luminescence imaging to the examination of museum objects. In O3A: Optics for Arts, Architecture, and Archaeology II, SPIE Proceedings; Pezzati, L., Salimbeni, R., Eds.; SPIE: Washington, DC, USA, 2009; Volume 7391, p. 12. [Google Scholar]
- Verri, G.; Collins, P.; Ambers, J.; Sweek, T.; Simpson, S.-J. Assyrian colours: Pigments on a neo-Assyrian relief of a parade horse. Br. Mus. Tech. Res. Bull. 2009, 3, 57–62. [Google Scholar]
- Pabst, A. Structures of some tetragonal sheet silicates. Acta Crystallogr. 1959, 12, 733–739. [Google Scholar] [CrossRef]
- Riederer, J. “Egyptian Blue” Artists’ Pigments. In A Handbook of Their History and Characteristics 3; Elisabeth FitzHugh, W., Ed.; National Gallery of Art, Washington & Oxford University Press: Oxford, UK, 1997; pp. 23–45. [Google Scholar]
- Canti, M.G.; Heathcote, J.L. Microscopic Egyptian Blue (synthetic cuprorivaite) from sediments at two archaeological sites in west-central England. J. Archaeol. Sci. 2002, 29, 831–836. [Google Scholar] [CrossRef]
- Jackson, C.M.; Nicholson, P.T. The provenance of some glass ingots from the Uluburun shipwreck. J. Archaeol. Sci. 2010, 37, 295–301. [Google Scholar] [CrossRef]
- Kakoulli, I. Egyptian blue in Greek painting between 2500 and 50 BC. In From Mine to Microscope: Advances in the Study of Ancient Technology; Shortland, A., Freestone, I., Rehren, T., Eds.; Oxbow Books: Oxford, UK, 2009; pp. 101–112. [Google Scholar]
- Sotiropoulou, S.; Perdikatsis, V.; Birtacha, K.; Apostolaki, C.; Devetzi, A. Physicochemical Characterization and Provenance of Colouring Materials from Akrotiri-Thera in Relation to their Archaeological Context and Application. Archaeol. Anthropol. Sci. 2012, 4, 263–275. [Google Scholar] [CrossRef]
- Tsairis, G.; Palamara, E.; Zacharias, N.; Cosmopoulos, M. A non-destructive technological study of three fresco fragments from Iklaina, Pylos, Greece. STAR Sci. Technol. Archaeol. Res. 2017, 3, 105–114. [Google Scholar] [CrossRef]
- Vlachopoulos, A.; Sotiropoulou, S. Blue Pigments on the Thera Wall Paintings: From the palette of the Theran painter to the laboratory analysis. In Current research in the Late Bronze—Early Iron Age East Mediterranean, Talanta, Proceedings of the Dutch Archaeological and Historical Society; Papadopoulos, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume XLIV, pp. 245–272. [Google Scholar]
- Brysbaert, A.; Melessanaki, K.; Anglos, D. Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS). J. Archaeol. Sci. 2006, 33, 1095–1104. [Google Scholar] [CrossRef]
- Cameron, M.A.S.; Jones, R.E.; Fillipakis, S.E. Scientific Analysis of Minoan Fresco Samples from Knossos. Annu. Br. Sch. Athens 1977, 72, 121–184. [Google Scholar] [CrossRef]
- Riederer, J. Untersuchungen zur Farbgebung des Tempels, Der ältere Porostempel der Aphaia auf Agina; Schwandner, E.L., Ed.; W. De Gruyter: Berlin, Germany, 1985; pp. 136–140. [Google Scholar]
- Wiedemann, H.G.; Bayer, G. The bust of Nefertiti. Anal. Chem. 1982, 54, 619–628. [Google Scholar] [CrossRef]
- Pagés-Camagna, S.; Colinart, S. The Egyptian Green pigment: Its manufacturing process and links to Egyptian Blue. Archaeometry 2003, 45, 637–658. [Google Scholar] [CrossRef]
- Hatton, G.D.; Shortland, A.J.; Tite, M.S. The production technology of Egyptian blue and green frits from second millennium BC Egypt and Mesopotamia. J. Archaeol. Sci. 2008, 35, 1591–1604. [Google Scholar] [CrossRef]
- Ulrich, D. Egyptian blue and green frit: Characterisation, history and occurrence, synthesis. PACT 1987, 17, 323–332. [Google Scholar]
- FitzHugh, E.W.; Zycherman, L.A. An early man-made blue pigment from China—Barium copper silicate’. Stud. Conserv. 1983, 28, 15–23. [Google Scholar]
- FitzHugh, E.W.; Zycherman, L.A. A purple barium copper silicate pigment from early China’. Stud. Conserv. 1992, 37, 145–154. [Google Scholar]
- Wiedemann, H.G.; Bayer, G. Formation and Stability of Chinese Barium Copper-Silicate Pigments. In Conservation of Ancient Sites on the Silk Road, Proceedings of an International Conference on the Conservation of Grotto Sites Getty Conservation Institute, Los Angeles, CA, USA, 3–8 October 1993; Getty Conservation Institute: Los Angeles, CA, USA, 1997; pp. 379–387. [Google Scholar]
- Liu, Z.; Mehta, A.; Tamura, N.; Pickard, D.; Rong, B.; Zhou, T.; Pianetta, P. Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors. J. Archaeol. Sci. 2007, 34, 1878–1883. [Google Scholar] [CrossRef]
- Bouherour, S.; Berke, H.; Wiedemann, H.G. Ancient Man-made Copper Silicate Pigments Studied by Raman Microscopy. Chim. Int. J. Chem. 2001, 55, 942–951. [Google Scholar]
- Thieme, C. Paint Layers and Pigments on the Terracotta Army: A Comparison with Other Cultures of Antiquity. In Monuments & Sites III—The Polychromy of Antique Sculptures and the Terracotta Army of the First Chinese Emperor; Wu, Y., Zhang, T., Petzet, M., Emmerling, E., Blänsdorf, C., Eds.; ICOMOS: Paris, France, 2001; pp. 52–58. [Google Scholar]
- Xia, Y.; Ma, Q.; Zhang, Z.; Liu, Z.; Feng, J.; Shao, A.; Wang, W.; Fu, Q. Development of Chinese barium copper silicate pigments during the Qin Empire based on Raman and polarized light microscopy studies. J. Archaeol. Sci. 2014, 49, 500–509. [Google Scholar] [CrossRef]
- Aiuppa, A.; Avino, R.; Brusca, L.; Caliro, S.; Chiodini, G.; D’Alessandro, W.; Favara, F.; Federico, C.; Ginevra, W.; Inguaggiato, S.; et al. Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem. Geol. 2006, 229, 313–330. [Google Scholar] [CrossRef]
- Akçay, M.; Mustafa Özkan, H.; Moon, C.J.; Spiro, B. Geology, mineralogy and geochemistry of the gold-bearing stibnite and cinnabar deposits in the Emirli and Haliköy areas (Ödemis, Izmir, West Turkey). Ore Geol. Rev. 2006, 29, 19–51. [Google Scholar] [CrossRef]
- Asadi, H.H.; Voncken, J.H.L.; Kühnel, R.A.; Hale, M. Petrography, mineralogy and geochemistry of Zarshuran Carlin-type gold deposit, northwest Iran. Miner. Depos. 2000, 35, 656–671. [Google Scholar] [CrossRef]
- Douglass, D.L.; Shing, C.; Wang, G. The light-induced alteration of realgar to pararealgar. Am. Mineral. 1992, 77, 1266–1274. [Google Scholar]
- Keune, K.; Mass, J.; Meirer, F.; Pottasch, C.; van Loon, A.; Hull, A.; Church, J.; Pouyet, E.; Cotte, M.; Mehta, M. Tracking the transformation and transport of arsenic sulfide pigments in paints: Synchrotron-based X-ray micro-analyses. J. Anal. At. Spectrom. 2015, 30, 813–827. [Google Scholar] [CrossRef]
- Coccato, A.; Moens, L.; Vandenabeele, P. On the stability of mediaeval inorganic pigments: A literature review of the effect of climate, material selection, biological activity, analysis and conservation treatments. Herit. Sci. 2017, 5, 25. [Google Scholar] [CrossRef]
- Grundmann, G.; Richter, M. Current Research on Artificial Arsenic Sulphide Pigments in Artworks: A Short Review. Chimia 2008, 62, 903–907. [Google Scholar] [CrossRef]
- Harrell, J.A.; Bloxam, E. Egypt’s evening emerald. Minerva 2010, 21, 16–19. [Google Scholar]
- Olsson, A.-M.B.; Calligaro, T.; Colinart, S.; Dran, J.C.; Lövestam, N.E.G.; Moignard, B.; Salomon, J. Micro-PIXE analysis of an Ancient Egyptian papyrus: Identification of pigments used for the “Book of the Dead”. Nucl. Instr. Methods Phys. Res. B 2001, 181, 707–714. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Bruni, S.; Guglielmi, V.; Milazzo, M.; Neri, O. Field and laboratory multi-technique analysis of pigments and organic painting media from an Egyptian coffin (26th Dynasty). Archaeometry 2011, 53, 1212–1230. [Google Scholar] [CrossRef]
- Dawson, J.; Marchant, J.; von Adarkas, E. Egyptian Coffins: Materials construction & decoration. In Death on the Nile: Uncovering the Afterlife of Ancient Egypt; The Fitwilliam Museum: Cambridge, UK, 2016; pp. 75–111. [Google Scholar]
- Rowe, S.; Siddall, R.; Stacey, R. Romano-Egyptian gilded cartonnage: Technical study and conservation of a mummy mask from Hawara. In Decorated surfaces on ancient Egyptian objects: Technology, deterioration and conservation, Proceedings of a Conference, Cambridge, UK, 7–8 September 2007; Dawson, J., Rozeik, C., Wright, M.M., Eds.; Archetype in association with the Fitzwilliam Museum and Icon Archaeology Group: London, UK, 2010; pp. 106–121. [Google Scholar]
- Vandenabeele, P.; von Bohlen, A.; Moens, L.; Klockenkämper, R.; Joukes, F.; Dewispelaere, G. Spectroscopic Examination of Two Egyptian Masks: A Combined Method Approach. Anal. Lett. 2000, 33, 3315–3332. [Google Scholar] [CrossRef]
- Nöller, R.; Hahn, O. Illuminated Manuscripts from Turfan: Tracing Silk Road Glamour by Analyzing Pigments. STAR Sci. Technol. Archaeol. Res. 2015, 1, 50–59. [Google Scholar] [CrossRef]
- McCarthy, B. Technical Analysis of Reds and Yellows in the Tomb of Suemniwet, Theban Tomb 92. In Colour and Painting in Ancient Egypt; Davies, W.V., Ed.; The British Museum Press: London, UK, 2001; pp. 17–21. [Google Scholar]
- Calza, C.; Anjos, M.J.; de Mendonça Souza, S.M.F.; Brancaglion, A., Jr.; & Lopes, R.T. X-ray microfluorescence with synchrotron radiation applied in the analysis of pigments from ancient Egypt. Appl. Phys. A 2008, 90, 75–79. [Google Scholar] [CrossRef]
- Li, T.; Xie, Y.-F.; Yang, Y.-M.; Wang, C.-S.; Fang, X.-Y.; Shi, J.-L.; He, Q.-J. Pigment identification and decoration analysis of a 5th century Chinese lacquer painting screen: A micro-Raman and FTIR study. J. Raman Spectrosc. 2009, 40, 1911–1918. [Google Scholar] [CrossRef]
- Marte, F.; Péquignot, A.; von Endt, D.W. Arsenic in Taxidermy Collections: History, detection and management. Collect. Forum 2006, 20, 143–150. [Google Scholar]
- Hazen, R.; Golden, J.; Downs, R.T.; Hystad, G.; Grew, E.S.; Azzolini, D.; Sverjensky, D. Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am. Mineral. 2012, 97, 1013–1042. [Google Scholar] [CrossRef]
- Emslie, S.D.; Brasso, R.; Patterson, W.P.; Valera, A.C.; McKenzie, A.; Silva, A.M.; Gleason, J.D.; Blum, J.D. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Nat. Sci. Rep. 2015, 5, 14679. [Google Scholar] [CrossRef] [PubMed]
- Rogerio-Candelera, M.A.; Herrera, L.K.; Miller, A.Z.; García Sanjuán, L.; Molina, C.M.; Wheatly, D.W.; Justo, A.; Saiz-Jimenez, C. Allochthonous red pigments used in burial practices at the Copper Age site of Valencina de la Concepción (Sevilla, Spain): Characterisation and social dimension. J. Archaeol. Sci. 2013, 40, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Gajic-Kvascev, M.; Stojanovich, M.M.; Smit, Z.; Kanterelou, V.; Karydas, A.; Sljivar, D.; Milovanovic, D.; Andric, V. New evidence for the use of cinnabar as a colouring pigment in the Vinca culture. J. Archaeol. Sci. 2012, 39, 1025–1033. [Google Scholar] [CrossRef]
- Tuñon, J.A.; Sáchez, A.; Parras, D.J.; Vandenabeele, P.; Montejo, M. Micro-Raman spectroscopy on Iberian archaeological materials. J. Raman Spectrosc. 2016, 47, 1514–1521. [Google Scholar] [CrossRef]
- Nir-El, Y.; Broshi, M. The red ink of the Dead Sea Scrolls. Archaeometry 1996, 38, 97–102. [Google Scholar] [CrossRef]
- Ribechini, E.; Modugno, F.; Pérez-Arantegui, J.; Colombini, M.P. Discovering the composition of ancient cosmetics and remedies: Analytical techniques and materials. Anal. Bioanal. Chem. 2011, 401, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Huq, A.; Stephens, P.W.; Ayed, N.; Binous, H.; Burgio, L.; Clark, R.J.H.; Pantos, E. Combined technique analysis of the composition of Punic make-up materials. Appl. Phys. A 2006, 83, 253–256. [Google Scholar] [CrossRef]
- Liu, L. The Chinese Neolithic: Trajectories to Early States; Cambridge University Press: Cambridge, UK, 2004; 330p. [Google Scholar]
- Cooke, C.A.; Balcom, P.H.; Biester, H.; Wolfe, A.H. Over three millennia of mercury pollution in the Peruvian Andes. Proc. Natl. Acad. Sci. USA 2009, 106, 8830–8834. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Donten, M.L.; Donten, M.; Bulska, E.; Jackowska, A.; Sobucki, W. Analytical approach to the conservation of the ancient Egyptian manuscript “Bakai Book of the Dead”: A case study. Microchim. Acta 2007, 159, 101–108. [Google Scholar] [CrossRef]
- Sepúlveda, M.R.; Figueroa, V.L.; Pagés-Camagna, S. Copper Pigment-making in the Atacama Desert (Northern Chile). Latin Am. Antiq. 2013, 24, 467–482. [Google Scholar] [CrossRef]
Name | Formula | Crystal System |
---|---|---|
Cryptomelane | K(Mn4+7Mn3+)O16 | Monoclinic |
Groutite | Mn3+O(OH) | Orthorhombic |
Hausmannite | Mn2+Mn3+2O4 | Tetragonal |
Hollandite | Ba(Mn4+6Mn3+2)O16 | Monoclinic |
Manganite | Mn3+O(OH) | Monoclinic |
Nsutite | (Mn4+,Mn2+)(O,OH)2 | Hexagonal |
Pyrolusite | Mn4+O2 | Tetragonal |
Ramsdellite | Mn4+O2 | Orthorhombic |
Romanechite | (Ba,H2O)2(Mn4+,Mn3+)5O10 | Monoclinic |
Todorokite | (Na,Ca,K,Ba,Sr)1−x(Mn,Mg,Al)6O12·3–4H2O | Monoclinic |
Name | Formula | Crystal System |
---|---|---|
Hematite | Fe2O3 | Trigonal |
Goethite | FeO (OH) | Orthorhombic |
Jarosite | KFe3+3(SO4)2(OH)6 | Trigonal |
Natrojarosite | NaFe3(SO4)2(OH)6 | Trigonal |
Hydronium jarosite | (H3O)Fe3+3(SO4)2(OH)6 | Trigonal |
Glauconite | K(Mg,Fe2+) Fe3+(Si4O10)(OH)2 | Monoclinic |
Celadonite | (K,Na)(Mg,Fe2+,Fe3+)(Fe3+,Al)(Si,Al)4O10(OH)2 | Monoclinic |
Calcite | CaCO3 | Hexagonal |
Huntite | Mg3Ca(CO3)4 | Trigonal |
Gypsum | CaSO4·2H2O | Monoclinic |
Kaolinite | Al2(Si2O5)(OH)4 | Triclinic |
Diatomite | SiO2 | Amorphous |
Vivianite | Fe2+3(PO4)2·8H2O | Monoclinic |
Name | Formula | Crystal System |
---|---|---|
Malachite | Cu2(CO3)(OH)2 | Monoclinic |
Azurite | Cu3(CO3)2(OH)2 | Monoclinic |
Atacamite | Cu2Cl(OH)3 | Orthorhombic |
Paratacamite | Cu2Cl(OH)3 | Trigonal |
Clinoatacamite | Cu2Cl(OH)3 | Monoclinic |
Botallackite | Cu2Cl(OH)3 | Monoclinic |
Antlerite | Cu3(SO4)(OH)4 | Orthorhombic |
Brochantite | Cu4(SO4)(OH)6 | Monoclinic |
Tyrolite | Ca2Cu9(AsO4)4(CO3)(OH)8·11H2O | Orthorhombic |
Veszelyite | (Cu,Zn)2Zn(PO4)2·2H2O | Monoclinic |
Lazurite | Na6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2 | Cubic |
Egyptian Blue | CaCuSi4O10 | Tetragonal |
Egyptian Green | CaSiO3 + Cu glass | Triclinic + amorphous |
Han Blue | BaCuSi4O10 | Tetragonal |
Han Purple | BaCuSi2O6 | Tetragonal |
Name | Formula | Crystal System |
---|---|---|
Orpiment | As2S3 | Monoclinic |
Realgar | α-As4S4 | Monoclinic |
Pararealgar | As4S4 | Monoclinic |
Cinnabar | HgS | Trigonal |
Galena | PbS | Cubic |
Plattnerite | β-PbO2 | Tetragonal |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddall, R. Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals 2018, 8, 201. https://doi.org/10.3390/min8050201
Siddall R. Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals. 2018; 8(5):201. https://doi.org/10.3390/min8050201
Chicago/Turabian StyleSiddall, Ruth. 2018. "Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials" Minerals 8, no. 5: 201. https://doi.org/10.3390/min8050201
APA StyleSiddall, R. (2018). Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals, 8(5), 201. https://doi.org/10.3390/min8050201