Next Issue
Volume 8, June
Previous Issue
Volume 8, April
 
 

Minerals, Volume 8, Issue 5 (May 2018) – 47 articles

Cover Story (view full-size image): We identify the new mineral species oyonite, ideally Ag3Mn2Pb4Sb7As4S24, in the Uchucchacua base-metal deposit, Oyon district, Catajambo, Lima Department, Peru. From the structural point of view, oyonite belongs to the Sb-rich members of the andorite homeotypic sub-series within the lillianite homologous series. Such sulfosalts could be very important for their technological applications. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 797 KiB  
Article
Automatic Parameter Tuning of Multiple-Point Statistical Simulations for Lateritic Bauxite Deposits
by Yasin Dagasan, Philippe Renard, Julien Straubhaar, Oktay Erten and Erkan Topal
Minerals 2018, 8(5), 220; https://doi.org/10.3390/min8050220 - 22 May 2018
Cited by 14 | Viewed by 4339
Abstract
The application of multiple-point statistics (MPS) in the mining industry is not yet widespread and there are very few applications so far. In this paper, we focus on the problem of algorithmic input parameter selection, which is required to perform MPS simulations. The [...] Read more.
The application of multiple-point statistics (MPS) in the mining industry is not yet widespread and there are very few applications so far. In this paper, we focus on the problem of algorithmic input parameter selection, which is required to perform MPS simulations. The usual approach for selecting the parameters is to conduct a manual sensitivity analysis by testing a set of parameters and evaluating the resulting simulation qualities. However, carrying out such a sensitivity analysis may require significant time and effort. The purpose of this paper is to propose a novel approach to automate the parameter tuning process. The primary criterion used to select the parameters is the reproduction of the conditioning data patterns in the simulated image. The parameters of the MPS algorithm are obtained by iteratively optimising an objective function with simulated annealing. The objective function quantifies the dissimilarity between the pattern statistics of the conditioning data and the simulation image in two steps: the pattern statistics are first obtained using a smooth histogram method; then, the difference between the histograms is evaluated by computing the Jensen–Shanon divergence. The proposed approach is applied for the simulation of the geological interface (footwall contact) within a laterite-type bauxite mine deposit using the Direct Sampling MPS algorithm. The results point out two main advantages: (1) a faster parameter tuning process and (2) more objective determination of the parameters. Full article
Show Figures

Figure 1

13 pages, 2328 KiB  
Article
Preparation of Mullite-Silica Composites Using Silica-Rich Monophasic Precursor Obtained as a Byproduct of Mineral Carbonation of Blast-Furnace Slag
by Kyungsun Song, Wonbaek Kim, Chang-Yul Suh, Jun-Hwan Bang and Ji-Whan Ahn
Minerals 2018, 8(5), 219; https://doi.org/10.3390/min8050219 - 22 May 2018
Cited by 11 | Viewed by 5033
Abstract
Previously, mineral carbonation of blast-furnace slag was carried out to sequestrate CO2 and attain pure CaCO3 crystals. In this process, amorphous silica-alumina nanoparticles were obtained as a byproduct. In this study, the crystallization of these nanoparticles on calcination at various temperatures [...] Read more.
Previously, mineral carbonation of blast-furnace slag was carried out to sequestrate CO2 and attain pure CaCO3 crystals. In this process, amorphous silica-alumina nanoparticles were obtained as a byproduct. In this study, the crystallization of these nanoparticles on calcination at various temperatures in air was examined using TGA-DTA, XRD, MAS-NMR spectroscopy, and FT-IR spectroscopy. The precursor nanoparticles (Si:Al = 78:22 mol %) were prepared using the solution extracted from blast-furnace slag (BFS) with acetic acid at room temperature. The XRD analysis showed that the initial amorphous state was retained up to 800 °C, and decomposition to amorphous silica and mullite started after calcination at 950 °C. At temperatures between 1150 °C and 1250 °C, amorphous silica crystalized to cristobalite, which eventually melted to glassy silica at 1500 °C. The mullite crystals initially adopted a metastable tetragonal phase and transformed to a stable, needle-like orthorhombic phase at higher temperatures. 27Al MAS-NMR spectroscopy revealed that octahedrally coordinated Al was favored up to a temperature of 800 °C as a result of the dehydration process and transformed into tetrahedrally coordinated Al at higher temperatures. A microstructural examination revealed that the initially randomly-oriented mullite developed into stable, needle-like grains owing to anisotropic grain growth in the presence of a glass phase at high temperatures. This study suggests that the recycling of BFS can be exploited for the procurement of a mullite-type ceramic material. Full article
(This article belongs to the Special Issue Mineral Materials)
Show Figures

Figure 1

11 pages, 2323 KiB  
Article
Tsygankoite, Mn8Tl8Hg2(Sb21Pb2Tl)Σ24S48, a New Sulfosalt from the Vorontsovskoe Gold Deposit, Northern Urals, Russia
by Anatoly V. Kasatkin, Emil Makovicky, Jakub Plášil, Radek Škoda, Atali A. Agakhanov, Vladimir Y. Karpenko and Fabrizio Nestola
Minerals 2018, 8(5), 218; https://doi.org/10.3390/min8050218 - 21 May 2018
Cited by 14 | Viewed by 4303
Abstract
Tsygankoite, ideally Mn8Tl8Hg2(Sb21Pb2Tl)Σ24S48, is a new sulfosalt discovered at the Vorontsovskoe gold deposit, Northern Urals, Russia. It occurs as lath-like elongated crystals up to 0.2 mm embedded in calcite–dolomite–clinochlore [...] Read more.
Tsygankoite, ideally Mn8Tl8Hg2(Sb21Pb2Tl)Σ24S48, is a new sulfosalt discovered at the Vorontsovskoe gold deposit, Northern Urals, Russia. It occurs as lath-like elongated crystals up to 0.2 mm embedded in calcite–dolomite–clinochlore matrix. The associated minerals also include aktashite, alabandite, arsenopyrite, barite, cinnabar, fluorapatite, orpiment, pyrite, realgar, routhierite, sphalerite, tilasite, and titanite. The new mineral is non-fluorescent, black, and opaque with a metallic lustre and black streak. It is brittle with an uneven fracture and no obvious parting and cleavage. Its Vickers hardness (VHN10) is 144 kg/mm2 (range 131–167 kg/mm2) and its calculated density is 5.450 g cm. In reflected light, tsygankoite is white; between crossed polars it is dark grey to black. It is strongly anisotropic: rotation tints vary from light grey to dark grey to black. Pleochroism and internal reflections are not observed. The chemical composition of tsygankoite (wt %, electron-microprobe data) is: Mn 6.29, Hg 5.42, Tl 26.05, Pb 5.84, As 3.39, Sb 30.89, S 21.87, total 99.75. The empirical formula, calculated on the basis of 90 atoms pfu, is: Mn8.06Tl8.00Hg1.90(Sb17.87As3.19Pb1.99Tl0.97)Σ24.02S48.03. Tsygankoite is monoclinic, space group C2/m, a = 21.362(4) Å, b = 3.8579(10) Å, c = 27.135(4) Å, β = 106.944(14)°, V = 2139.19(17) Å3 and Z = 1. The five strongest diffraction peaks from X-ray powder pattern (listed as (d,Å(I)(hkl)) are: 3.587(100)(112), 3.353(70)(−114), 3.204(88)(405), 2.841(72)(−513), and 2.786(99)(−514). The crystal structure of tsygankoite was refined from single-crystal X-ray diffraction data to R = 0.0607 and consists of an alternation of two thick layer-like arrays, one based on PbS-archetype and the second on SnS-archetype. Tsygankoite has been approved by the IMA-CNMNC under the number 2017-088. It is named for Mikhail V. Tsyganko, a mineral collector from Severouralsk, Northern Urals, Russia, who collected the samples where the new mineral was discovered. Full article
(This article belongs to the Special Issue Thallium: Mineralogy, Geochemistry and Ore Processes)
Show Figures

Figure 1

15 pages, 5497 KiB  
Article
Surface-Modified Garnet Particles for Reinforcing Epoxy Composites
by Yiming Jiang, Fengping Xu, Kun Liu and Qiming Feng
Minerals 2018, 8(5), 217; https://doi.org/10.3390/min8050217 - 19 May 2018
Cited by 4 | Viewed by 4727
Abstract
The present study investigated the tribological performance of epoxy (EP) matrix composites enhanced with natural garnet. The garnet was surface-modified with sodium stearate for optimal performance. Composites comprising different contents and particle sizes of modified garnet (MG) were prepared with a mixture of [...] Read more.
The present study investigated the tribological performance of epoxy (EP) matrix composites enhanced with natural garnet. The garnet was surface-modified with sodium stearate for optimal performance. Composites comprising different contents and particle sizes of modified garnet (MG) were prepared with a mixture of EP and MG. The sodium stearate-bonded garnet and EP formed a stable structure. Tribological performance was measured by a ball-on-plate apparatus under permanent dry sliding conditions and a wear track was obtained by an optical profilometer. The wear mechanism was explored by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) images. Wear test results showed that the coefficient of friction for all EP/MG composites decreased compared with that for neat epoxy. The results also indicated that the addition of MG can evidently improve the tribological properties of EP matrix composites. Full article
(This article belongs to the Special Issue Mineral Materials)
Show Figures

Figure 1

15 pages, 5392 KiB  
Article
Effect of Ethylene Diamine Phosphate on the Sulfidization Flotation of Chrysocolla
by Peilun Shen, Dianwen Liu, Xiaohui Xu, Xiaodong Jia, Xiaolin Zhang, Dan Liu and Ruizeng Liu
Minerals 2018, 8(5), 216; https://doi.org/10.3390/min8050216 - 18 May 2018
Cited by 25 | Viewed by 4200
Abstract
In this study, ethylene diamine phosphate (EDP) was employed as an activator to improve the sulfidization and flotation of chrysocolla. The micro-flotation experiment results indicated that EDP could greatly increase the flotation recovery of chrysocolla. BET and TEM measurements confirmed that the porous [...] Read more.
In this study, ethylene diamine phosphate (EDP) was employed as an activator to improve the sulfidization and flotation of chrysocolla. The micro-flotation experiment results indicated that EDP could greatly increase the flotation recovery of chrysocolla. BET and TEM measurements confirmed that the porous structure of the chrysocolla’s surface would lead to large amounts of the reagents. ICP-AES analysis revealed that the addition of EDP caused more active Cu sites formed on the chrysocolla’s surface, enhancing the adsorption of S2− on its surface. Meanwhile, a redox reaction occurred between the S2− and [Cu(en)2]2+ ions causing the Cu, S, and N in the solution to counter-adsorb onto the chrysocolla’s surface by forming new complexes. During this reaction, the Cu(II) species reduced to Cu(I) species and the sulfide ions in the form of S2−, S22−, Sn2−, and SO42− appeared on the mineral surface. The zeta potential measurements further revealed that the EDP-activated chrysocolla surfaces adsorbed more sulfide species and xanthate species, thereby improving the floatability of the chrysocolla. Full article
Show Figures

Figure 1

19 pages, 1876 KiB  
Review
Bioleaching of Arsenic-Bearing Copper Ores
by José Antonio Díaz, Jennyfer Serrano and Eduardo Leiva
Minerals 2018, 8(5), 215; https://doi.org/10.3390/min8050215 - 17 May 2018
Cited by 26 | Viewed by 13773
Abstract
World copper (Cu) production has been strongly affected by arsenic (As) content, because As-rich Cu concentrates are not desirable in the metal foundries. When As-rich Cu concentrates are processed by smelting they release As as volatile compounds into the atmosphere and inside furnaces, [...] Read more.
World copper (Cu) production has been strongly affected by arsenic (As) content, because As-rich Cu concentrates are not desirable in the metal foundries. When As-rich Cu concentrates are processed by smelting they release As as volatile compounds into the atmosphere and inside furnaces, generating serious risks to human health. In recent years, exports of Cu concentrates are being penalized for the increasingly high As content of the ores, causing economies that depend on the Cu market to be seriously harmed by this impurity. In the last few decades, biohydrometallurgy has begun to replace the traditional Cu sulfide processing, however bioleaching processes for As-bearing Cu ores which contain enargite are still in the development stage. Researchers have not yet made successful progress in enargite bioleaching using typical mesophilic and thermophilic bacteria that oxidize sulfide. New approaches based on direct oxidative/reductive dissolution of As from enargite could result in significant contributions to Cu biohydrometallurgy. Thus, As-rich Cu concentrates could be pre-treated by bioleaching, replacing current technologies like roasting, pressure leaching and alkaline leaching by selective biological arsenite oxidation or arsenate reduction. In this article, we review the As problem in Cu mining, conventional technologies, the biohydrometallurgy approach, and As bioleaching as a treatment alternative. Full article
(This article belongs to the Collection Bioleaching)
Show Figures

Figure 1

20 pages, 4320 KiB  
Article
Metasomatic Replacement of Albite in Nature and Experiments
by Kirsten Drüppel and Richard Wirth
Minerals 2018, 8(5), 214; https://doi.org/10.3390/min8050214 - 17 May 2018
Cited by 9 | Viewed by 5820
Abstract
Replacement of albite by sodium-rich, secondary phases is a common phenomenon, observed in different geological settings and commonly attributed to alkaline metasomatism. We investigated growth of nepheline and sodalite on albite in time series experiments between two and 14 days. A total of [...] Read more.
Replacement of albite by sodium-rich, secondary phases is a common phenomenon, observed in different geological settings and commonly attributed to alkaline metasomatism. We investigated growth of nepheline and sodalite on albite in time series experiments between two and 14 days. A total of 42 hydrothermal experiments were performed in cold-seal hydrothermal vessels at a constant pressure of 4 kbar and 200–800 °C in the system SiO2–Al2O3–NaCl–H2O. To allow for fluid flow and material transport, a double-capsule technique was used; hereby, a perforated inner Pt capsule was filled with cleavage fragments of natural albite, whereas the shut outer Au capsule was filled with γ-Al2O3 and the NaCl–H2O solution. Complete overgrowth of albite by sodalite and nepheline occurred after just two days of experiments. At high salinity (≥17 wt % NaCl) sodalite is the stable reaction product over the whole temperature range whereas nepheline occurs at a lower relative bulk salinity than sodalite and is restricted to a high temperature of ≥700 °C. The transformation of albite starts along its grain margins, cracks or twin lamellae. Along the reaction front sodalite crystallizes as small euhedral and highly porous grains forming polycrystalline aggregates. Coarse sodalite dominates in the outermost domains of the reaction zones, suggesting recrystallization. Sodalite may contain fluid inclusions with trapped NaCl-rich brine, demonstrating that the interconnected microporosity provides excellent pathways for fluid-assisted material transport. Highly porous nepheline forms large, euhedral crystals with rectangular outline. Sodalite and nepheline in natural rock samples display only minor porosity but fluid and secondary mineral inclusions, pointing to coarsening of a previously present microporosity. The reaction interface between sodalite and albite in natural rock samples is marked by open channels in transmission electron microscopy. In many of the experiments, a zone of Si–H-rich, amorphous material is developed at the reaction front, which occurs at a temperature of up to of 750 °C as nanometer to 350 µm wide reaction zone around albite. This change in composition corresponds with the abrupt termination of the crystalline feldspar structure. The presence of sodalite as micro- to nanometer-sized, euhedral crystals within the amorphous zone demonstrates, that both the sodalite reaction rim and the amorphous material allow for fluid-assisted material transport between the crystalline albite (release of Si, Al) and the bulk fluid (H2O, Na, Cl). This texture, moreover, suggests that the amorphous phase represents a metastable interstage reaction product, which is progressively replaced by sodalite and nepheline. Remarkably, product sodalite, nepheline, and the amorphous material largely inherit the trace element budget of the respective ancestor albite, indicating that at least part of the trace elements remained fixed during the reaction process. The observed reaction textures in both natural and experimental samples indicate an interfacial dissolution–reprecipitation mechanism. Results of our study bear important implications with respect to mineral replacement in the presence of a fluid phase, especially regarding the interpretation of trace element patterns of the product phases. Full article
(This article belongs to the Special Issue Mineral Surface Reactions at the Nanoscale)
Show Figures

Figure 1

20 pages, 5542 KiB  
Article
Geochronology, Petrology, and Genesis of Two Granitic Plutons of the Xianghualing Ore Field in South Hunan Province: Constraints from Zircon U–Pb Dating, Geochemistry, and Lu–Hf Isotopic Compositions
by Lizhi Yang, Xiangbin Wu, Jingya Cao, Bin Hu, Xiaowen Zhang, Yushuang Gong and Weidong Liu
Minerals 2018, 8(5), 213; https://doi.org/10.3390/min8050213 - 15 May 2018
Cited by 37 | Viewed by 4786
Abstract
Two small-sized granitic plutons, outcropped in Xianghualing ore field, South Hunan (South China), have a close relationship with the super large-scale Sn–W polymetallic mineralization in this ore field. The Laiziling and Jianfengling plutons are composed of medium- to coarse-grained two-mica and coarse-grained biotite [...] Read more.
Two small-sized granitic plutons, outcropped in Xianghualing ore field, South Hunan (South China), have a close relationship with the super large-scale Sn–W polymetallic mineralization in this ore field. The Laiziling and Jianfengling plutons are composed of medium- to coarse-grained two-mica and coarse-grained biotite granites, respectively, and have zircon U–Pb ages of 156.4 ± 1.4 Ma and 165.2 ± 1.4 Ma, respectively. Both of the Laiziling and Jianfengling granites are characterized by extremely similar elemental and Lu–Hf isotopic compositions with high contents of SiO2, Al2O3, Na2O, K2O, high A/CNK ratios, negative εHf(t) values (ranging from −3.86 to −1.38 and from −5.44 to −3.71, respectively), and old TDMC ages (ranging from 1.30 to 1.47 Ga and from 1.32 to 1.56 Ga, respectively). These features indicate that they both belong to highly fractionated A-type granites, and were formed in an extensional setting and from the same magma chamber originated from the Paleoproterozoic metamorphic basement of South China with a certain amount of mantle-derived magma involved with temperatures of ca. 730 °C and low oxygen fugacity. Full article
Show Figures

Graphical abstract

9 pages, 24131 KiB  
Article
Effects of Microbial Growth Conditions on Synthesis of Magnetite Nanoparticles using Indigenous Fe(III)-Reducing Bacteria
by Yumi Kim and Yul Roh
Minerals 2018, 8(5), 212; https://doi.org/10.3390/min8050212 - 14 May 2018
Cited by 5 | Viewed by 4072
Abstract
Recent researches have shown that microbe–metal interactions play an important role in metal cycling and biomineralization in subsurface environments. The objective of this research was to study the effects of microbial growth conditions for size control on the synthesis of magnetite nanoparticles using [...] Read more.
Recent researches have shown that microbe–metal interactions play an important role in metal cycling and biomineralization in subsurface environments. The objective of this research was to study the effects of microbial growth conditions for size control on the synthesis of magnetite nanoparticles using Fe(III)-reducing bacteria enriched from intertidal flat sediments in Korea. The microbial formation of the magnetite nanoparticles was examined under various incubation temperatures (8–35 °C), concentrations (20–60 mM) of magnetite precursor, medium pHs (6.5–8.5), and incubation times (0–3 weeks). The Fe(III)-reducing bacteria formed 2~10 nm-sized magnetite (Fe3O4) by reduction of 40 mM akaganeite, especially under the conditions at 25 °C and medium pH = 8.5 within a 1-week incubation time. The magnetite nanoparticles formed by microbial processes exhibited superparamagnetic behavior. Full article
Show Figures

Figure 1

28 pages, 2425 KiB  
Review
210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores
by Nigel J. Cook, Kathy J. Ehrig, Mark Rollog, Cristiana L. Ciobanu, Daniel J. Lane, Danielle S. Schmandt, Nicholas D. Owen, Toby Hamilton and Stephen R. Grano
Minerals 2018, 8(5), 211; https://doi.org/10.3390/min8050211 - 13 May 2018
Cited by 36 | Viewed by 11754
Abstract
The distributions of 210Pb and 210Po, short half-life products of 238U decay, in geological and related anthropogenic materials are reviewed, with emphasis on their geochemical behaviours and likely mineral hosts. Concentrations of natural 210Pb and 210Po in igneous [...] Read more.
The distributions of 210Pb and 210Po, short half-life products of 238U decay, in geological and related anthropogenic materials are reviewed, with emphasis on their geochemical behaviours and likely mineral hosts. Concentrations of natural 210Pb and 210Po in igneous and related hydrothermal environments are governed by release from crustal reservoirs. 210Po may undergo volatilisation, inducing disequilibrium in magmatic systems. In sedimentary environments (marine, lacustrine, deltaic and fluvial), as in soils, concentrations of 210Pb and 210Po are commonly derived from a combination of natural and anthropogenic sources. Enhanced concentrations of both radionuclides are reported in media from a variety of industrial operations, including uranium mill tailings, waste from phosphoric acid production, oil and gas exploitation and energy production from coals, as well as in residues from the mining and smelting of uranium-bearing copper ores. Although the mineral hosts of the two radionuclides in most solid media are readily defined as those containing parent 238U and 226Ra, their distributions in some hydrothermal U-bearing ores and the products of processing those ores are much less well constrained. Much of the present understanding of these radionuclides is based on indirect data rather than direct observation and potential hosts are likely to be diverse, with deportments depending on the local geochemical environment. Some predictions can nevertheless be made based on the geochemical properties of 210Pb and 210Po and those of the intermediate products of 238U decay, including isotopes of Ra and Rn. Alongside all U-bearing minerals, the potential hosts of 210Pb and 210Po may include Pb-bearing chalcogenides such as galena, as well as a range of sulphates, carbonates, and Fe-oxides. 210Pb and 210Po are also likely to occur as nanoparticles adsorbed onto the surface of other minerals, such as clays, Fe-(hydr)oxides and possibly also carbonates. In rocks, unsupported 210Pb- and/or 210Po-bearing nanoparticles may also be present within micro-fractures in minerals and at the interfaces of mineral grains. Despite forming under very limited and special conditions, the local-scale isotopic disequilibrium they infer is highly relevant for understanding their distributions in mineralized rocks and processing products. Full article
Show Figures

Figure 1

21 pages, 3321 KiB  
Article
Si-Disordering in MgAl2O4-Spinel under High P-T Conditions, with Implications for Si-Mg Disorder in Mg2SiO4-Ringwoodite
by Liping Liu, Xi Liu, Xinjian Bao, Qiang He, Wei Yan, Yunlu Ma, Mingyue He, Renbiao Tao and Ruqiang Zou
Minerals 2018, 8(5), 210; https://doi.org/10.3390/min8050210 - 12 May 2018
Cited by 16 | Viewed by 7519
Abstract
A series of Si-bearing MgAl2O4-spinels were synthesized at 1500–1650 °C and 3–6 GPa. These spinels had SiO2 contents of up to ~1.03 wt % and showed a substitution mechanism of Si4+ + Mg2+ = 2Al3+ [...] Read more.
A series of Si-bearing MgAl2O4-spinels were synthesized at 1500–1650 °C and 3–6 GPa. These spinels had SiO2 contents of up to ~1.03 wt % and showed a substitution mechanism of Si4+ + Mg2+ = 2Al3+. Unpolarized Raman spectra were collected from polished single grains, and displayed a set of well-defined Raman peaks at ~610, 823, 856 and 968 cm−1 that had not been observed before. Aided by the Raman features of natural Si-free MgAl2O4-spinel, synthetic Si-free MgAl2O4-spinel, natural low quartz, synthetic coesite, synthetic stishovite and synthetic forsterite, we infer that these Raman peaks should belong to the SiO4 groups. The relations between the Raman intensities and SiO2 contents of the Si-bearing MgAl2O4-spinels suggest that under some P-T conditions, some Si must adopt the M-site. Unlike the SiO4 groups with very intense Raman signals, the SiO6 groups are largely Raman-inactive. We further found that the Si cations primarily appear on the T-site at P-T conditions ≤~3–4 GPa and 1500 °C, but attain a random distribution between the T-site and M-site at P-T conditions ≥~5–6 GPa and 1630–1650 °C. This Si-disordering process observed for the Si-bearing MgAl2O4-spinels suggests that similar Si-disordering might happen to the (Mg,Fe)2SiO4-spinels (ringwoodite), the major phase in the lower part of the mantle transition zone of the Earth and the benchmark mineral for the very strong shock stage experienced by extraterrestrial materials. The likely consequences have been explored. Full article
(This article belongs to the Special Issue Spinel Group Minerals)
Show Figures

Figure 1

26 pages, 6657 KiB  
Article
The Carbonation of Wollastonite: A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration
by Fulvio Di Lorenzo, Cristina Ruiz-Agudo, Aurelia Ibañez-Velasco, Rodrigo Gil-San Millán, Jorge A. R. Navarro, Encarnacion Ruiz-Agudo and Carlos Rodriguez-Navarro
Minerals 2018, 8(5), 209; https://doi.org/10.3390/min8050209 - 11 May 2018
Cited by 47 | Viewed by 9748
Abstract
One of the most promising strategies for the safe and permanent disposal of anthropogenic CO2 is its conversion into carbonate minerals via the carbonation of calcium and magnesium silicates. However, the mechanism of such a reaction is not well constrained, and its [...] Read more.
One of the most promising strategies for the safe and permanent disposal of anthropogenic CO2 is its conversion into carbonate minerals via the carbonation of calcium and magnesium silicates. However, the mechanism of such a reaction is not well constrained, and its slow kinetics is a handicap for the implementation of silicate mineral carbonation as an effective method for CO2 capture and storage (CCS). Here, we studied the different steps of wollastonite (CaSiO3) carbonation (silicate dissolution → carbonate precipitation) as a model CCS system for the screening of natural and biomimetic catalysts for this reaction. Tested catalysts included carbonic anhydrase (CA), a natural enzyme that catalyzes the reversible hydration of CO2(aq), and biomimetic metal-organic frameworks (MOFs). Our results show that dissolution is the rate-limiting step for wollastonite carbonation. The overall reaction progresses anisotropically along different [hkl] directions via a pseudomorphic interface-coupled dissolution–precipitation mechanism, leading to partial passivation via secondary surface precipitation of amorphous silica and calcite, which in both cases is anisotropic (i.e., (hkl)-specific). CA accelerates the final carbonate precipitation step but hinders the overall carbonation of wollastonite. Remarkably, one of the tested Zr-based MOFs accelerates the dissolution of the silicate. The use of MOFs for enhanced silicate dissolution alone or in combination with other natural or biomimetic catalysts for accelerated carbonation could represent a potentially effective strategy for enhanced mineral CCS. Full article
(This article belongs to the Special Issue Mineral Surface Reactions at the Nanoscale)
Show Figures

Figure 1

11 pages, 5584 KiB  
Article
Removal Process of Structural Oxygen from Tetrahedrons in Muscovite during Acid Leaching of Vanadium-Bearing Shale
by Qiushi Zheng, Yimin Zhang, Tao Liu, Jing Huang and Nannan Xue
Minerals 2018, 8(5), 208; https://doi.org/10.3390/min8050208 - 11 May 2018
Cited by 19 | Viewed by 4050
Abstract
Process mineralogy shows that most vanadium in mica-type black shale exists in the octahedral sites of muscovite. The extraction of vanadium mainly occurs in the acid leaching process with participation of H ions. In this work, we firstly analyzed the dissolution rules of [...] Read more.
Process mineralogy shows that most vanadium in mica-type black shale exists in the octahedral sites of muscovite. The extraction of vanadium mainly occurs in the acid leaching process with participation of H ions. In this work, we firstly analyzed the dissolution rules of elements in acid leaching of muscovite, then adopted the density functional theory (DFT) calculation to accurately visualize the primary process of the surface corrosion of muscovite by H ions. The experimental results show that K releases the fastest and the release of Al is consistent with K. The simulation results find that the H preferentially shifts to the unsaturated structured O of the tetrahedron to form a strong 001 surface hydroxyl after replacing K, as well as relaxing the near Al(Si)–O bonds for the further removal of structural oxygen. Then, the 001 surface hydroxyls more likely participate in the dehydroxylation reaction through the reverse-path mechanism to remove the structural oxygen and break the hexagonal rings of the tetrahedral sheets. Remarkably, the formation and removal of structural water are overall endoergic, meaning that the disintegration of muscovite requires a sustained supply of heat. Further, the octahedral sheets where vanadium exists can be exposed to the acid environment for overall destruction. This detailed atomic migration process in acid leaching of black shale is visualized, which not only illuminates the reaction mechanism of H ions with the muscovite, but also provides guidance for vanadium extraction from black shale and a new concept for the destruction of other minerals. Full article
(This article belongs to the Special Issue Process Mineralogy of Critical Metals)
Show Figures

Figure 1

12 pages, 14150 KiB  
Article
Interfacial Precipitation of Phosphate on Hematite and Goethite
by Lijun Wang, Christine V. Putnis, Jörn Hövelmann and Andrew Putnis
Minerals 2018, 8(5), 207; https://doi.org/10.3390/min8050207 - 10 May 2018
Cited by 26 | Viewed by 6203
Abstract
Adsorption and subsequent precipitation of dissolved phosphates on iron oxides, such as hematite and goethite, is of considerable importance in predicting the bioavailability of phosphates. We used in situ atomic force microscopy (AFM) to image the kinetic processes of phosphate-bearing solutions interacting with [...] Read more.
Adsorption and subsequent precipitation of dissolved phosphates on iron oxides, such as hematite and goethite, is of considerable importance in predicting the bioavailability of phosphates. We used in situ atomic force microscopy (AFM) to image the kinetic processes of phosphate-bearing solutions interacting with hematite or goethite surfaces. The nucleation of nanoparticles (1.0–4.0 nm in height) of iron phosphate (Fe(III)-P) phases, possibly an amorphous phase at the initial stages, was observed during the dissolution of both hematite and goethite at the earliest crystallization stages. This was followed by a subsequent aggregation stage where larger particles and layered precipitates are formed under different pH values, ionic strengths, and organic additives. Kinetic analysis of the surface nucleation of Fe-P phases in 50 mM NH4H2PO4 at pH 4.5 showed the nucleation rate was greater on goethite than hematite. Enhanced goethite and hematite dissolution in the presence of 10 mM AlCl3 resulted in a rapid increase in Fe-P nucleation rates. A low concentration of citrate promoted the nucleation, whereas nucleation was inhibited at higher concentrations of citrate. By modeling using PHREEQC, calculated saturation indices (SI) showed that the three Fe(III)-P phases of cacoxenite, tinticite, and strengite may be supersaturated in the reacted solutions. Cacoxenite is predicted to be more thermodynamically favorable in all the phosphate solutions if equilibrium is reached with respect to hematite or goethite, although possibly only amorphous precipitates were observed at the earliest stages. These direct observations at the nanoscale may improve our understanding of phosphate immobilization in iron oxide-rich acid soils. Full article
(This article belongs to the Special Issue Mineral Surface Reactions at the Nanoscale)
Show Figures

Graphical abstract

12 pages, 2525 KiB  
Article
Synthesis of Di-(2-ethylhexyl) Phosphoric Acid (D2EHPA)-Tributyl Phosphate (TBP) Impregnated Resin and Application in Adsorption of Vanadium(IV)
by Ruwei Zheng, Shenxu Bao, Yimin Zhang and Bo Chen
Minerals 2018, 8(5), 206; https://doi.org/10.3390/min8050206 - 10 May 2018
Cited by 38 | Viewed by 7817
Abstract
In order to improve the adsorption capability of solvent-impregnated resins (SIRs) for vanadium(IV) (V(IV)), the dual extractant (D2EHPA (Di-(2-ethylhexyl) phosphoric acid) and TBP (Tributyl phosphate)) impregnated resins (D-TIRs) were prepared by impregnating AmberliteTM XAD-16HP macroporous resins with the mixed extractant that is [...] Read more.
In order to improve the adsorption capability of solvent-impregnated resins (SIRs) for vanadium(IV) (V(IV)), the dual extractant (D2EHPA (Di-(2-ethylhexyl) phosphoric acid) and TBP (Tributyl phosphate)) impregnated resins (D-TIRs) were prepared by impregnating AmberliteTM XAD-16HP macroporous resins with the mixed extractant that is composed by different molar ratios of D2EHPA to TBP. The effects of the ratio of D2EHPA to TBP on the performance of D-TIRs were investigated. The results show that the impregnation ratio of the D-TIRs decreases gradually with the increasing proportion of TBP in the mixed extractant. The sole-TBP impregnated resins (TIRs) have no adsorption capability for V(IV), indicating that the adsorption of V(IV) is attributed to D2EHPA. The adsorption capacity of D-TIRs for V(IV) attained the maximum when the ratio of D2EHPA to TBP is 7:3 at pH 1.8, and it can be improved by increasing the extractants concentration during the impregnation process. Adsorption isotherm indicates that the addition of TBP can increase the adsorption capacity of D-TIRs for V(IV) from 24.65 to 29.75 mg/g after 16 h reaction. Adsorption kinetics verifies that the addition of TBP can largely accelerate the adsorption equilibrium of V(IV) onto the D-TIRs and V(IV). Electrospray ionization (ESI) mass spectra and Fourier transform infrared spectra (FT-IR) analysis indicates that the addition of TBP to D2EHPA can make some dimeric D2EHPA change to monomers by breaking the hydrogen bonds of D2EHPA-dimers, leading to the result that the pseudo-second order kinetic for the adsorption of V(IV) onto the D2EHPA impregnated resins (DIRs) converts to the pseudo-first order kinetic for that onto the D-TIRs. Also, D-TIRs have better separation capability of V(IV) from Fe(II) and Al(III) in the vanadium leaching solution than DIRs. Full article
(This article belongs to the Special Issue Towards Sustainability in Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 1425 KiB  
Article
Classical Polarizable Force Field to Study Hydrated Hectorite: Optimization on DFT Calculations and Validation against XRD Data
by Ragnhild Hånde, Vivien Ramothe, Stéphane Tesson, Baptiste Dazas, Eric Ferrage, Bruno Lanson, Mathieu Salanne, Benjamin Rotenberg and Virginie Marry
Minerals 2018, 8(5), 205; https://doi.org/10.3390/min8050205 - 10 May 2018
Cited by 11 | Viewed by 5272
Abstract
Following our previous works on dioctahedral clays, we extend the classical Polarizable Ion Model (PIM) to trioctahedral clays, by considering dry Na-, Cs-, Ca- and Sr-hectorites as well as hydrated Na-hectorite. The parameters of the force field are determined by optimizing the atomic [...] Read more.
Following our previous works on dioctahedral clays, we extend the classical Polarizable Ion Model (PIM) to trioctahedral clays, by considering dry Na-, Cs-, Ca- and Sr-hectorites as well as hydrated Na-hectorite. The parameters of the force field are determined by optimizing the atomic forces and dipoles on density functional theory calculations. The simulation results are validated by comparison with experimental X-ray diffraction (XRD) data. The XRD patterns calculated from classical molecular dynamics simulations performed with the PIM force field are in very good agreement with experimental results. In the bihydrated state, the less structured electronic density profile obtained with PIM compared to the one from the state-of-the-art non-polarizable force field clayFF explains the slightly better agreement between the PIM results and experiments. Full article
(This article belongs to the Special Issue Molecular Simulation of Mineral-Solution Interfaces)
Show Figures

Figure 1

17 pages, 2039 KiB  
Article
Oxidation States of Fe in Constituent Minerals of a Spinel Lherzolite Xenolith from the Tariat Depression, Mongolia: The Significance of Fe3+ in Olivine
by Terumi Ejima, Yasuhito Osanai, Masahide Akasaka, Tatsuro Adachi, Nobuhiko Nakano, Yoshiaki Kon, Hiroaki Ohfuji and Jargalan Sereenen
Minerals 2018, 8(5), 204; https://doi.org/10.3390/min8050204 - 9 May 2018
Cited by 12 | Viewed by 5841
Abstract
The oxidation states of Fe within olivine, orthopyroxene, clinopyroxene, and spinel in a spinel lherzolite xenolith from the Tariat Depression, Mongolia were investigated using 57Fe Mössbauer spectroscopy to evaluate the redox condition of the upper mantle from which the Tariat spinel lherzolite [...] Read more.
The oxidation states of Fe within olivine, orthopyroxene, clinopyroxene, and spinel in a spinel lherzolite xenolith from the Tariat Depression, Mongolia were investigated using 57Fe Mössbauer spectroscopy to evaluate the redox condition of the upper mantle from which the Tariat spinel lherzolite xenolith was derived. The purity of separated minerals for the Mössbauer spectroscopic analysis was examined using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. Average Fo and Fe contents of olivine at the core part of the xenolith are 89.9(4) mol % and 0.195(3) atoms per formula unit, respectively. The Fe3+/ΣFe values of the olivine, orthopyroxene, clinopyroxene, and spinel, determined by Mössbauer spectroscopic analysis, are 0.027(2), 0.15(1), 0.26(3), and 0.34(5), respectively. The Mössbauer spectrum of olivine consists of two doublets assigned to Fe2+ at the octahedral sites and one doublet, with I.S. of 0.40(2) mm/s and Q.S. of 0.69(3) mm/s assigned to Fe3+ at the octahedral site. Since the Tariat spinel lherzolite xenolith in this study shows no evidence of metasomatism or thermal alteration, the existence of a small amount of Fe3+ in olivine and the fairly high Fe3+ contents of clinopyroxene, orthopyroxene, and spinel imply that the upper mantle under the Tariat area was in a rather oxidized condition. Full article
Show Figures

Figure 1

14 pages, 3440 KiB  
Article
Metal Ion Release in Bastnaesite Flotation System and Implications for Flotation
by Shiming Cao, Yijun Cao, Zilong Ma and Yinfei Liao
Minerals 2018, 8(5), 203; https://doi.org/10.3390/min8050203 - 9 May 2018
Cited by 22 | Viewed by 3923
Abstract
Ca2+, Mg2+, Sr2+ and Fe3+ were found to be commonly released into bastnaesite flotation pulp from minerals with relatively high concentrations. The influence and corresponding mechanism of Ca2+, Mg2+, Sr2+, Fe [...] Read more.
Ca2+, Mg2+, Sr2+ and Fe3+ were found to be commonly released into bastnaesite flotation pulp from minerals with relatively high concentrations. The influence and corresponding mechanism of Ca2+, Mg2+, Sr2+, Fe3+ and Al3+, on bastnaesite flotation, have been studied by micro flotation tests, induction time measurements, adsorption measurements and solution chemistry analysis. It was found that all aforementioned metal ions depressed bastnaesite flotation. The order of depression ability was Fe3+ > Al3+ > Mg2+ > Sr2+ > Ca2+ and the depression ability changed along with pH. The depression was mainly attributed to the adsorption of metals ions, which hindered collector adsorption. The species diagrams of metal ions changed along with pH, consequently changing the adsorption of metal ions on mineral surfaces, and therefore leading to different influences on flotation. Full article
Show Figures

Figure 1

31 pages, 11594 KiB  
Article
Changes and Distribution of Modes of Occurrence of Seventeen Potentially-Hazardous Trace Elements during Entrained Flow Gasification of Coals from Ningdong, China
by Yuegang Tang, Xin Guo, Xi Pan, Robert B. Finkelman, Yafeng Wang, Binbin Huan and Shaoqing Wang
Minerals 2018, 8(5), 202; https://doi.org/10.3390/min8050202 - 8 May 2018
Cited by 23 | Viewed by 4100
Abstract
In order to reveal the migration of trace elements from coal to gasification residues, the modes of occurrence of potentially-hazardous trace elements (Be, V, Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, Hg, Tl, Pb, and U) were determined by [...] Read more.
In order to reveal the migration of trace elements from coal to gasification residues, the modes of occurrence of potentially-hazardous trace elements (Be, V, Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, Hg, Tl, Pb, and U) were determined by a five steps sequential chemical extraction procedure. Samples were collected from a coal-to-methanol plant (GE water-slurry coal gasification, formerly Texaco) and a coal-to-olefins plant (Gaskombimat Schwarze Pumpe pulverized coal gasification, GSP) in the Ningdong Energy and Chemical Industry Base, China. Concentrations of As and Se were determined using atomic fluorescence spectrometry (AFS). The content of Hg was determined using a DMA-80 mercury analyzer. Other trace elements (Be, Cr, Co, Ni, Cu, Zn, Mo, Cd, Sb, Ba, Tl, Pb, and U) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS). XRD and SEM-EDX were employed to determine the minerals or other inorganic phases in samples. The modes of occurrence of trace elements in feed coals can influence their behavior, including their volatility during coal gasification and, ultimately, the element’s mode of occurrence in the gasification residues. Knowing an element’s mode of occurrence in the feed coal may aid in anticipating which components the elements are likely to combine with during liquid slag cooling. Based on the relative enrichment of trace elements in the residues, elements Be, V, Cu, Mo, Ba, and Hg showed volatility during the GE and GSP gasification processes; As and Se showed volatilization-condensation behavior during the GE and GSP gasification processes; Cr, Ni, Zn, Cd, Sb, Tl, Pb, and U showed volatility during the GE gasification process; Zn, Cd, Sb, Pb, and Tl in the GSP samples, as well as Co in the GE samples, showed volatilization-condensation behavior; and Cr, Co, Ni, and U showed less volatility during the GSP gasification process. In the gasification residues, quartz, calcite, and Al–Si glass were the main inorganic phases, carbonates and iron and manganese oxides (likely recrystallized calcite) were the main hosts of most trace elements in the residues, including Be, V, Cr, Co, Ni, Zn, As, Cd, Ba, Hg, Tl, Pb, and U. Copper, Zn, Se, Cd, and Sb tended to stay in the Al–Si glass. Molybdenum is likely precipitated with the sulfides in the residues. Full article
(This article belongs to the Special Issue Toxic Mineral Matter in Coal and Coal Combustion Products)
Show Figures

Figure 1

35 pages, 1638 KiB  
Review
Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials
by Ruth Siddall
Minerals 2018, 8(5), 201; https://doi.org/10.3390/min8050201 - 8 May 2018
Cited by 134 | Viewed by 26815
Abstract
Naturally occurring minerals or their synthetic analogues have been important as pigments used in artistic and cosmetic contexts in global antiquity. The analysis and identification of mineral pigments, though routine to the petrologist or mineralogist, also requires specialist knowledge of the archaeological contexts [...] Read more.
Naturally occurring minerals or their synthetic analogues have been important as pigments used in artistic and cosmetic contexts in global antiquity. The analysis and identification of mineral pigments, though routine to the petrologist or mineralogist, also requires specialist knowledge of the archaeological contexts and available technologies and trade. This paper attempts to present an analytical approach to the study of mineral pigments in archaeology and also introduces the range of mineral pigments encountered in works of art and painted objects on archaeological sites and in museums. It attempts to cover the range of mineral and synthetic inorganic pigments used in global cultures from to the early Medieval period. Full article
(This article belongs to the Special Issue Mineralogical Applications for Cultural Heritage)
Show Figures

Figure 1

12 pages, 10710 KiB  
Article
Looking Like Gold: Chlorite and Talc Transformation in the Golden Slip Ware Production (Swat Valley, North-Western Pakistan)
by Lara Maritan, Rebecca Piovesan, Maria Chiara Dalconi, Jordi Rius, Anna Crespi, Oriol Vallcorba, Lluís Casas, Massimo Vidale and Luca Maria Olivieri
Minerals 2018, 8(5), 200; https://doi.org/10.3390/min8050200 - 8 May 2018
Cited by 9 | Viewed by 5841
Abstract
The archaeometric study of the “golden slip” ware (second century BCE—fourth century CE) at the site of Barikot (Swat, north-western Pakistan) aimed to define its manufacturing technology and provenance of the raw materials used. For this reason, a multianalytical approach consisting of the [...] Read more.
The archaeometric study of the “golden slip” ware (second century BCE—fourth century CE) at the site of Barikot (Swat, north-western Pakistan) aimed to define its manufacturing technology and provenance of the raw materials used. For this reason, a multianalytical approach consisting of the microscopic, microstructural and mineralogical analysis of both the golden slip and the ceramic paste was adopted. The slip was found to be composed by platy minerals, microchemically identified as talc and chlorite; their intimate association indicated clearly that they derived from a chlorite-talc schist. This rock is geologically available near the site in the “green stones” lenses within the Mingora ophiolites outcropping in the Swat valley. Due to the use of this stone also for the production of stone tools, it cannot be excluded that the chlorite-talc schist used for the golden slip can be derived from manufacturing residues of the Gandharan sculptures. In order to constrain the firing production technology, laboratory replicas were produced using a locally collected clay and coating them with ground chlorite-talc schist. On the basis of the mineralogical association observed in both the slip and the ceramic paste and the thermodynamic stability of the pristine mineral phases, the golden slip pottery underwent firing under oxidising conditions in the temperature interval between 800 °C and 850 °C. The golden and shining looks of the slip were here interpreted as the result of the combined light reflectance of the platy structure of the talc-based coating and the uniform, bright red colour of the oxidized ceramic background. Full article
(This article belongs to the Special Issue Mineralogical Applications for Cultural Heritage)
Show Figures

Figure 1

18 pages, 4286 KiB  
Review
Acid Rock Drainage or Not—Oxidative vs. Reductive Biofilms—A Microbial Question
by Margarete Kalin, William N. Wheeler and Sören Bellenberg
Minerals 2018, 8(5), 199; https://doi.org/10.3390/min8050199 - 7 May 2018
Cited by 5 | Viewed by 5229
Abstract
Measures to counteract Acid Rock Drainage (ARD) generation need to start at the mineral surface, inhibiting mineral-oxidizing, acidophilic microbes. Laboratory and long-term field tests with pyrite-containing mining wastes—where carbonaceous phosphate mining waste (CPMW) was added—resulted in low acidity and near neutral drainage. The [...] Read more.
Measures to counteract Acid Rock Drainage (ARD) generation need to start at the mineral surface, inhibiting mineral-oxidizing, acidophilic microbes. Laboratory and long-term field tests with pyrite-containing mining wastes—where carbonaceous phosphate mining waste (CPMW) was added—resulted in low acidity and near neutral drainage. The effect was reproducible and confirmed by several independent research groups. The improved drainage was shown to involve an organic coating, likely a biofilm. The biofilm formation was confirmed when CPMW was added to lignite coal waste with an initial pH of 1. Forty-five days after the addition, the coal waste was dominated by heterotrophic microorganisms in biofilms. Reviewing the scientific literature provides ample support that CPMW has physical and chemical characteristics which can induce a strong inhibitory effect on sulphide oxidation by triggering the formation of an organic coating, a biofilm, over the mineral surface. CPMW characteristics provide the cornerstone of a new technology which might lead to reduction of sulphide oxidation in mine wastes. A hypothesis for testing this technology is presented. The use of such a technology could result in an economical and sustainable approach to mine waste and water management. Full article
(This article belongs to the Special Issue Environmental Mineralogy)
Show Figures

Figure 1

12 pages, 4084 KiB  
Article
Structure Simulation and Host–Guest Interaction of Histidine-Intercalated Hydrotalcite–Montmorillonite Complex
by Chen-Xi Wang, Min Pu, Pei-Huan Zhang, Yang Gao, Zuo-Yin Yang and Ming Lei
Minerals 2018, 8(5), 198; https://doi.org/10.3390/min8050198 - 7 May 2018
Cited by 6 | Viewed by 3955
Abstract
The structures of histidine intercalated hydrotalcite–montmorillonite complex (His–LDHs–MMT) were studied using the DMol3 code, GGA/PW91 function, and DND basis set of the density functional theory (DFT). The geometries of His–LDHs–MMT were optimized, and their electronic properties were calculated. The results showed that the [...] Read more.
The structures of histidine intercalated hydrotalcite–montmorillonite complex (His–LDHs–MMT) were studied using the DMol3 code, GGA/PW91 function, and DND basis set of the density functional theory (DFT). The geometries of His–LDHs–MMT were optimized, and their electronic properties were calculated. The results showed that the structure of the complex can be seen as that the quaternary ammonium group of histidine was adsorbed on the oxygen of MMT lamella, and its oxygen on the carboxylic acid anion was combined with the hydrogen atoms of the LDHs lamella. It was determined that the interaction mainly consisted in hydrogen bonding and electrostatic force. The average binding energies per histidine of His–LDHs and His–MMT were about −65.89 and −78.44 kcal/mol, respectively. The density of states of the complexes showed that the 2p orbitals of oxygen were dominant, and the 1s orbit of hydrogen near the Fermi level indicate the formation of hydrogen bonds in the complex. The charge density data displayed the density field of histidine carboxylic acid anion overlapped with that of hydrotalcite layer, indicating that a strong hydrogen bond interaction existed between histidine and hydrotalcite layer. The analysis of the electrostatic potential of complex indicated that the electrostatic interaction between histidine and MMT is obviously stronger than that of LDHs. The simulated XRD spectra showed the special diffraction peaks of LDHs and MMT layer in the complex. Full article
(This article belongs to the Special Issue Mineral Materials)
Show Figures

Figure 1

31 pages, 7578 KiB  
Article
Linkages between the Genesis and Resource Potential of Ferromanganese Deposits in the Atlantic, Pacific, and Arctic Oceans
by Amaya Menendez, Rachael James, Natalia Shulga, Doug Connelly and Steve Roberts
Minerals 2018, 8(5), 197; https://doi.org/10.3390/min8050197 - 5 May 2018
Cited by 8 | Viewed by 5332
Abstract
In addition to iron and manganese, deep sea ferromanganese deposits, including nodules and crusts, contain significant amounts of economically interesting metals, such as cobalt (Co), nickel (Ni), copper (Cu), and rare Earth elements and yttrium (REY). Some of these metals are essential in [...] Read more.
In addition to iron and manganese, deep sea ferromanganese deposits, including nodules and crusts, contain significant amounts of economically interesting metals, such as cobalt (Co), nickel (Ni), copper (Cu), and rare Earth elements and yttrium (REY). Some of these metals are essential in the development of emerging and new-generation green technologies. However, the resource potential of these deposits is variable, and likely related to environmental conditions that prevail as they form. To better assess the environmental controls on the resource potential of ferromanganese deposits, we have undertaken a detailed study of the chemical composition of ferromanganese nodules and one crust sample from different oceanic regions. Textural and chemical characteristics of nodules from the North Atlantic and a crust from the South Pacific suggest that they acquire metals from a hydrogenous source. These deposits are potentially an economically important source of Co and the REY. On the other hand, nodules from the Pacific Ocean represent a marginal resource of these metals, due to their relatively fast growth rate caused by diagenetic precipitation. By contrast, they have relatively high concentrations of Ni and Cu. A nodule from the Arctic Ocean is characterised by the presence of significant quantities of detrital silicate material, which significantly reduces their metal resource. Full article
(This article belongs to the Special Issue Deep-Sea Minerals and Gas Hydrates)
Show Figures

Graphical abstract

11 pages, 3518 KiB  
Article
Adsorption of N2, NO2 and CO2 on Epistilbite Natural Zeolite from Jalisco, Mexico after Acid Treatment
by Miguel Angel Hernández-Espinosa, Karla Quiroz-Estrada, Vitalii Petranovskii, Fernando Rojas, Roberto Portillo, Martha Alicia Salgado, Miguel Marcelo, Efraín Rubio and Carlos Felipe
Minerals 2018, 8(5), 196; https://doi.org/10.3390/min8050196 - 5 May 2018
Cited by 5 | Viewed by 4793
Abstract
Emissions of carbon dioxide (CO2) and nitrogen dioxide (NO2) in recent years has been increased considerably. One way to reduce the concentration of these greenhouse gases in the atmosphere is adsorptive capture. This paper describes the main results of [...] Read more.
Emissions of carbon dioxide (CO2) and nitrogen dioxide (NO2) in recent years has been increased considerably. One way to reduce the concentration of these greenhouse gases in the atmosphere is adsorptive capture. This paper describes the main results of adsorption of N2, NO2, and CO2 on epistilbite, both natural and on samples that were chemically treated at various concentrations of HCl. Data on the adsorption of CO2 and NO2 were evaluated by the Freundlich and Langmuir equations. Additionally, the thermodynamic parameters of adsorption were calculated, including the degree of interaction of the zeolite samples with gases by gradually changing the isosteric heat capacities of adsorption. The acid treatment improves the adsorption capacity of epistilbite with respect to NO2 and CO2, due the replacement of large extra-framework cation by small H+ ions. The improvement in the distribution of pore sizes in epistilbite samples was calculated by the method of Barrett-Joyner-Halenda. The sample H1 that was prepared in a moderately concentrated acid showed the best behavior in the CO2 adsorption processes, while the natural EPIN material preferably adsorbs NO2. Full article
(This article belongs to the Special Issue Natural Zeolites)
Show Figures

Graphical abstract

17 pages, 14194 KiB  
Article
Trace Element Geochemistry of Magnetite: Implications for Ore Genesis of the Huanggangliang Sn-Fe Deposit, Inner Mongolia, Northeastern China
by Cheng Wang, Yongjun Shao, Xiong Zhang, Jeffrey Dick and Zhongfa Liu
Minerals 2018, 8(5), 195; https://doi.org/10.3390/min8050195 - 4 May 2018
Cited by 18 | Viewed by 6111
Abstract
The Huanggangliang deposit is a super-large Sn-Fe deposit in the Huanggangliang–Ganzhuermiao metallogenic belt in the southern section of the Great Hinggan Range. The Sn-Fe deposits mainly occur in the skarn contact zone and were formed via the interaction of biotite-bearing alkali feldspar granite [...] Read more.
The Huanggangliang deposit is a super-large Sn-Fe deposit in the Huanggangliang–Ganzhuermiao metallogenic belt in the southern section of the Great Hinggan Range. The Sn-Fe deposits mainly occur in the skarn contact zone and were formed via the interaction of biotite-bearing alkali feldspar granite with limestone strata of the Permian Dashizhai and Zhesi Formations. Based on the intersecting relations among the ore-bearing veins and the different types of mineral assemblages within these veins, the Sn-Fe mineralization could be divided into two periods and four stages: the skarn period, which includes the garnet–diopside–magnetite (T1) stage (stage 1) and epidote–idocrase–cassiterite–magnetite (T2) stage (stage 2); and the quartz–magnetite period, which can be divided into the quartz–cassiterite–magnetite (T3) stage (stage 3) and quartz–magnetite (T4) stage (stage 4). In this paper, we discuss the genesis of magnetite, controlling factors for magnetite compositions, and type of ore genesis based on petrographic studies and LA-ICP-MS analyses of trace elements in these four types of magnetite from the Huanggangliang Sn-Fe deposit. The results demonstrate that the four types of magnetite are generally depleted in Ti (0.002–3.030 wt %), Al (0.008–1.731 wt %), and Zr (<1.610 ppm). In addition, the low Ni and Cr contents and relatively high and stable Fe contents in the four types of magnetite are indicative of hydrothermal genetic features. Compositions of the ore fluids and host rocks, formation of coexisting minerals, and other physical and chemical parameters (such as fO2) may have influenced the variable magnetite geochemistry in the different Huanggangliang ore types, with fluid compositions and fO2 probably playing the most important roles. The geological, petrographic, and geochemical characteristics of magnetite of the Huanggangliang Sn-Fe deposit lead us to conclude that the deposit is a skarn-type Sn-Fe deposit associated with Yanshanian medium-acidic magmatic activities. Full article
Show Figures

Figure 1

28 pages, 4908 KiB  
Article
Trace Element and U–Pb Core Age for Zircons from Western Meiganga Gold Placer, Cameroon: Their Genesis and Archean-Proterozoic Sources
by Nguo Sylvestre Kanouo, Gabriel Ngueutchoua, Arnaud Patrice Kouske, Rose Fouateu Yongue and Akella Satya Venkatesh
Minerals 2018, 8(5), 194; https://doi.org/10.3390/min8050194 - 4 May 2018
Cited by 8 | Viewed by 4712
Abstract
Trace element concentrations and U–Pb ages were obtained using Laser Ablation Split Stream Method from the core of 115 zircon grains from the western Meiganga gold placer deposit. The data was used to characterize zircon, to understand the history of crystallization and to [...] Read more.
Trace element concentrations and U–Pb ages were obtained using Laser Ablation Split Stream Method from the core of 115 zircon grains from the western Meiganga gold placer deposit. The data was used to characterize zircon, to understand the history of crystallization and to locate source rocks within the local and regional geological settings. Zircon trace element geochemistry was used to distinguish between magmatic and metamorphic affinity. The magmatic zircons have characteristics compatible with their probable origin from granitoid, syenite, tonalite, charnockite and mafic to ultramafic rocks. The metamorphic zircons composition is compatible with growth from anatectic melts and by sub-solidus crystallization in equilibrium with garnet. The zircon ages reveal Archean, Paleoproterozoic, Mesoproterozic, and Neoproterozoic events with the principal source could mainly belong to Paleoproterozoic magmatic lineage. Some of the Paleoproterozoic magmatic zircons were probably sourced from two mica granite found within the local geology, whereas the remaining zircons have features indicating source rocks within the Congo Craton. We suggest that the geologic history of these zircons is related to crustal-scale magmatic and/or tectono-metamorphic events, possibly linked to Eburnean and Pan-African orogeny. Full article
Show Figures

Graphical abstract

47 pages, 2592 KiB  
Article
Towards Representative Metallurgical Sampling and Gold Recovery Testwork Programmes
by Simon C. Dominy, Louisa O’Connor, Hylke J. Glass, Saranchimeg Purevgerel and Yuling Xie
Minerals 2018, 8(5), 193; https://doi.org/10.3390/min8050193 - 4 May 2018
Cited by 24 | Viewed by 9735
Abstract
When developing a process flowsheet, the risks in achieving positive financial outcomes are minimised by ensuring representative metallurgical samples and high quality testwork. The quality and type of samples used are as important as the testwork itself. The key characteristic required of any [...] Read more.
When developing a process flowsheet, the risks in achieving positive financial outcomes are minimised by ensuring representative metallurgical samples and high quality testwork. The quality and type of samples used are as important as the testwork itself. The key characteristic required of any set of samples is that they represent a given domain and quantify its variability. There are those who think that stating a sample(s) is representative makes it representative without justification. There is a need to consider both (1) in-situ and (2) testwork sub-sample representativity. Early ore/waste characterisation and domain definition are required, so that sampling and testwork protocols can be designed to suit the style of mineralisation in question. The Theory of Sampling (TOS) provides an insight into the causes and magnitude of errors that may occur during the sampling of particulate materials (e.g., broken rock) and is wholly applicable to metallurgical sampling. Quality assurance/quality control (QAQC) is critical throughout all programmes. Metallurgical sampling and testwork should be fully integrated into geometallurgical studies. Traditional metallurgical testwork is critical for plant design and is an inherent part of geometallurgy. In a geometallurgical study, multiple spatially distributed small-scale tests are used as proxies for process parameters. These will be validated against traditional testwork results. This paper focusses on sampling and testwork for gold recovery determination. It aims to provide the reader with the background to move towards the design, implementation and reporting of representative and fit-for-purpose sampling and testwork programmes. While the paper does not intend to provide a definitive commentary, it critically assesses the hard-rock sampling methods used and their optimal collection and preparation. The need for representative sampling and quality testwork to avoid financial and intangible losses is emphasised. Full article
(This article belongs to the Special Issue Geometallurgy)
Show Figures

Figure 1

9 pages, 16030 KiB  
Article
Oyonite, Ag3Mn2Pb4Sb7As4S24, a New Member of the Lillianite Homologous Series from the Uchucchacua Base-Metal Deposit, Oyon District, Peru
by Luca Bindi, Cristian Biagioni and Frank N. Keutsch
Minerals 2018, 8(5), 192; https://doi.org/10.3390/min8050192 - 2 May 2018
Cited by 5 | Viewed by 4412
Abstract
The new mineral species oyonite, ideally Ag3Mn2Pb4Sb7As4S24, has been discovered in the Uchucchacua base-metal deposit, Oyon district, Catajambo, Lima Department, Peru, as very rare black metallic subhedral to anhedral crystals, up [...] Read more.
The new mineral species oyonite, ideally Ag3Mn2Pb4Sb7As4S24, has been discovered in the Uchucchacua base-metal deposit, Oyon district, Catajambo, Lima Department, Peru, as very rare black metallic subhedral to anhedral crystals, up to 100 μm in length, associated with orpiment, tennantite/tetrahedrite, menchettiite, and other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S, in calcite matrix. Its Vickers hardness (VHN100) is 137 kg/mm2 (range 132–147). In reflected light, oyonite is weakly to moderately bireflectant and weakly pleochroic from dark grey to a dark green. Internal reflections are absent. Reflectance values for the four COM wavelengths [Rmin, Rmax (%) (λ in nm)] are: 33.9, 40.2 (471.1); 32.5, 38.9 (548.3), 31.6, 38.0 (586.6); and 29.8, 36.5 (652.3). Electron microprobe analysis gave (in wt %, average of 5 spot analyses): Cu 0.76 (2), Ag 8.39 (10), Mn 3.02 (7), Pb 24.70 (25), As 9.54 (12), Sb 28.87 (21), S 24.30 (18), total 99.58 (23). Based on 20 cations per formula unit, the chemical formula of oyonite is Cu0.38Ag2.48Mn1.75Pb3.79Sb7.55As4.05S24.12. The main diffraction lines are (d in Å, hkl and relative intensity): 3.34 (−312; 40), 3.29 (−520; 100), 2.920 (−132; 40), 2.821 (−232; 70), 2.045 (004; 50). The crystal structure study revealed oyonite to be monoclinic, space group P21/n, with unit-cell parameters a = 19.1806 (18), b = 12.7755 (14), c = 8.1789 (10) Å, β = 90.471 (11)°, V = 2004.1 (4) Å3, Z = 2. The crystal structure was refined to a final R1 = 0.032 for 6272 independent reflections. Oyonite belongs to the Sb-rich members of the andorite homeotypic sub-series within the lillianite homologous series. The name oyonite is after the Oyon district, Lima Department, Peru, the district where the type locality (Uchucchacua mine) is located. Full article
(This article belongs to the Special Issue New Mineral Species and Their Crystal Structures)
Show Figures

Figure 1

18 pages, 8821 KiB  
Article
Optimisation of a Multi-Gravity Separator with Novel Modifications for the Recovery of Ferberite
by Robert Fitzpatrick, Patrick Hegarty, Keith Fergusson, Gavyn Rollinson, Weiguo Xie and Treve Mildren
Minerals 2018, 8(5), 191; https://doi.org/10.3390/min8050191 - 2 May 2018
Cited by 5 | Viewed by 8811
Abstract
Tungsten is considered by the European Union as a critical raw material for future development due to its expected demand and scarcity of resource within Europe. It is therefore, critical to optimize European tungsten operations and maximise recoveries. The role of enhanced gravity/centrifugal [...] Read more.
Tungsten is considered by the European Union as a critical raw material for future development due to its expected demand and scarcity of resource within Europe. It is therefore, critical to optimize European tungsten operations and maximise recoveries. The role of enhanced gravity/centrifugal concentrators in recovering tungsten from ultra-fine fractions should form an important part of this aim. Reported herein are the results of investigations to improve efficiency of Wolf Minerals’ Draklends mine, a major European tungsten mine, by recovering saleable material from a magnetic waste stream of a low-intensity magnetic separator using an enhanced gravity concentrator. The mine hosts wolframite and ferberite as the main tungsten bearing mineral species. A Mozley multi-gravity separator (MGS) C-900 was selected as it is suited to exploiting small variations in mineral density to affect a separation. Working with a current manufacturer, a novel scraping blade system was tested. To assess the MGS in a statistically valid manner, a response surface methodology was followed to determine optimal test conditions. The test programme showed that the most important parameters were drum speed and wash water rate. Under optimal conditions the model predicted that 40% of the tungsten could be recovered above the required grade of 43% WO3. Full article
(This article belongs to the Special Issue Process Mineralogy of Critical Metals)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop