Geochronology, Petrology, and Genesis of Two Granitic Plutons of the Xianghualing Ore Field in South Hunan Province: Constraints from Zircon U–Pb Dating, Geochemistry, and Lu–Hf Isotopic Compositions
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Methods
3.1. In Situ LA-ICPMS Zircon U–Pb Dating and Trace Element Compositions
3.2. Major and Trace Elements Analysis
3.3. Zircon Lu–Hf Isotope Analysis
4. Results
4.1. Zircon U–Pb Dating
4.2. Trace Element Compositions of Zircons
4.3. Major and Trace Element Compositions
4.4. Zircon Lu–Hf Isotopic Compositions
5. Discussion
5.1. Genetic Type of the Granitic Rocks: An A-Type Affinity
5.2. Genesis of Laiziling and Jianfengling Granites
5.2.1. Temperatures
5.2.2. Oxygen Fugacities and Fractional Crystallization
5.2.3. Magma Source
5.2.4. Relationship between the Two Granitic Plutons and Genesis of Laiziling and Jianfengling Granites
5.3. Tectonic Settings
6. Conclusions
- Zircon U–Pb dating yielded precise crystallization ages of 156.4 ± 1.4 Ma and 165.2 ± 1.4 Ma for the Laiziling and Jianfengling plutons in South Hunan, respectively.
- Both of the Laiziling and Jianfengling granites are high-K, strongly peraluminous, and highly fractionated A-type granites with high temperatures and low oxygen fugacity. They were mainly originated from the Proterozoic basement of South China with a certain amount of mantle-derived magma involved.
- The Laiziling and Jianfengling plutons were derived from the same magma chamber, and were the products of magma emplacement successively.
- The granitic magma was emplaced in an extensional setting.
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Zhou, M.; Yan, D.; Zheng, J.; Li, J. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology 2011, 39, 299–302. [Google Scholar] [CrossRef]
- Cao, J.Y.; Yang, X.Y.; Du, J.G.; Wu, Q.H.; Kong, H.; Li, H.; Wan, Q.; Xi, X.S.; Gong, Y.S.; Zhao, H.R. Formation and geodynamic implication of the Early Yanshanian granites associated with W–Sn mineralization in the Nanling range, South China: An overview. Int. Geol. Rev. 2018. [Google Scholar] [CrossRef]
- Yang, M.G.; Mei, Y.W. Characteristics of geology and metallization in the Qinzhou-Hangzhou paleoplate juncture. Geol. Miner. Resour. South China 1997, 3, 52–59. (In Chinese) [Google Scholar]
- Li, H.Y.; Mao, J.W.; Sun, Y.L.; Zou, X.H.; He, H.L.; Du, A.D. Re–Os isotopic chronology of molybdenites in the Shizhuyuan polymetallic tungsten deposit, Southern Hunan. Geol. Rev. 1996, 42, 261–267. [Google Scholar]
- Li, H.; Yonezu, K.; Watanabe, K.; Tindell, T. Fluid origin and migration of the Huangshaping W–Mo polymetallic deposit, South China: Geochemistry and Ar-40/Ar-39 geochronology of hydrothermal K-feldspars. Ore Geol. Rev. 2017, 86, 117–129. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, L.; Qu, W.; Mei, Y.; Chen, X. U–Pb and Re–Os isotope geochronology of Baoshan Cu–Mo polymetallic ore deposit in Hunan province. Acta Petrol. Sin. 2006, 22, 2483–2492. (In Chinese) [Google Scholar]
- Yuan, S.; Peng, J.; Hu, R.; Li, H.; Shen, N.; Zhang, D. A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Miner. Depos. 2008, 43, 375–382. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, M.; Hu, R.; Shen, N.; Yuan, S.; Bi, X.; Du, A.; Qu, W. Precise molybdenite Re–Os and mica Ar–Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Miner. Depos. 2006, 41, 661–669. [Google Scholar] [CrossRef]
- Li, S.T.; Wang, J.B.; Zhu, X.Y.; Wang, Y.L.; Han, Y.; Guo, N.N. Chronological characteristics of the Yaogangxian composite pluton in Hunan Province. Geol. Explor. 2011, 47, 143–150. (In Chinese) [Google Scholar]
- Cao, J.Y.; Wu, Q.H.; Yang, X.Y.; Kong, H.; Li, H.; Xi, X.S.; Huang, Q.H.; Liu, B. Geochronology and Genesis of the Xitian W–Sn Polymetallic Deposit in Eastern Hunan Province, South China: Evidence from Zircon U–Pb and Muscovite Ar–Ar Dating, petrochemistry, and Wolframite Sr–Nd–Pb Isotopes. Minerals 2018, 8, 111. [Google Scholar] [CrossRef]
- Dong, S.; Bi, X.; Hu, R.; Chen, Y. Petrogenesis of the Yaogangxian granites and implications for W mineralization, Hunan Province. Acta Petrol. Sin. 2014, 30, 2749–2765. (In Chinese) [Google Scholar]
- Li, H.; Watanabe, K.; Yonezu, K. Geochemistry of A-type granites in the Huangshaping polymetallic deposit (South Hunan, China): Implications for granite evolution and associated mineralization. J. Asian Earth Sci. 2014, 88, 149–167. [Google Scholar] [CrossRef]
- Zhao, K.; Jiang, S.; Jiang, Y.; Liu, D. SHRIMP U–Pb dating of the Furong unit of Qitangling granite from southeast Hunan province and their geological implications. Acta Petrol. Sin. 2006, 22, 2611–2616. (In Chinese) [Google Scholar]
- Li, H.; Watanabe, K.; Yonezu, K. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralization processes. Ore Geol. Rev. 2014, 60, 14–35. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Sun, W.; Ireland, T.; Tian, X.; Hu, Y.; Yang, W.; Chen, C.; Xu, D. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W–Sn mineralization and tectonic evolution. Lithos 2016, 266–267, 435–452. [Google Scholar] [CrossRef]
- Hu, X.; Gong, Y.; Pi, D.; Zhang, Z.; Zeng, G.; Xiong, S.; Yao, S. Jurassic magmatism related Pb–Zn–W–Mo polymetallic mineralization in the central Nanling Range, South China: Geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit. Ore Geol. Rev. 2017, 91, 877–895. [Google Scholar] [CrossRef]
- Xuan, Y.S.; Yuan, S.D.; Yuan, Y.B.; Mi, J.R. Zircon U–Pb age, geochemistry and petrogenesis of Jianfengling plutonin southern Hunan Province. Miner. Depos. 2014, 33, 1379–1390. (In Chinese) [Google Scholar]
- Zhu, J.C.; Wang, R.C.; Lu, J.J.; Zhang, H.; Zhang, W.L.; Xie, L.; Zhang, R.Q. Fractionation, evolution, petrogenesis and mineralization of Laiziling Granite Pluton, Southern Hunan Province. Geol. J. China Univ. 2011, 17, 381–392. (In Chinese) [Google Scholar]
- Xu, Q.D. Identification of the intrusive phases of the composite alkali-feldspathic granite in Xianghualing, Hunan. Hunan Geol. 1991, 10, 289–294. (In Chinese) [Google Scholar]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Ober, F.; Von Quadt, A.; Roddick, J.C.; Speigel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand. Geoanal. Res. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Guenther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; p. 39. [Google Scholar]
- Wu, F.; Yang, Y.; Xie, L.; Yang, J.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Geng, J.Z.; Li, H.K.; Zhang, J.; Zhou, H.Y.; Li, H.M. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geol. Bull. China 2011, 30, 1508–1513. (In Chinese) [Google Scholar]
- Machado, N.; Simonetti, A. U–Pb dating and Hf isotopic composition of Zircon by Laser-Ablation-MC-ICP-MS. In Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications; Sylvester, P., Ed.; Mineralogical Association of Canada: Québec, QC, Canada, 2001; Volume 29, pp. 121–146. [Google Scholar]
- Chu, N.C.; Taylor, R.N.; Chavagnac, V.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, T.; Hirata, T. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem. Geol. 2005, 220, 121–137. [Google Scholar] [CrossRef]
- Thirlwall, M.F.; Anczkiewicz, R. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int. J. Mass Spectrom. 2004, 235, 59–81. [Google Scholar] [CrossRef]
- Scherer, E.; Munker, C.; Mezger, K. Calibration of the lutetium-hafnium clock. Science 2001, 293, 683–687. [Google Scholar] [CrossRef] [PubMed]
- BlichertToft, J.; Albarede, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Nowell, G.M.; Kempton, P.D.; Noble, S.R.; Fitton, J.G.; Saunders, A.D.; Mahoney, J.J.; Taylor, R.N. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chem. Geol. 1998, 149, 211–233. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Science Inc.: Boston, MA, USA, 1985; p. 312. [Google Scholar]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S. Geochemistry of Eocene calc–alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London Special Paper: London, UK, 1989; Volume 32, pp. 313–345. [Google Scholar]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to SE Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- King, P.L.; Chappell, B.W.; Allen, C.M.; White, A.J.R. Are A-type granites the high temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Aust. J. Earth Sci. 2001, 48, 501–514. [Google Scholar] [CrossRef]
- Loiselle, M.C.; Wones, D.R. Characteristics and Origin of Anorogenic Granites. Geochem. Soc. Am. 1979, 11, 468. [Google Scholar]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Chappell, B.W.; White, A. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.; Zhao, Z. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos 2016, 258–259, 77–91. [Google Scholar] [CrossRef]
- Wu, Q.; Cao, J.; Kong, H.; Shao, Y.; Li, H.; Xi, X.; Deng, X. Petrogenesis and tectonic setting of the early Mesozoic Xitian granitic pluton in the middle Qin-Hang Belt, South China: Constraints from zircon U–Pb ages and bulk-rock trace element and Sr–Nd–Pb isotopic compositions. J. Asian Earth Sci. 2016, 128, 130–148. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Grebennikov, A.V. A-type granites and related rocks: Petrogenesis and classification. Russ. Geol. Geophys. 2014, 55, 1353–1366. [Google Scholar] [CrossRef]
- Martin, R.F. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 2006, 91, 125–136. [Google Scholar] [CrossRef]
- Pankhurst, M.J.; Schaefer, B.F.; Turner, S.P.; Argles, T.; Wade, C.E. The source of A-type magmas in two contrasting settings: U–Pb, Lu–Hf and Re–Os isotopic constraints. Chem. Geol. 2013, 351, 175–194. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R. On Ferroan (A-type) Granitoids: Their Compositional Variability and Modes of Origin. J. Petrol. 2011, 52, 39–53. [Google Scholar] [CrossRef]
- Gilder, S.A.; Gill, J.; Coe, R.S.; Zhao, X.X.; Liu, Z.W.; Wang, G.X.; Yuan, K.R.; Liu, W.L.; Kuang, G.D.; Wu, H.R. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. J. Geophys. Res. Solid Earth 1996, 101, 16137–16154. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Zhao, K.D.; Jiang, Y.H.; Dai, B.Z. Characteristics and genesis of Mesozoic A-type granites and associated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang belt, South China. Geol. J. China Univ. 2008, 14, 496–509. (In Chinese) [Google Scholar]
- Cao, M.; Qin, K.; Li, G.; Evans, N.J.; McInnes, B.I.A.; Li, J.; Zhao, J. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet. Miner. Depos. 2018, 53, 299–309. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, X.; Wu, S.; Cai, Y.; Liang, X.; Shao, T.; Wang, C.; Fu, J.; Jiang, Y. Isotopic geochemistry, zircon U–Pb ages and Hf isotopes of A-type granites from the Xitian W–Sn deposit, SE China: Constraints on petrogenesis and tectonic significance. J. Asian Earth Sci. 2015, 105, 122–139. [Google Scholar] [CrossRef]
- Zhao, K.; Jiang, S.; Yang, S.; Dai, B.; Lu, J. Mineral chemistry, trace elements and Sr–Nd–Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Res. 2012, 22, 310–324. [Google Scholar] [CrossRef]
- Yuan, S.D. Geochronology and Geochemistry of the Xianghualing Tin-Polymetallic Deposit, Hunan Province, China; Institute of Geochemistry, Chinese Academy of Sciences: Guiyang, China, 2007. (In Chinese) [Google Scholar]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; He, B. Implications from zircon-saturation temperatures and lithological assemblages for Early Permian thermal anomaly in northwest China. Lithos 2013, 182, 125–133. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 2005, 308, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.P.; Wooden, J.L. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem. Geol. 2010, 277, 149–159. [Google Scholar] [CrossRef]
- Brounce, M.; Kelley, K.A.; Cottrell, E.; Reagan, M.K. Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology 2015, 43, 775–778. [Google Scholar] [CrossRef]
- Lee, C.A.; Luffi, P.; Chin, E.J.; Bouchet, R.; Dasgupta, R.; Morton, D.M.; Le Roux, V.; Yin, Q.; Jin, D. Copper systematics in Arc magmas and implications for crust-mantle differentiation. Science 2012, 336, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Leeman, W.P.; Canil, D.; Li, Z. Similar V/Sc systematics in MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions. J. Petrol. 2005, 46, 2313–2336. [Google Scholar]
- Qiu, J.; Yu, X.; Santosh, M.; Zhang, D.; Chen, S.; Li, P. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Miner. Depos. 2013, 48, 545–556. [Google Scholar] [CrossRef]
- Sun, W.; Huang, R.; Li, H.; Hu, Y.; Zhang, C.; Sun, S.; Zhang, L.; Ding, X.; Li, C.; Zartman, R.E.; et al. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Sun, W.; Liang, H.; Ling, M.; Zhan, M.; Ding, X.; Zhang, H.; Yang, X.; Li, Y.; Ireland, T.R.; Wei, Q.; et al. The link between reduced porphyry copper deposits and oxidized magmas. Geochim. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef]
- Xiao, B.; Qin, K.; Li, G.; Li, J.; Xia, D.; Chen, L.; Zhao, J. Highly oxidized magma and fluid evolution of Miocene Qulong Giant Porphyry Cu-Mo deposit, Southern Tibet, China. Resour. Geol. 2012, 62, 4–18. [Google Scholar] [CrossRef]
- Gao, X.-Q.; He, W.-Y.; Gao, X.; Bao, X.-S.; Yang, Z. Constraints of magmatic oxidation state on mineralization in the Beiya alkali-rich porphyry gold deposit, western Yunnan, China. Solid Earth Sci. 2017, 2, 65–78. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.; He, W.; Gao, X.; Liu, X.; Bao, X.; Lu, Y. Control of magmatic oxidation state in intracontinental porphyry mineralization: A case from Cu (Mo–Au) deposits in the Jinshajiang-Red River metallogenic belt, SW China. Ore Geol. Rev. 2017, 90, 827–846. [Google Scholar]
- Trail, D.; Watson, E.B.; Tailby, N.D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 2011, 480, 79–238. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.L. Geochronology and oxygen fugacity of Mesozoic granites in Nanling area of South China. J. Earth Sci. Environ. 2014, 36, 141–151. (In Chinese) [Google Scholar]
- Burnham, A.D.; Berry, A.J. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim. Cosmochim. Acta 2012, 95, 196–212. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, J.M.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Eugster, H.P.; Wones, D.R. Stability relations of the ferruginous Biotite, Annite. J. Petrol. 1962, 3, 82–89. [Google Scholar] [CrossRef]
- Skjerlie, K.P.; Johnston, A.D. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites. J. Petrol. 1993, 34, 785–815. [Google Scholar] [CrossRef]
- Rutanen, H.; Andersson, U.B.; Vaisanen, M.; Johansson, A.; Frojdo, S.; Lahaye, Y.; Eklund, O. 1.8 Ga magmatism in southern Finland: Strongly enriched mantle and juvenile crustal sources in a post-collisional setting. Int. Geol. Rev. 2011, 53, 1622–1683. [Google Scholar] [CrossRef]
- Villaseca, C.; Orejana, D.; Belousova, E.A. Recycled metaigneous crustal sources for S- and I-type Variscan granitoids from the Spanish Central System batholith: Constraints from Hf isotope zircon composition. Lithos 2012, 153, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Wu, F.Y.; Chung, S.L.; Wilde, S.A.; Chu, M.F. A hybrid origin for the Qianshan, A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence. Lithos 2006, 89, 89–106. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Chen, J.; Wang, H.; Xiang, Y. Petrogenesis of Jurassic tungsten-bearing granites in the Nanling Range, South China: Evidence from whole-rock geochemistry and zircon U–Pb and Hf–O isotopes. Lithos 2017, 278–281, 166–180. [Google Scholar] [CrossRef]
- Cai, Y. The Study on Dengfuxian Granite and Its Mineralization in Hunan Province; Nanjing University: Nanjing, China, 2013. (In Chinese) [Google Scholar]
- Guo, C.; Chen, Y.; Zeng, Z.; Lou, F. Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in-situ analyses of zircon U–Pb–Hf–O isotopes. Lithos 2012, 148, 209–227. [Google Scholar] [CrossRef]
- Guo, C.; Zeng, L.; Li, Q.; Fu, J.; Ding, T. Hybrid genesis of Jurassic fayalite-bearing felsic subvolcanic rocks in South China: Inspired by petrography, geochronology, and Sr–Nd–O–Hf isotopes. Lithos 2016, 264, 175–188. [Google Scholar] [CrossRef]
- Gu, S.Y.; Hua, R.M.; Qi, H.W. Zircon LA-ICP-MS U–Pb dating and Sr-Nd isotope study of the Guposhan granite complex, Guangxi, China. Chin. J. Geochem. 2006, 26, 290–300. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Chen, C.; Lee, C.; Shinjo, R. Was there Jurassic paleo-Pacific subduction in South China? Constraints from (40)Ar/(39)Ar dating, elemental and Sr–Nd–Pb isotopic geochemistry of the Mesozoic basalts. Lithos 2008, 106, 83–92. [Google Scholar] [CrossRef]
- Honza, E.; Fujioka, K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous. Tectonophysics 2004, 384, 23–53. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, S.; Dai, B.; Liao, S.; Zhao, K.; Ling, H. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: Implications for a continental arc to rifting. Lithos 2009, 107, 185–204. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, S.; Zhao, K.; Ling, H. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China: Implications for a back-arc extension setting. Geol. Mag. 2006, 143, 457–474. [Google Scholar] [CrossRef]
- Li, Z.; Li, X. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, S.; Yan, Q.; Wang, H.; Wei, X.; Li, P.; Wang, L.; Bu, A. Late Jurassic Sn metallogeny in eastern Guangdong, SE China coast: Evidence from geochronology, geochemistry and Sr–Nd–Hf–S isotopes of the Dadaoshan Sn deposit. Ore Geol. Rev. 2017, 83, 63–83. [Google Scholar] [CrossRef]
- Sun, W.; Ding, X.; Hu, Y.; Zartman, R.E.; Arculus, R.J.; Kamenetsky, V.S.; Chen, M. The fate of subducted oceanic crust: A mineral segregation model. Int. Geol. Rev. 2011, 53, 879–893. [Google Scholar] [CrossRef]
- Sun, W.; Ling, M.; Yang, X.; Fan, W.; Ding, X.; Liang, H. Ridge subduction and porphyry copper-gold mineralization: An overview. Sci. China Earth Sci. 2010, 53, 475–484. [Google Scholar] [CrossRef]
- Xie, G.Q.; Hu, R.Z.; Zhao, J.H.; Jiang, G.H. Mantle plume and the relationship between it and Mesozoic large-scale metallogenesis in southeastern China: A preliminary discussion. Geotecton. Metallog. 2001, 25, 179–186. (In Chinese) [Google Scholar]
- Zhao, W.W.; Zhou, M.; Li, Y.H.M.; Zhao, Z.; Gao, J. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China. J. Asian Earth Sci. 2017, 137, 109–140. [Google Scholar] [CrossRef]
- Zhou, X.M.; Li, W.X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Fan, W.M.; Wang, Y.; Guo, F.; Peng, T.P. Mezosic mafic magmatism in Hunan-Jiangxi provinces and the lithospheric extension. Earth Sci. Front. 2003, 10, 159–169. (In Chinese) [Google Scholar]
- Wang, Y.J.; Liao, C.L.; Fan, W.M.; Peng, T. Early Mesozoic OIB-type alkaline basalt in central Jiangxi province and its tectonic implications. Geochimica 2004, 33, 109–117. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wu, X.; Cao, J.; Hu, B.; Zhang, X.; Gong, Y.; Liu, W. Geochronology, Petrology, and Genesis of Two Granitic Plutons of the Xianghualing Ore Field in South Hunan Province: Constraints from Zircon U–Pb Dating, Geochemistry, and Lu–Hf Isotopic Compositions. Minerals 2018, 8, 213. https://doi.org/10.3390/min8050213
Yang L, Wu X, Cao J, Hu B, Zhang X, Gong Y, Liu W. Geochronology, Petrology, and Genesis of Two Granitic Plutons of the Xianghualing Ore Field in South Hunan Province: Constraints from Zircon U–Pb Dating, Geochemistry, and Lu–Hf Isotopic Compositions. Minerals. 2018; 8(5):213. https://doi.org/10.3390/min8050213
Chicago/Turabian StyleYang, Lizhi, Xiangbin Wu, Jingya Cao, Bin Hu, Xiaowen Zhang, Yushuang Gong, and Weidong Liu. 2018. "Geochronology, Petrology, and Genesis of Two Granitic Plutons of the Xianghualing Ore Field in South Hunan Province: Constraints from Zircon U–Pb Dating, Geochemistry, and Lu–Hf Isotopic Compositions" Minerals 8, no. 5: 213. https://doi.org/10.3390/min8050213
APA StyleYang, L., Wu, X., Cao, J., Hu, B., Zhang, X., Gong, Y., & Liu, W. (2018). Geochronology, Petrology, and Genesis of Two Granitic Plutons of the Xianghualing Ore Field in South Hunan Province: Constraints from Zircon U–Pb Dating, Geochemistry, and Lu–Hf Isotopic Compositions. Minerals, 8(5), 213. https://doi.org/10.3390/min8050213