Spinels in Meteorites: Observation Using Mössbauer Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chromite in Ordinary Chondrites
3.2. Chromite in Seymchan Main Group Pallasite
3.3. Daubréelite in Troilite Extracted from the Sikhote-Alin Iron Meteorite
3.4. Magnesioferrite in the Fusion Crust of Chelyabinsk LL5 Fragment
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Weisberg, M.K.; McCoy, T.J.; Krot, A.N. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II; Lauretta, D.S., McSween, H.Y., Jr., Binzel, R.P., Eds.; University of Arizona Press: Tucson, AZ, USA, 2006; pp. 19–52. ISBN 9780816525621. [Google Scholar]
- Jarosewich, E. Chemical analysis of meteorites: A compilation of stony and iron meteorites analyses. Meteoritics 1990, 25, 323–337. [Google Scholar] [CrossRef]
- Rubin, A.E. Mineralogy of meteorite groups. Meteorit. Planet. Sci. 1997, 32, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Sprenkel-Segel, E.L.; Hanna, S.S. Mössbauer analysis of iron in stone meteorites. Geochim. Cosmochim. Acta 1964, 28, 1913–1931. [Google Scholar] [CrossRef]
- Dos Santos, E.; Gattacceca, J.; Rochette, P.; Scorzelli, R.B.; Fillion, G. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Phys. Earth Planet. Inter. 2015, 242, 50–64. [Google Scholar] [CrossRef]
- Sato, W.; Nakagawa, M.; Shirai, N.; Ebihara, M. Mössbauer spectroscopic study on the composition of Fe-containing minerals in ordinary chondrites, Miller Range 07710 and Yamato 790272. Hyperfine Interact. 2018, 239. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Grokhovsky, V.I.; Petrova, E.V.; Larionov, M.Y.; Goryunov, M.V.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution applied for the study of meteoritic iron-bearing minerals. J. Mol. Struct. 2013, 1044, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Oshtrakh, M.I.; Maksimova, A.A.; Goryunov, M.V.; Yakovlev, G.A.; Petrova, E.V.; Larionov, M.Y.; Grokhovsky, V.I.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution: Advances in the study of meteoritic iron-bearing minerals. In Proceedings of the Workshop on The Modern Analytical Methods Applied to Earth and Planetary Sciences; Gucsik, A., Ed.; The MicroMatLab Kft Hungary: Sopron, Hungary, 2015; pp. 43–86. ISBN 978-963-12-1410-9. [Google Scholar]
- Maksimova, A.A.; Chukin, A.V.; Oshtrakh, M.I. Revealing of the minor iron-bearing phases in the Mössbauer spectra of Chelyabinsk LL5 ordinary chondrite fragment. In Mössbauer Spectroscopy in Materials Science 2016, Proceedings of the International Conference of American Institute of Physics; Tuček, J., Miglierini, M., Eds.; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1781, p. 020016. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Study of Chelyabinsk LL5 meteorite fragment with light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution. In Mössbauer Spectroscopy in Materials Science 2014, Proceedings of the International Conference of American Institute of Physics; Tuček, J., Miglierini, M., Eds.; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2014; Volume 1622, pp. 24–29. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Klencsár, Z.; Petrova, E.V.; Grokhovsky, V.I.; Chukin, A.V.; Shtoltz, A.K.; Maksimova, A.A.; Felner, I.; Kuzmann, E.; Homonnay, Z.; et al. Iron sulfide (troilite) inclusion extracted from Sikhote-Alin iron meteorite: Composition, structure and magnetic properties. Mat. Chem. Phys. 2016, 174, 100–111. [Google Scholar] [CrossRef]
- Kohout, T.; Haloda, J.; Halodová, P.; Meier, M.M.M.; Maden, C.; Busemann, H.; Laubenstein, M.; Caffee, M.W.; Welten, K.C.; Hopp, J.; et al. Annama H chondrite-mineralogy, physical properties, cosmic ray exposure, and parent body history. Meteorit. Planet. Sci. 2017, 52, 1525–1541. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Chukin, A.V.; Felner, I.; Yakovlev, G.A.; Semionkin, V.A. Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta Part A Molec. Biomolec. Spectrosc. 2018, 192, 275–284. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Kamalov, R.V.; Chukin, A.V.; Felner, I.; Oshtrakh, M.I. An analysis of orthopyroxene from Tsarev L5 meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy. J. Mol. Struct. 2018, 1174, 6–11. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Maksimova, A.A.; Goryunov, M.V.; Petrova, E.V.; Felner, I.; Chukin, A.V.; Grokhovsky, V.I. Study of metallic Fe-Ni-Co alloy and stony part isolated from Seymchan meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy. J. Mol. Struct. 2018, 1174, 112–121. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Semionkin, V.A. Mössbauer Spectroscopy with a high velocity resolution: Advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta Part A Molec. Biomolec. Spectrosc. 2013, 100, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Oshtrakh, M.I.; Semionkin, V.A. Mössbauer Spectroscopy with a high velocity resolution: Principles and applications. In Mössbauer Spectroscopy in Materials Science 2016, Proceedings of the International Conference of American Institute of Physics; Tuček, J., Miglierini, M., Eds.; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1781, p. 020019. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Klencsár, Z.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Kuzmann, E.; Homonnay, Z.; Semionkin, V.A. Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: An example of Chelyabinsk LL5 meteorite. Hyperfine Interact. 2016, 237, 33. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution. Spectrochim. Acta Part A Molec. Biomolec. Spectrosc. 2017, 172, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Gattacceca, J.; Rochette, P.; Lagroix, F.; Mathé, P.E.; Zanda, B. Low temperature magnetic transition of chromite in ordinary chondrites. Geophys. Res. Lett. 2011, 38, L10203. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Grokhovsky, V.I.; Petrova, E.V.; Semionkin, V.A. Mössbauer spectroscopy of H, L and LL ordinary chondrites. Hyperfine Interact. 2016, 237, 134. [Google Scholar] [CrossRef]
- Dézsi, I.; Szûcs, I.; Sváb, E. Mössbauer spectroscopy of spinels. J. Radioanal. Nucl. Chem. 2000, 246, 15–19. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H.; Princivalle, F.; Hålenius, U. Structural changes and valence states in the MgCr2O4–FeCr2O4 solid solution series. Phys. Chem. Mineral. 2004, 31, 633–642. [Google Scholar] [CrossRef]
- Osborne, M.D.; Fleet, M.E.; Bancroft, G.M. Fe2+–Fe3+ ordering in chromite and Cr-bearing spinels. Contrib. Mineral. Petrol. 1981, 77, 251–255. [Google Scholar] [CrossRef]
- Schmidbauer, E. 57Fe Mössbauer spectroscopy and magnetization of cation-deficient Fe2TiO4 and FeCr2O4. Part I: 57Fe Mössbauer spectroscopy. Phys. Chem. Mineral. 1987, 14, 533–641. [Google Scholar]
- Quintiliani, M.; Andreozzi, G.B.; Skogby, H. Synthesis and Mössbauer characterization of Fe1+xCr2-xO4 (0 ≤ x ≤ 2/3) spinel single crystals. Period. Mineral. 2011, 80, 39–55. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H. Structural changes in the FeAl2O4–FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels. Phys. Chem. Mineral. 2013, 40, 587–595. [Google Scholar] [CrossRef]
- De Grave, E.; Govaert, A.; Chambaere, D.; Robbrecht, G. A Mössbauer effect study of MgFe2O4. Physica B+C 1979, 96, 103–110. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H.; Princivalle, F.; Hålenius, U. The MgCr2O4–MgFe2O4 solid solution series: Effects of octahedrally coordinated Fe3+ on T–O bond lengths. Phys. Chem. Miner. 2006, 33, 465–474. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, K.J. Magnetotransport and magnetic properties of sulfospinels ZnxFe1–xCr2S4. Hyperfine Interact. 2006, 169, 1267–1272. [Google Scholar] [CrossRef]
- Dey, K.; Indra, A.; Giri, S. Critical behavior of multiferroic sulpho spinel compounds: MCr2S4 (M j Co & Fe). J. Alloys Comp. 2017, 726, 74–80. [Google Scholar] [CrossRef]
- Mertinat, M.; Tsurkan, V.; Samusi, D.; Tidecks, R.; Haider, F. Low-temperature structural transition in FeCr2S4. Phys. Rev. B 2005, 71, 100408(R). [Google Scholar] [CrossRef]
- Čuda, J.; Kohout, T.; Tuček, J.; Filip, J.; Medřík, I.; Mashlan, M.; Zbořil, R. Mössbauer study and magnetic measurement of troilite extract from Natan iron meteorite. In Mössbauer Spectroscopy in Materials Science 2012, Proceedings of the International Conference of American Institute of Physics; Tuček, J., Machala, L., Eds.; AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2012; Volume 1489, pp. 145–153. [Google Scholar] [CrossRef]
- Klencsár, Z.; Kuzmann, E.; Homonnay, Z.; Vertes, A.; Simopoulos, A.; Devlin, E.; Kallias, G. Interplay between magnetic order and the vibrational state of Fe in FeCr2S4. J. Phys. Chem. Solids 2003, 64, 325–331. [Google Scholar] [CrossRef]
- Chen, Z.; Tan, S.; Yang, Z.; Zhang, Y. Evidence for a non-double-exchange mechanism in FeCr2S4. Phys. Rev. B 1999, 59, 11172–11174. [Google Scholar] [CrossRef]
- Van Diepen, A.M.; Lotgering, F.K.; Olijhoek, J.F. Effect of small variations of the Fe/Cr ratio on the 57Fe Mössbauer spectra of FeCr2S4. J. Magn. Magn. Mater. 1976, 3, 117–119. [Google Scholar] [CrossRef]
- Riedel, E.; Karl, R. Mössbauer Studies of Thiospinels. III. The System FeCr2S4–Feln2S4. J. Solid State Chem. 1981, 38, 40–47. [Google Scholar] [CrossRef]
- Genge, M.J.; Grady, M.M. The fusion crusts of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials. Meteorit. Planet. Sci. 1999, 34, 341–356. [Google Scholar] [CrossRef] [Green Version]
- Thaisen, K.G.; Taylor, L.A. Meteorite fusion crust variability. Meteorit. Planet. Sci. 2009, 44, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Antic, B.; Jovic, N.; Pavlovic, M.B.; Kremenovic, A.; Manojlović, D.; Vucinic-Vasic, M.; Nikolić, A.S. Magnetization enhancement in nanostructured random type MgFe2O4 spinel prepared by soft mechanochemical route. J. App. Phys. 2010, 107, 043525. [Google Scholar] [CrossRef]
Metal | Chelyabinsk LL5 No 1a | Chelyabinsk LL5 No 2 | NWA 6286 LL6 | NWA 7857 LL6 | Tsarev L5 | Annama H5 |
---|---|---|---|---|---|---|
Fe | 13.2 | 13.1 | 12.2–13.5 | 10.2–16.1 | 10.7 | 8.0–8.4 |
Cr | 21.2 | 21.0 | 19.9–21.6 | 17.5–28.4 | 21.1 | 15.2–16.1 |
Al | 3.5 | 3.9 | 3.1–3.8 | 3.3–4.8 | 3.2 | 2.8–3.0 |
Mg | 1.5 | 1.3 | 1.5–1.9 | 1.2–2.0 | 3.7 | 1.8–1.4 |
Ti | 1.0 | 0.6 | 0.9–1.6 | 0.2–1.1 | 1.0 | 0.4 |
Phase/Mineral | Chelyabinsk LL5 No 1a 1 | Chelyabinsk LL5 No 2 2 | NWA 6286 LL6 3 | NWA 7857 LL6 3 | Tsarev L5 4 | Annama H5 5 |
---|---|---|---|---|---|---|
Olivine | 50.6 | 48.6 | 57.3 | 59.2 | 43.1 | 38.6 |
Anorthite | 8.2 | 8.2 | 11.8 | 9.4 | 9.7 | 4.7 |
Orthopyroxene | 31.9 | 25.2 | 18.9 | 19.9 | 28.6 | 36.6 |
Clinopyroxene | 5.5 | 6.9 | 3.7 | 3.6 | 6.2 | 1.4 |
Troilite | 6.7 | 6.2 | 4.8 | 3.6 | 7.2 | 5.6 |
α-Fe(Ni, Co) | 1.4 | 1.8 | 0.2 | 1.8 | 0.6 | 9.0 |
γ-Fe(Ni, Co) | 0.9 | 0.8 | 1.2 | 0.5 | 1.3 | |
Chromite | 1.5 | 1.5 | 1.7 | 1.7 | 3.5 | 2.7 |
Hercynite | 0.4 | 0.8 | 0.4 | 0.3 | 0.7 | 0.2 |
Parameter | Chelyabinsk LL5 No 1a 1 | Chelyabinsk LL5 No 2 2 | NWA 6286 LL6 3 | NWA 7857 LL6 4 | Tsarev L5 3 | Annama H5 5 | Synthetic Spinels 6 |
---|---|---|---|---|---|---|---|
Chromite | |||||||
Γ, mm/s | 0.776 ± 0.107 | 0.776 ± 0.034 | 0.700 ± 0.028 | 0.776 ± 0.028 | 0.568 ± 0.030 | 0.498 ± 0.028 | 0.33 |
δ, mm/s | 0.855 ± 0.026 | 0.777 ± 0.017 | 0.776 ± 0.014 | 0.662 ± 0.014 | 0.909 ± 0.015 | 0.748 ± 0.014 | 0.90 |
A, % | ~1.6(2) | ~2.7(3) | ~3.1(3) | ~2.9(3) | ~2.3(2) | ~2.4(2) | 100 |
Hercynite and/or mixed Fe(Al1–xCrx)2O4 spinel | |||||||
Γ, mm/s | 0.234 ± 0.033 | 0.238 ± 0.033 | 0.235 ± 0.028 | 0.237 ± 0.028 | 0.246 ± 0.030 | 0.260 ± 0.028 | 0.75 |
δ, mm/s | 0.883 ± 0.027 | 0.997 ± 0.017 | 0.987 ± 0.014 | 0.959 ± 0.014 | 0.843 ± 0.015 | 0.852 ± 0.014 | 0.91 |
ΔEQ, mm/s | 1.499 ± 0.469 | 1.480 ± 0.017 | 1.434 ± 0.014 | 1.504 ± 0.014 | 1.414 ± 0.018 | 1.465 ± 0.014 | 1.57 |
A, % | ~0.7(1) | ~1.7(2) | ~0.9(1) | ~1.6(2) | ~1.0(1) | ~0.9(1) | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimova, A.A.; Chukin, A.V.; Felner, I.; Oshtrakh, M.I. Spinels in Meteorites: Observation Using Mössbauer Spectroscopy. Minerals 2019, 9, 42. https://doi.org/10.3390/min9010042
Maksimova AA, Chukin AV, Felner I, Oshtrakh MI. Spinels in Meteorites: Observation Using Mössbauer Spectroscopy. Minerals. 2019; 9(1):42. https://doi.org/10.3390/min9010042
Chicago/Turabian StyleMaksimova, Alevtina A., Andrey V. Chukin, Israel Felner, and Michael I. Oshtrakh. 2019. "Spinels in Meteorites: Observation Using Mössbauer Spectroscopy" Minerals 9, no. 1: 42. https://doi.org/10.3390/min9010042
APA StyleMaksimova, A. A., Chukin, A. V., Felner, I., & Oshtrakh, M. I. (2019). Spinels in Meteorites: Observation Using Mössbauer Spectroscopy. Minerals, 9(1), 42. https://doi.org/10.3390/min9010042