Equation of State of a Natural Chromian Spinel at Ambient Temperature
Abstract
:1. Introduction
2. Experimental Method
3. Result and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biagioni, C.; Pasero, M. The systematics of the spinel-type minerals: An overview. Am. Mineral. 2014, 99, 1254–1264. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petr. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Liu, X.; O’Neill, H.St.C. The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2-Cr2O3 at 1.1 GPa. J. Petrol. 2004, 45, 2261–2286. [Google Scholar] [CrossRef]
- O’Neill, H.St.C. The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib. Mineral. Petr. 1981, 77, 185–194. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.F.; Green, D.H. Oxygen fugacity controls in the Earth’s upper mantle. Nature 1990, 349, 437–449. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xiong, Z.; Zhang, Z. Compressional behavior of MgCr2O4 spinel from first-principles simulation. Sci. China-Earth Sci. 2016, 59, 989–996. [Google Scholar] [CrossRef]
- Duke, J.M. Ore deposit models 7. magmatic segregation deposits of chromite. Geosci. Can. 1983, 10, 15–24. [Google Scholar]
- Shu, J.F.; Mao, W.L.; Hemley, R.J.; Mao, H.K. Pressure-induced distortive phase transition in chromite-spinel at 29 GPa. Mater. Res. Soc. Symp. P. 2007, 987, 179–184. [Google Scholar]
- Fan, D.W.; Zhou, W.G.; Liu, C.Q.; Liu, Y.G.; Jiang, X.; Wan, F.; Liu, J.; Li, X.D.; Xie, H.S. Thermal equation of state of natural chromium spinel up to 26.8 GPa and 628 K. J. Mater. Sci. 2008, 43, 5546–5550. [Google Scholar] [CrossRef]
- Matsukage, K.N.; Kikuchi, S.; Ono, S.; Nishihara, Y.; Kikegawa, T. Density and seismic velocities of chromitite body in oceanic mantle peridotite. Am. Mineral. 2010, 95, 1422–1428. [Google Scholar] [CrossRef]
- Du, W.; Clark, S.M.; Walker, D. Thermo-compression of pyrope-grossular garnet solid solutions: Non-linear compositional dependence. Am. Mineral. 2015, 100, 215–222. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, Z.; Chang, L.; He, Q.; Wang, F.; Shieh, S.R.; Wu, C.; Li, B.; Zhang, L. Anhydrous ringwoodites in the mantle transition zone: Their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sci. 2016, 1, 28–47. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, Z.; Shieh, S.R.; He, Q.; Deng, L.; Zhang, Y.; Chang, L.; Wang, F.; Hong, X.; Chen, Z. Non-monotonic compositional dependence of isothermal bulk modulus of the (Mg1–xMnx)Cr2O4 spinel solid solutions, and its origin and implication. Solid Earth Sci. 2016, 1, 89–100. [Google Scholar] [CrossRef]
- Aubut, A. National Instrument 43-101Technical Report: Big Daddy chromite deposit, McFaulds Lake Area, Ontario, Canada, Porcupine Mining Division, NTS 43D16. In Mineral Resource Estimation Technical Report Prepared for KWG Resources Inc. Sibley Basin Group; 2012; pp. 1–64. Available online: http://www.kwgresources.com/_resources/pdfs/tech_report.pdf (accessed on 9 September 2018).
- Fei, Y.W.; Ricolleau, A.; Frank, M.; Mibe, K.; Shen, G.Y.; Prakapenka, V. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. 2007, 104, 9182–9186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Lemarchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D 2009, 42, 075413. [Google Scholar] [CrossRef]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Angel, R.J. Equation of state. Rev. Mineral. Geochem. 2000, 41, 35–60. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J. Geophys. Res. 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Heinz, D.L.; Jeanloz, R. The equation of state of the gold calibration standard. J. Appl. Phys. 1984, 55, 885–893. [Google Scholar] [CrossRef]
- Kruger, M.B.; Nguyen, J.H.; Caldwell, W.; Jeanloz, R. Equation of state of MgAl2O4 spinel to 65 GPa. Phys. Rev. B 1997, 56, 1–4. [Google Scholar] [CrossRef]
- Nestola, F.; Periotto, B.; Anzolini, C.; Andreozzi, G.B.; Woodland, A.B.; Lenaz, D.; Alvaro, M.; Princivalle, F. Equation of state of hercynite, FeAl2O4, and high-pressure systematics of Mg-Fe-Cr-Al spinels. Mineral. Mag. 2015, 79, 285–294. [Google Scholar] [CrossRef]
- Nestola, F.; Periotto, B.; Andreozzi, G.B.; Bruschini, E.; Bosi, F. Pressure-volume equation of state for chromite and magnesiochromite: A single-crystal X-ray diffraction investigation. Am. Mineral. 2014, 99, 1248–1253. [Google Scholar] [CrossRef]
- Greenberg, E.; Rozenberg, G.Kh.; Xu, W.; Arielly, R.; Pasternak, M.P.; Melchior, A.; Garbarino, G.; Dubrovinsky, L.S. On the compressibility of ferrite spinels: A high-pressure X-ray diffraction study of MFe2O4 (M = Mg, Co, Zn). High Pressure Res. 2009, 29, 764–779. [Google Scholar] [CrossRef]
- Nakagiri, N.; Manghnani, M.H.; Ming, L.C.; Kimura, S. Crystal structure of magnetite under pressure. Phys. Chem. Miner. 1986, 13, 238–244. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Lawson, A.C.; Zhang, J.Z.; Bennett, B.I.; Von Dreele, R.B. Thermoelastic equation of state of molybdenum. Phys. Rev. B 2000, 62, 8766. [Google Scholar] [CrossRef]
- Angel, R.J.; Allan, D.R.; Miletich, R.; Finger, L.W. The use of quartz as an internal pressure standard in high-pressure crystallography. J. Appl. Crystallogr. 1997, 30, 461–466. [Google Scholar] [CrossRef]
- Liu, X.; He, Q.; Deng, L.; Zhai, S.; Hu, X.; Li, B.; Zhang, L.; Chen, Z.; Liu, Q. Equation of state of CAS phase to pressure of the uppermost lower mantle at ambient temperature. Sci. Chin. Earth Sci. 2011, 54, 1394–1399. [Google Scholar] [CrossRef]
P (GPa) | a (Å) | V (Å3) |
---|---|---|
0.90(7) a | 8.284(1) | 568.57(14) |
1.37(1) | 8.281(1) | 567.76(11) |
1.46(2) | 8.283(2) | 567.76(38) |
1.78(3) | 8.275(2) | 566.70(38) |
2.07(1) | 8.270(1) | 565.59(26) |
2.17(2) | 8.270(1) | 565.53(27) |
3.06(1) | 8.258(1) | 563.10(25) |
3.61(6) | 8.249(1) | 561.21(24) |
4.46(4) | 8.240(1) | 559.45(22) |
5.87(5) | 8.223(2) | 556.08(30) |
6.92(6) | 8.213(1) | 553.97(19) |
8.24(4) | 8.196(2) | 550.49(35) |
9.36(2) | 8.181(2) | 547.58(46) |
10.20(2) | 8.172(3) | 545.74(52) |
10.96(9) | 8.163(3) | 543.89(52) |
11.45(7) | 8.159(2) | 543.03(48) |
12.37(1) | 8.150(2) | 541.25(46) |
12.39(6) | 8.147(2) | 540.80(33) |
12.42(8) | 8.145(4) | 540.26(69) |
12.86(7) | 8.139(3) | 539.11(63) |
13.10(8) | 8.135(3) | 538.44(59) |
13.33(9) | 8.133(3) | 537.99(59) |
13.62(10) | 8.130(3) | 537.43(67) |
13.93(5) | 8.124(4) | 536.22(87) |
14.46(4) | 8.123(4) | 535.89(74) |
15.00(4) | 8.117(3) | 534.84(66) |
Spinel | V0 | Experimental Details a | Reference | ||
---|---|---|---|---|---|
Spss | 571.7(1) b | 207(5) | 3.2(7) | 0–15; Gold; Ne; Powder | This study |
571.8(1) | 202(2) | 4 | |||
Spss | 579.6(9) | 179(10) | 3.9(9) | 0–29; Ruby; He; SC | [9] |
579.6(9) | 179(1) | 4 c | |||
Spss | 557.86 | 209(9) | 7(1) | 0–26.8; Mo; MEW; Powder | [10] |
556.5(8) | 242(7) | 4 c | |||
Spss | 560.6(2) | 192(7) | 4(1) | 0–10.19; Ruby; ME; Powder | [11] |
560.6(2) | 192(7) | 3.6(13) | |||
MgAl2O4 | 529.37 | 196(1) | 4.7(3) | 0–65; Gold; ME; powder | [22] |
Sp | 529.37 | 201.6(6) | 4 c | ||
FeAl2O4 | 542.58 | 193.9(2) | 6.0(5) | 0–7.5; Quartz; ME; SC | [23] |
He | 542.58 | 200.9(7) | 4 c | ||
MgCr2O4 | 573.9 | 182.5(4) | 5.8(4) | 0–8.2; Quartz; ME; SC | [24] |
Mg-Ch | 573.9 | 189.6(7) | 4 c | ||
FeCr2O4 | 588.47 | 184.8(2) | 6.1(5) | 0–9.2; Quartz; ME; SC | [24] |
Ch | 588.47 | 193(1) | 4 c | ||
MgFe2O4 | 590.7 | 179(2) | 3.3(2) | 0–53; Ruby; He; Powder | [25] |
Mg-Fe | 590.7 | 170.5(8) | 4 c | ||
Fe3O4 | 591.5 | 181(2) | 5.5(15) | 0–4.5; Ruby; ME; SC | [26] |
Ma | 591.5 | 187(11) | 4 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, Z.; Shi, W.; Zhang, L.; Shieh, S.R.; Liu, X. Equation of State of a Natural Chromian Spinel at Ambient Temperature. Minerals 2018, 8, 591. https://doi.org/10.3390/min8120591
Mi Z, Shi W, Zhang L, Shieh SR, Liu X. Equation of State of a Natural Chromian Spinel at Ambient Temperature. Minerals. 2018; 8(12):591. https://doi.org/10.3390/min8120591
Chicago/Turabian StyleMi, Zhongying, Weiguang Shi, Lifei Zhang, Sean R. Shieh, and Xi Liu. 2018. "Equation of State of a Natural Chromian Spinel at Ambient Temperature" Minerals 8, no. 12: 591. https://doi.org/10.3390/min8120591
APA StyleMi, Z., Shi, W., Zhang, L., Shieh, S. R., & Liu, X. (2018). Equation of State of a Natural Chromian Spinel at Ambient Temperature. Minerals, 8(12), 591. https://doi.org/10.3390/min8120591