Weathering of Ophiolite Remnant and Formation of Ni Laterite in a Strong Uplifted Tectonic Region (Yuanjiang, Southwest China)
Abstract
:1. Introduction
2. Geological and Geographical Setting
3. Geology of the Yuanjiang Deposit and Profile Description
- I:
- Ferruginous ore (Figure 2d) in the brown limonite: 0.5–1.3 wt % Ni; <10 wt % Mg; ~24 wt % Fe.
- II:
- Ferruginous-magnesian ore (Figure 2d) in the brown saprolite: 0.5–1.6 wt % Ni; 10–20 wt % Mg; 11–13% wt % Fe.
- III:
- Magnesian ore (Figure 2e) in the green saprolite: 0.2–1.3 wt % Ni; >20 wt % Mg; 8–11 wt % Fe.
4. Samples and Analytical Methods
5. Results
5.1. Bulk Density and Mineralogy
5.2. Whole-Rock Geochemistry
5.3. Mineral Chemistry
6. Discussions
6.1. Lateritization History
6.2. Impact of Tectonic Uplift
6.3. Mechanism of Ni Mineralization
6.4. Genetic Model for the Yuanjiang Lateritic Ni Deposit
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Dalvi, A.D.; Bacon, W.G.; Osborne, R.C. Past and future of nickel lateritic projects. International laterite Nickel Symposium, Perth, Australia, 28 September–1 October 2004; Charlotte, N.C., Imrie, W.P., Lane, D.M., Eds.; TMS: Warrendale, PA, USA, 2004; pp. 23–50. [Google Scholar]
- Berger, V.I.; Singer, D.A.; Bliss, J.D.; Moring, B.C. Ni-Co Lateritic Deposits of the World—Database and Grade and Tonnage Models; Open-File Report; U.S. Department of the Interior & U.S. Geological Survey: Reston, VA, USA, 2011; Volume 1058, pp. 1–26.
- Butt, C.R.M.; Cluzel, D. Lateritic Nickel ore deposits: Weathered serpentinites. Elements 2013, 9, 123–128. [Google Scholar] [CrossRef]
- Brand, N.W.; Butt, C.R.M.; Elias, M. Nickel lateritic: Classifications and features. AGSO J. Aust. Geol. Geophys. 1998, 17, 81–88. [Google Scholar]
- Elias, M. Nickel Lateritic Deposits-Geological Overview, Resources and Exploitation, in Giant Ore Deposit: Characteristics, Genesis and Exploration; Special Publication; Centre for Ore Deposit Research, University of Tasmania: Tasmania, Australia, 2002; Volume 4, pp. 205–220. [Google Scholar]
- Gleeson, S.A.; Herrington, R.J.; Durango, J.; Velázquez, C.A. The mineralogy and geochemistry of the Cerro Matoso S.A. Ni lateritic deposit, Montelíbano, Colombia. Econ. Geol. 2004, 99, 1197–1213. [Google Scholar] [CrossRef]
- Freyssinet, P.; Butt, C.R.M.; Morris, R.C. Ore-forming processes related to lateritic weathering. Econ. Geol. 2005, 681–722. [Google Scholar]
- Fouateu, R.Y.; Ghogomua, R.T.; Penaye, J.; Ekodecka, G.E.; Stendalc, H.; Colin, F. Nickel and cobalt distribution in the lateritics of the Lomié region, south-east Cameroon. J. Afr. Earth Sci. 2006, 45, 33–47. [Google Scholar] [CrossRef]
- Lewis, J.F.; Draper, G.; Proenza, J.A.; Espaillat, J.; Jimenez, J. Ophiolite-Related Ultramafic Rocks (Serpentinites) in the Caribbean Region: A Review of their Occurrence, Composition, Origin, Emplacement and Ni-Lateritic Soils Formation. Geol. Acta 2006, 4, 237–263. [Google Scholar]
- Wells, M.A.; Ramanaidou, E.R.; Verrall, M.; Tessarolo, C. Mineralogy and crystal chemistry of “garnierites” in the Goro lateritic nickel deposit, New Caledonia. Eur. J. Miner. 2009, 21, 467–483. [Google Scholar] [CrossRef]
- Thorne, R.L.; Herrington, R.; Roberts, S. Composition and origin of the Çaldağ oxide nickel lateritic deposit, W. Turkey. Miner. Depos. 2009, 44, 581–595. [Google Scholar] [CrossRef]
- Roqué-Rosell, J.; Mosselmans, J.F.W.; Proenza, J.A.; Labrador, M.; Galí, S.; Atkinson, K.D.; Quinn, P.D. Sorption of Ni by “lithiophorite–asbolane” intermediates in Moa Bay lateritic deposits, eastern Cuba. Chem. Geol. 2010, 275, 9–18. [Google Scholar] [CrossRef]
- Thorne, R.; Roberts, S.; Herrington, R. The formation and evolution of the Bitincke nickel laterite deposit, Albania. Miner. Depos. 2012, 47, 933–947. [Google Scholar] [CrossRef]
- Thorne, R.L.; Herrington, R.; Roberts, S. Climate change and the formation of nickel lateritic deposits. Geology 2012, 40, 331–334. [Google Scholar] [CrossRef]
- Fu, W.; Yang, J.W.; Yang, M.L.; Pang, B.C.; Liu, X.J.; Niu, H.J.; Huang, X.R. Mineralogical and geochemical characteristic of a serpentinite-derived laterite profile from East Sulawesi, Indonessia:Implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. J. Asian Earth Sci. 2014, 93, 74–88. [Google Scholar] [CrossRef]
- Al-Khirbash, S. Genesis and mineralogical classification of Ni-laterites. Oman Mountains. Ore Geol. Rev. 2015, 65, 199–212. [Google Scholar] [CrossRef]
- Putzolu, F.; Balassone, G.; Boni, M.; Maczurad, M.; Mondillo, N.; Najorka, J. Mineralogical association and Ni-Co deportment in the Wingellina oxidetype laterite deposit (Western Australia). Ore Geol. Rev. 2018, 97, 21–34. [Google Scholar] [CrossRef]
- Ratié, G.; Garnier, J.; Calmels, D.; Vantelon, D.; Guimaraes, E.; Monvoisin, G. Nickel distribution and isotopic fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge XANES. Geochim. Cosmochim. Acta 2018, 230, 137–154. [Google Scholar] [CrossRef]
- Mudd, G.M. Global trends and environmental issues in nickel mining: Sulfides versus laterities. Ore Geol. Rev. 2010, 38, 9–26. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Lewis, J.F. Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol. Rev. 2016, 73, 127–147. [Google Scholar]
- Golightly, J.P. Progress in understanding the evolution of nickel lateritics. In The Challenge of Finding New Mineral Resources—Global Metallogeny, Innovative Exploration, and New Discoveries; Goldfarb, R.J., Marsh, E.E., Monecke, T., Eds.; Society of Economic Geologists Special Publication; Society of Economic Geologists: Littleton, CO, USA, 2010; Volume 15, pp. 451–485. [Google Scholar]
- Roqué-Rosell, J.; Villanova-De-Benavent, C.; Proenza, J.A. The accumulation of Ni in serpentines and garnierites from the Falcondo Ni-laterite deposit (Dominican Republic) elucidated by means of μXAS. Geochim. Cosmochim. Acta 2017, 198, 48–69. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, Y.M.; Pang, C.J.; Zeng, X.W.; Huang, X.R.; Yang, M.L.; Shao, Y.; Henry, L. Garnierite mineralization from a serpentinite-derived lateritic regolith, Sulawesi Island, Indonesia: Mineralogy, geochemistry and link to hydrologic flow regime. J. Geochem. Explor. 2018, 188, 240–256. [Google Scholar]
- Villanova-de-Benavent, C.; Proenza, J.A.; Gali, S.; Garcia-Casco, A.; Tauler, E.; Lewis, J.F.; Longo, F. Garnierites and garnierites:Textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geol. Rev. 2014, 58, 91–109. [Google Scholar] [CrossRef]
- Ilyas, A.; Kashiwaya, K.; Koike, K. Ni grade distribution in laterite characterized from geostatistics, topography and the paleo-groundwater system in Sorowako, Indonesia. J. Geochem. Explor. 2016, 165, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Quesnel, B.; Veslud, C.L.C.D.; Boulvais, P.; Gautier, P.; Cathelineau, M.; Drouillet, M. 3D modeling of the laterites on top of the Koniambo Massif, New Caledonia: Refinement of the per descensum lateritic model for nickel mineralization. Miner. Depos. 2017, 52, 1–18. [Google Scholar] [CrossRef]
- Myagkiy, A.; Truche, L.; Cathelineau, M.; Golfier, F. Revealing the conditions of Ni mineralization in the laterite profiles of New Caledonia: Insights from reactive geochemical μtransport modelling. Chem. Geol. 2017, 466, 1–18. [Google Scholar] [CrossRef]
- Qiao, F.G.; Zhu, J.Y.; Tian, Y.L. Nickel resources distribution in the World and nickel deposits in Yunnan Province, China. Yunnan Geol. 2005, 24, 95–401. [Google Scholar]
- Wang, S.W.; Sun, X.M.; Liao, Z.W.; Qu, W.J.; Jiang, X.F.; Li, Y.C. Platinum group elements and Re-Os isotope geochemistry of harzburgites from Caiziyuan nickel depost in Huili County of Sichuan Province and its geological significance. Miner. Depos. 2013, 32, 515–532. [Google Scholar]
- Zhang, Q.; Zhou, D.J.; Li, X.Y.; Chen, Y.; Huang, Z.X.; Han, S.; Jia, X.Q.; Dong, J.Q. Characterics and Genesises of Shuanggou Ophiolites, Yunnan Province, China. Acta Petrol. Sin. 1995, 11, 190–202. [Google Scholar]
- Mo, X.X.; Pan, G.T. From Tethys to the formation of the Qinghai Tibet Plateau: Constrained by tectono magmatic events. Earth Sci. Front. 2006, 6, 43–51. [Google Scholar]
- Liu, J.L.; Tang, Y.; Song, Z.J. The Ailaoshan Belt in Western Yunnan: Tectonic Framework and Tectonic Evolution. J. Jilin Univ. 2011, 41, 1285–1303. [Google Scholar]
- Fang, W.X.; Hu, R.Z.; Xie, G.Q.; Su, W.C. Tectonolithostratigraphic units of the Ailaoshan area in Yunnan, China, and their implications of tectonic evolution. Geotecton. Metall. 2002, 26, 28–36. [Google Scholar]
- Yunnan bureau of Geology and Mineral Exploration. Regional Geology of Yunnan Province; Geological Publishing House: Beijing, China, 1990.
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalaya-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Deng, X.D.; Li, J.W.; Vasconcelos, P.M.; Cohen, B.E.; Kusky, T.M. Geochronology of the Baye Mn oxide deposit, southern Yunnan Plateau: Implications for the late Miocene to Pleistocene paleoclimatic conditions and topographic evolution. Geochim. Cosmochim. Acta 2014, 139, 227–247. [Google Scholar] [CrossRef] [Green Version]
- Golightly, J.P. Geology of Soroako nickeliferous lateritic deposits, In International Lateritic Symposium, 2nd ed.; Evans, D.J.I., Shoemaker, R.S., Veltman, H., Eds.; AIME: New York, NY, USA, 1979; pp. 38–56. [Google Scholar]
- Cluzel, D.; Vigier, B. Syntectonic Mobility of Supergene Nickel Ores of New Caledonia (Southwest Pacific). Evidence from Garnierite Veins and Faulted Regolith. Resour. Geol. 2008, 58, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Foose, M.P. Nickel–Mineralogy and Chemical Composition of Some Nickel-Bearing Laterites in Southern Oregonand Northern California; Bulletin; US Government Printing Office: Washington, DC, USA, 1992; pp. 1–24.
- Sufriadin. Mineralogy, Geochemistry, and Leaching Behavior of the Soroko Nickeliferous Laterite Deposits, Sulawesi, Indonesia; Gadjah Mada University: Yogyakarta, Indonesia, 2013. [Google Scholar]
- Tauler, E.; Proenza, J.; Gali, S.; Lewis, J.F.; Labrador, M.; Garcia-Romero, E.; Suarez, M.; Longo, F.; Bloise, G. Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-lateritic deposit, Dominican Republic. Clay Miner. 2009, 44, 435–454. [Google Scholar] [CrossRef]
- Traoré, D.; Beauvais, A.; Chabaux, F.; Peiffert, C.; Parisot, J.C.; Ambrosi, J.P.; Colin, F. Chemical and physical transfers in an ultramafic rock weathering profile: Part 1. Supergene dissolution of Pt-bearing chromite. Am. Miner. 2008, 93, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element geochemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Hill, I.G.; Worden, R.H.; Meighan, I.G. Yttrium: The immobility-mobility transition during basaltic weathering. Geology 2000, 28, 923–926. [Google Scholar] [CrossRef]
- Cathelineau, M.; Quesnel, B.; Gautier, P.; Boulvais, P.; Couteau, C.; Drouillet, M. Nickel dispersion and enrichment at the bottom of the regolith: Formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia). Miner. Depos. 2016, 51, 271–282. [Google Scholar] [CrossRef]
- Fritsch, E.; Juillo, F.; Dublet, G.; Fonteneau, L.; Fandeur, D.; Martin, E.; Caner, L.; Auzende, A.L.; Grauby, O.; Beaufort, D. An alternative model for the formation of hydrous Mg/Ni layer silicates (‘deweylite’/’garnierite’) in faulted peridotites of New Caledonia: I. Texture and mineralogy of a paragenetic succession of silicate infillings. Eur. J. Miner. 2016, 28, 295–311. [Google Scholar] [CrossRef]
- Skarpelis, N. Lateritization processes of ultramafic rocks in Cretaceous times: The fossil weathering crusts of mainland Greece. J. Geochem. Explor. 2006, 88, 1–3. [Google Scholar] [CrossRef]
- Wang, H.Z.; Chu, X.C.; Liu, B.P. Palaeogeography of China; Map Publishing House: Beijing, China, 1985. [Google Scholar]
- Liu, D.S.; Zheng, M.P.; Guo, Z.T. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia. Quat. Sci. 1998, 3, 194–204. [Google Scholar]
- Du, W.R. Geological characteristics and formation of the Tertiary lignite in Yunnan Province. Yunnan Geol. 1982, 1, 234–245. [Google Scholar]
- Liu, R.X.; Xie, G.H.; Zhou, X.H.; Chen, W.J.; Fan, Q.H. Tectonic environments of Cenozoic volcanic rocks in China and characteristics of the source regions in the mantle. Chin. J. Geochem. 1995, 14, 289–302. [Google Scholar] [CrossRef]
- Wang, S.J. Palaeoenvironmental change of the ancient Nihewan Lake area-Sr isotope evidence from Xiaodukou foraminifera. Acta Geochim. 1996, 15, 105–112. [Google Scholar]
- Xu, J.X. Palynology, Paleovegetation and Paleoclimate of Neogene Central-Western Yunnan, China. Ph.D. Thesis, Graduate School of the Chinese Academy of Sciences, Shenzhen, China, 2003. [Google Scholar]
- Wu, J.Y.; Sun, B.N.; Xie, S.P.; Lin, Z.C.; Yan, D.F.; Xiao, L. Two Neogene Machilus (Lauraceae) fossils leaves from Tengchong, Yunnan Province and its paleoenvironmental significance. Geol. J. China Univ. 2008, 14, 90–98. [Google Scholar]
- Wang, P.X. Neogene stratigraphy and paleoenvironments of China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990, 77, 315–334. [Google Scholar] [CrossRef]
- Ding, Z.L.; Yu, Z.; Rutter, N.W.; Liu, T.S. Towards anorbital time scale for Chinese loess deposits. Quat. Sci. Rev. 1994, 13, 39–70. [Google Scholar] [CrossRef]
- Clemens, S.C.; Murray, D.W.; Prell, W.L. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 1996, 274, 943–948. [Google Scholar] [CrossRef]
- Clift, P.D.; Hodges, K.V.; Heslop, D.; Hannigan, R.; Van Long, H.; Calves, G. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 2008, 1, 875–880. [Google Scholar] [CrossRef]
- Li, J.W.; Vasconcelos, P.; Zhang, W.; Deng, X.D.; Duzgoren-Aydin, N.; Yan, D.R.; Zhang, J.Q.; Hu, M.A. Timing and duration of supergene mineralization at the Xinrong manganese deposit, western Guangdong Province, South China: Cryptomelane 40Ar/39Ar dating. Miner. Depos. 2007, 42, 361–383. [Google Scholar] [CrossRef]
- Jiang, F.C.; Wu, X.H. Late Cenozoic tectonic movement in geomorphologic boundary belt of southeastern Qinghai-Xizang Plateau. J. Chengdu Univ. Technol. 1998, 25, 162–168. [Google Scholar]
- Guo, Z.T.; Yao, X.F.; Zhao, X.T.; Wei, L.Y. A tropical paleosol at high elevation in the Yulong Mountains and its implication on the uplift of the Tibetan Plateau. Chin. Sci. 2001, 46, 69–73. [Google Scholar] [CrossRef]
- Anand, R.R.; Paine, M. Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration. Aust. J. Earth Sci. 2002, 49, 3–162. [Google Scholar] [CrossRef]
- Grant, J.A. The isocon-diagram—A simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol. 1986, 81, 1976–1982. [Google Scholar] [CrossRef]
- Burns, R.G. Mineralogical Applications of Crystal Field Theory; Cambridge University: Cambridge, UK, 1993; p. 551. [Google Scholar]
- Baumgartner, L.P.; Olsen, S.N. A least square approach to mass transport calculations using the isocon method. Econ. Geol. 1995, 90, 1261–1270. [Google Scholar] [CrossRef]
- Amundson, R. Soil formation. Treatise Geochem. 2003, 5, 1–35. [Google Scholar]
- Brown, D.J.; Helmke, P.A.; Clayton, M.K. Robust geochemical indices for redox and weathering on a granitic lateritic landscape in Central Uganda. Geochim. Cosmochim. Acta 2003, 67, 2711–2723. [Google Scholar] [CrossRef]
- Berger, A.; Frei, R. The fate of chromium during tropical weathering: A lateritic profile from Central Madagascar. Geoderma 2014, 213, 521–532. [Google Scholar] [CrossRef]
- Ma, J.L.; Wei, G.J.; Xu, Y.G.; Long, W.G.; Sun, W.D. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim. Cosmochim. Acta 2007, 71, 3223–3237. [Google Scholar] [CrossRef]
- Gong, Q.J.; Deng, J.; Yang, L.Q.; Zhang, J.; Wang, Q.F.; Zhang, G.X. Behavior of major and trace elements during weathering of sericite–quartz schist. J. Asian Earth Sci. 2011, 42, 1–13. [Google Scholar] [CrossRef]
- Gresens, R.L. Composition-volume relations of metasomatism. Chem. Geol. 1967, 2, 47–65. [Google Scholar] [CrossRef]
- Brimhall, G.H.; Dietrich, W.E. Constitutive mass-balance relations between chemical composition, volume, density, porosity and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochim. Cosmochim. Acta 1986, 51, 567–587. [Google Scholar] [CrossRef]
- Barker, W.W.; Welch, S.A.; Banfield, J.F. Geomicrobiology: Interactions between microbes and minerals. In Reviews in Mineralogy, 2nd ed.; Banfield, J.F., Nealson, K.H., Eds.; Biogeochemical Weathering of Silicate Minerals; Mineralogical Society of America: Washington, DC, USA, 1997; Volume 35, pp. 391–428. [Google Scholar]
- Gleeson, S.A.; Butt, C.R.M.; Elias, M. Nickel laterities: A review. Econ. Geol. 2003, 4, 12–18. [Google Scholar]
- Retallack, G.J. Lateritization and bauxitization events. Econ. Geol. 2010, 105, 655–667. [Google Scholar] [CrossRef]
- Golightly, J.P. Nickeliferous lateritic deposits. Econ. Geol. 1981, 75, 710–735. [Google Scholar]
- Dublet, G.; Juillot, F.; Morin, G.; Fritsch, E.; Fandeur, D.; Ona-Nguema, G. Ni speciation in a new caledonian lateritic regolith: A quantitative x-ray absorption spectroscopy investigation. Geochim. Cosmochim. Acta 2012, 95, 119–133. [Google Scholar]
- Dublet, G.; Juillot, F.; Morin, G. Goethite aging explains Ni depletion in upper units of ultramafic lateritic ores from New Caledonia. Geochim. Cosmochim. Acta 2015, 160, 1–15. [Google Scholar] [Green Version]
- Carvalho-E-Silva, M.L.; Ramos, A.Y.; Tolentino, H.C.N.; Enzweiler, J.; Netto, S.M.; Alves, M.D.C.M. Incorporation of Ni into natural goethite: an investigation by X-ray absorption spectroscopy. Am. Mineral. 2003, 88, 876–882. [Google Scholar] [CrossRef]
- Llorca, S.M. Metallogeny of supergene cobalt mineralization, New Caledonia. Aust. J. Earth Sci. 1993, 40, 377–38582. [Google Scholar]
- Llorca, S.; Monchoux, P. Supergene cobalt minerals from New Caledonia. Can. Miner. 1991, 29, 149–161. [Google Scholar]
- Lambiv, D.G.; Gleeson, S.A. Petrography, mineralogy, and geochemistry of the Nkamouna serpentinite: Implications for the formation of the Cobalt-Manganese Laterite Deposit, Southeast Cameroon. Econ. Geol. 2012, 107, 25–41. [Google Scholar]
- Lambiv, D.G.; Gleeson, S.A.; Schofield, P.F. Mineralogical characterization of the Nkamouna Co–Mn lateritic ore, southeast Cameroon. Miner. Depos. 2013, 48, 155–171. [Google Scholar] [CrossRef]
- Manceau, A.; Llorca, S.; Calas, G. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochim. Cosmochim. Acta 1987, 51, 105–113. [Google Scholar] [CrossRef]
- Elias, M.; Donaldson, M.J.; Giorgetta, N. Geology, mineralogy, and chemistry of lateritic nickel-cobalt deposits near Kalgoorlie, Western Australia. Econ. Geol. 1981, 76, 1775–1783. [Google Scholar] [CrossRef]
- Scott, K.M.; Pain, C.F. Regolith Science; CSIRO: Dordrecht, The Netherlands; Collingwood, Australia, 2008. [Google Scholar]
Diluvial Horizon | Limonite Horizon | Saprolite Horizon | Bedrock | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Red Limonite | Brown Limonite | Brown Saprolite | Pale green Saprolite | ||||||||
P1-19 | P1-18 | P1-16 | P1-13 | P1-11 | P1-9 | P1-7 | P1-5 | P1-2 | J-3 | J-1 | |
SiO2 (wt %) | 41.05 | 25.76 | 31.87 | 29.65 | 39.08 | 38.83 | 37.62 | 40.29 | 38.88 | 39.23 | 38.80 |
TiO2 (wt %) | 0.89 | 0.08 | 0.04 | 0.02 | 0.01 | 0.01 | 0.002 | 0.01 | 0.01 | 0.03 | 0.002 |
Al2O3(wt %) | 13.16 | 5.23 | 3.17 | 2.49 | 2.31 | 1.05 | 1.06 | 1.30 | 1.01 | 0.76 | 0.80 |
Fe2O3 (wt %) | 20.45 | 46.88 | 41.11 | 42.27 | 28.49 | 17.21 | 17.95 | 13.32 | 14.25 | 8.44 | 7.49 |
MnO (wt %) | 0.13 | 0.44 | 1.17 | 0.46 | 0.51 | 0.18 | 0.18 | 0.13 | 0.15 | 0.08 | 0.05 |
MgO (wt %) | 5.22 | 9.55 | 10.98 | 13.28 | 18.18 | 29.15 | 29.37 | 30.83 | 30.92 | 36.06 | 38.03 |
CaO (wt %) | 0.04 | 0.02 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.05 |
Na2O (wt %) | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
K2O (wt %) | 0.70 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 |
P2O5 (wt %) | 0.18 | 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
LOI (wt %) | 17.67 | 9.48 | 9.42 | 9.38 | 9.19 | 11.31 | 11.60 | 11.37 | 11.99 | 13.17 | 13.08 |
Cr (wt %) | 0.36 | 0.88 | 0.69 | 0.67 | 0.71 | 0.29 | 0.38 | 0.44 | 0.22 | 0.36 | 0.30 |
Ni (wt %) | 0.09 | 0.47 | 0.59 | 0.68 | 0.91 | 1.09 | 1.17 | 1.12 | 1.18 | 1.08 | 0.18 |
Sc (mg/kg) | 34 | 63 | 65 | 40 | 33 | 20 | 17 | 20 | 15 | 9 | 8 |
V (mg/kg) | 200 | 137 | 152 | 87 | 74 | 47 | 49 | 39 | 32 | 40 | 35 |
Co (mg/kg) | 82 | 678 | 1493 | 409 | 391 | 231 | 242 | 229 | 185 | 92 | 100 |
Cu (mg/kg) | 48 | 12 | 14 | 1 | 1 | 3 | 3 | 2 | 1 | 4 | 99 |
Zn (mg/kg) | 117 | 199 | 188 | 122 | 90 | 54 | 75 | 57 | 32 | 46 | 32 |
Ga (mg/kg) | 26 | 4 | 5 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
Ge (mg/kg) | 3 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 1 |
Rb (mg/kg) | 68 | 3 | 1 | 0.26 | 0.58 | 0.59 | 0.57 | 0.60 | 0.28 | 0.09 | 0.11 |
Sr (mg/kg) | 57 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
Y (mg/kg) | 20 | 3 | 5 | 26 | 14 | 4 | 0.31 | 0.30 | 0.15 | 0.11 | 0.11 |
Zr (mg/kg) | 184 | 7 | 2 | 0.36 | 0.33 | 0.25 | 0.09 | 1 | 0.05 | 0.36 | 0.11 |
Nb (mg/kg) | 18 | 1 | 0.38 | 0.14 | 0.12 | 0.09 | 0.08 | 0.18 | 0.06 | 0.06 | 0.06 |
Cs (mg/kg) | 12 | 1 | 0.31 | 0.06 | 0.21 | 0.35 | 0.15 | 0.19 | 0.10 | 0.10 | 0.08 |
Ba (mg/kg) | 168 | 15 | 37 | 60 | 100 | 31 | 26 | 19 | 21 | 5 | 5 |
Hf (mg/kg) | 5 | 0.18 | 0.06 | 0.04 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.03 | 0.00 |
Ta (mg/kg) | 1 | 0.06 | 0.03 | 0.01 | 0.01 | 0.02 | 0.01 | 0.06 | 0.00 | 0.01 | 0.01 |
Pb (mg/kg) | 33 | 8 | 2 | 1 | 1 | 1 | 0.35 | 0.37 | 0.06 | <0.01 | 2 |
Th (mg/kg) | 19 | 1 | 0.23 | 0.01 | 0.02 | 0.02 | 0.02 | 0.07 | 0.00 | <0.01 | 0.01 |
U (mg/kg) | 4 | 0.22 | 0.07 | <0.01 | 0.01 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 |
Total | 100.13 | 99.40 | 99.57 | 99.43 | 100.02 | 99.57 | 99.87 | 99.38 | 99.08 | 99.6 | 98.98 |
S/SAF | 0.55 | 0.33 | 0.42 | 0.40 | 0.56 | 0.68 | 0.66 | 0.73 | 0.72 | 0.81 | - |
UMIA | 42 | 60 | 51 | 51 | 35 | 21 | 22 | 17 | 18 | 11 | 10 |
Minerals in the Bedrock | Minerals in the Saprolite | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Primary Serpentine (n = 5) | Pyroxene (n = 4) | Primary Talc (n = 3) | Weathered Serpentine (n = 16) | Weathered Talc (n = 3) | Unidentified Manganiferous Mineral (n = 2) | |||||||
Average | Range | Average | Range | Average | Range | Average | Range | Average | Range | Average | Range | |
SiO2 | 39.60 | 33.21–45.17 | 54.22 | 53.89–54.51 | 52.49 | 51.95–52.9 | 37.84 | 33.74–41.83 | 58.83 | 54.80–60.96 | 15.64 | 15.07–16.70 |
TiO2 | 0.03 | 0.00–0.07 | 0.08 | 0.00–0.18 | 0.05 | 0.00–0.08 | 0.05 | 0.00–0.16 | 0.02 | 0.00–0.06 | 0.11 | 0.04–0.20 |
Al2O3 | 1.73 | 0.32–4.05 | 3.20 | 2.21–4.02 | 0.14 | 0.12–0.17 | 2.40 | 0.32–5.22 | 0.17 | 0.10–0.28 | 2.88 | 2.82–2.95 |
Fe2O3 | 4.86 | 4.00–6.44 | 6.52 | 6.47–6.58 | 0.96 | 0.66–1.11 | 6.45 | 3.76–8.85 | 1.29 | 0.56–2.32 | 4.26 | 3.87–4.93 |
MnO | 0.03 | 0.01–0.04 | 0.12 | 0.06–0.14 | 0.02 | 0.00–0.03 | 0.02 | 0.00–0.05 | 0.02 | 0.01–0.02 | 14.20 | 11.95–15.48 |
MgO | 38.13 | 37.07–38.79 | 33.57 | 32.98–34.07 | 32.52 | 31.98–33.3 | 35.00 | 31.63–38.49 | 30.39 | 29.12–31.61 | 17.74 | 17.39–18.43 |
CaO | 0.08 | 0.07–0.10 | 1.25 | 1.02–1.51 | 0.05 | 0.02–0.06 | 0.19 | 0.02–0.29 | 0.06 | 0.04–0.08 | 0.65 | 0.57–0.81 |
Na2O | 0.00 | 0.00–0.00 | 0.02 | 0.00–0.04 | 0.04 | 0.01–0.07 | 0.02 | 0.00–0.03 | 0.01 | 0.00–0.02 | 0.44 | 0.09–1.14 |
K2O | 0.01 | 0.00–0.02 | 0.01 | 0.00–0.02 | 0.04 | 0.03–0.05 | 0.02 | 0.00–0.06 | 0.01 | 0.00–0.02 | 0.04 | 0.02–0.06 |
Cr | 0.21 | 0.00–0.49 | 0.44 | 0.4–0.46 | 0.12 | 0.05–0.2 | 0.74 | 0.12–1.57 | 0.1 | 0.1–0.1 | 0.06 | 0.02–0.12 |
Ni | 0.16 | 0.09–0.21 | 0.05 | 0.03–0.07 | 0.18 | 0.16–0.21 | 0.87 | 0.34–1.20 | 0.21 | 0.18–0.26 | 2.47 | 2.15–2.92 |
Co | 0.00 | 0.00–0.00 | 0.00 | 0.00–0.00 | 0.00 | 0.00–0.00 | 0.00 | 0.00–0.00 | 0.01 | 0.01–0.02 | 1.84 | 1.78–1.94 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; Feng, Y.; Luo, P.; Zhang, Y.; Huang, X.; Zeng, X.; Cai, Q.; Zhou, Y. Weathering of Ophiolite Remnant and Formation of Ni Laterite in a Strong Uplifted Tectonic Region (Yuanjiang, Southwest China). Minerals 2019, 9, 51. https://doi.org/10.3390/min9010051
Fu W, Feng Y, Luo P, Zhang Y, Huang X, Zeng X, Cai Q, Zhou Y. Weathering of Ophiolite Remnant and Formation of Ni Laterite in a Strong Uplifted Tectonic Region (Yuanjiang, Southwest China). Minerals. 2019; 9(1):51. https://doi.org/10.3390/min9010051
Chicago/Turabian StyleFu, Wei, Yangyang Feng, Peng Luo, Yinmeng Zhang, Xiaorong Huang, Xiangwei Zeng, Qian Cai, and Yongzhang Zhou. 2019. "Weathering of Ophiolite Remnant and Formation of Ni Laterite in a Strong Uplifted Tectonic Region (Yuanjiang, Southwest China)" Minerals 9, no. 1: 51. https://doi.org/10.3390/min9010051
APA StyleFu, W., Feng, Y., Luo, P., Zhang, Y., Huang, X., Zeng, X., Cai, Q., & Zhou, Y. (2019). Weathering of Ophiolite Remnant and Formation of Ni Laterite in a Strong Uplifted Tectonic Region (Yuanjiang, Southwest China). Minerals, 9(1), 51. https://doi.org/10.3390/min9010051