Abyssal Serpentinites: Transporting Halogens from Earth’s Surface to the Deep Mantle
Abstract
:1. Introduction
2. Halogens as Tracers of Geological Processes
3. Abyssal Serpentinite Formation
4. Incorporation of Halogens by Abyssal Serpentinites
5. Halogen Behaviour During Serpentinite Subduction
5.1. Lizardite–Antigorite Transition
5.2. Antigorite Dehydration
6. Halogen Transfer to the Deeper Mantle
Author Contributions
Funding
Conflicts of Interest
References
- Hirth, G.; Guillot, S. Rheology and tectonic significance of serpentinite. Elements 2013, 9, 107–113. [Google Scholar] [CrossRef]
- Ulmer, P.; Trommsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. Science 1995, 268, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Straub, S.M.; Layne, G.D. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. Geochim. Cosmochim. Acta 2003, 67, 4179–4203. [Google Scholar] [CrossRef]
- Bouvier, A.S.; Metrich, N.; Deloule, E. Slab-derived fluids in the magma sources of St. Vincent (Lesser Antilles Arc): Volatile and light element imprints. J. Petrol. 2008, 49, 1427–1448. [Google Scholar] [CrossRef]
- Sadofsky, S.J.; Portnyagin, M.; Hoernle, K.; van den Bogaard, P. Subduction cycling of volatiles and trace elements through the Central American volcanic arc: Evidence from melt inclusions. Contrib. Mineral. Petrol. 2008, 155, 433–456. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Hémond, C.; Kamenetsky, V.S.; Danyushevsky, L.; Devey, C.W.; Rodemann, T.; Jackson, M.G.; Perfit, M.R. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat. Geosci. 2017, 10, 222–228. [Google Scholar] [CrossRef]
- Paul, D.K.; Buckley, F.; Nixon, P.H. Fluorine and chlorine geochemistry of kimberlites. Chem. Geol. 1976, 17, 125–133. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier: Oxford, UK, 2003; Volume 3, pp. 1–64. ISBN 0-08-043751-6. [Google Scholar]
- Mahn, C.L.; Gieskes, J.M. Halide systematics in comparison with nutrient distributions in sites 1033B and 1034B, Saanich Inlet: ODP Leg 169S. Mar. Geol. 2001, 174, 323–339. [Google Scholar] [CrossRef]
- Beyer, C.; Klemme, S.; Wiedenbeck, M.; Stracke, A.; Vollmer, C. Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet. Sci. Lett. 2012, 337, 1–9. [Google Scholar] [CrossRef]
- Dalou, C.; Koga, K.T.; Shimizu, N.; Boulon, J.; Devidal, J.L. Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib. Mineral. Petrol. 2012, 163, 591–609. [Google Scholar] [CrossRef]
- Bernini, D.; Wiedenbeck, M.; Dolejš, D.; Keppler, H. Partitioning of halogens between mantle minerals and aqueous fluids: Implications for the fluid flow regime in subduction zones. Contrib. Mineral. Petrol. 2013, 165, 117–128. [Google Scholar] [CrossRef]
- Pyle, D.M.; Mather, T.A. Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review. Chem. Geol. 2009, 263, 110–121. [Google Scholar] [CrossRef]
- Seward, T.M.; Williams-Jones, A.E.; Migdisov, A.A. The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; Volume 13, pp. 29–57. ISBN 978-0-08-098300-4. [Google Scholar]
- Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 2003, 4, 1–52. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Lin, J.; Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Ophiolites. In Proceedings of the Penrose Field Conference; Geological Society of America: Minneapolis, MN, USA, 1972; Volume 12, pp. 24–25.
- Dick, H.J.; Natland, J.H.; Ildefonse, B. Deep drilling in the oceanic crustand mantle. Oceanography 2006, 19, 72–80. [Google Scholar] [CrossRef]
- Netland, J.H. Partial melting of a lithologically heterogeneous mantle: Inferences from crystallization histories of magnesian abyssal tholeiites from the Siqueiros Fracture Zone. Geol. Soc. Spec. Publ. 1989, 42, 41–70. [Google Scholar] [CrossRef]
- Cannat, M.; Lagabrielle, Y.; Bougault, H.; Casey, J.; de Coutures, N.; Dmitriev, L.; Fouquet, Y. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: Geological mapping in the 15 N region. Tectonophysics 1997, 279, 193–213. [Google Scholar] [CrossRef]
- Muller, M.R.; Robinson, C.J.; Minshull, T.A.; White, R.S.; Bickle, M.J. Thin crust beneath ocean drilling program borehole 735B at the Southwest Indian Ridge? Earth Planet. Sci. Lett. 1997, 148, 93–107. [Google Scholar] [CrossRef]
- Cannat, M.; Fontaine, F.; Escartín, J. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Rona, P.A., Devey, C.W., Dyment, J., Murton, B.J., Eds.; American Geophysical Union: Washington, DC, USA, 2010; Volume 188, pp. 241–264. [Google Scholar]
- Hess, H.H. History of ocean basins. In Petrologic Studies; Engel, A.E.J., James, H.L., Leonard, B.F., Eds.; Geological Society of America: Boulder, CO, USA, 1962; pp. 599–620. [Google Scholar]
- Kendrick, M.A. Halogens in seawater, marine sediments and the altered oceanic lithosphere. In The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes; Harlov, D.E., Aranovich, L., Eds.; Springer: Cham, Switzerland, 2018; pp. 591–648. ISBN 978-3-319-61665-0. [Google Scholar]
- Kerrick, D. Serpentinite seduction. Science 2002, 298, 1344–1345. [Google Scholar] [CrossRef]
- Ranero, C.R.; Morgan, J.P.; McIntosh, K.; Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 2003, 425, 367–373. [Google Scholar] [CrossRef]
- Hattori, K.H.; Guillot, S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 2003, 31, 525–528. [Google Scholar] [CrossRef]
- Schwartz, S.; Guillot, S.; Reynard, B.; Lafay, R.; Debret, B.; Nicollet, C.; Lanari, P.; Auzende, A.L. Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 2013, 178, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Tsujimori, T.; Sisson, V.B.; Liou, J.G.; Harlow, G.E.; Sorensen, S.S. Very-low-temperature record of the subduction process: A review of worldwide lawsonite Eclogites. Lithos 2006, 92, 609–624. [Google Scholar] [CrossRef]
- Van Keken, P.E.; Hacker, B.R.; Syracuse, E.M.; Abers, G.A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. Solid Earth 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 1998, 163, 361–379. [Google Scholar] [CrossRef] [Green Version]
- Evans, B.W. The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev. 2004, 46, 479–506. [Google Scholar] [CrossRef]
- Evans, B.W.; Hattori, K.; Baronnet, A. Serpentinite: What, why, where? Elements 2013, 9, 99–106. [Google Scholar] [CrossRef]
- Kimball, K.L.; Gerlach, D.C. Sr isotopic constraints on hydrothermal alteration of ultramafic rocks in two oceanic fracture zones from the South Atlantic Ocean. Earth Planet. Sci. Lett. 1986, 78, 177–188. [Google Scholar] [CrossRef]
- Shanks III, W.C. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev. Mineral. Geochem. 2001, 43, 469–525. [Google Scholar] [CrossRef]
- Früh-Green, G.; Plas, A.; Lécuyer, C. Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep (Site 895). In Proceedings of the Oceanic Drilling Program, Scientific Results; Mével, C., Gillis, K.M., Allan, J.F., Meyer, P.S., Eds.; Ocean Drilling Program, Texas A&M University: College Station, TX, USA, 1996; Volume 147, pp. 255–291. [Google Scholar]
- Deschamps, F.; Godard, M.; Guillot, S.; Hattori, K. Geochemistry of subduction zone serpentinites: A review. Lithos 2013, 178, 96–127. [Google Scholar] [CrossRef]
- Orberger, B.; Metrich, N.; Mosbah, M.; Mével, C.; Fouquet, Y. Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge. Nucl. Instrum. Methods Phys. Res. Sect. B 1999, 158, 575–581. [Google Scholar] [CrossRef]
- Anselmi, B.; Mellini, M.; Viti, C. Chlorine in the Elba, Monti Livornesi and Murlo serpentines: Evidence for sea-water interaction. Eur. J. Mineral. 2000, 12, 137–146. [Google Scholar] [CrossRef]
- Sharp, Z.D.; Barnes, J.D. Water-soluble chlorides in massive seafloor serpentinites: A source of chloride in subduction zones. Earth Planet. Sci. Lett. 2004, 226, 243–254. [Google Scholar] [CrossRef]
- Scambelluri, M.; Müntener, O.; Ottolini, L.; Pettke, T.T.; Vannucci, R. The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet. Sci. Lett. 2004, 222, 217–234. [Google Scholar] [CrossRef]
- Barnes, J.D.; Sharp, Z.D. A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: Insights into the serpentinization process. Chem. Geol. 2006, 228, 246–265. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Scambelluri, M.; Honda, M.; Phillips, D. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat. Geosci. 2011, 4, 807–812. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Honda, M.; Pettke, T.; Scambelluri, M.; Phillips, D.; Giuliani, A. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet. Sci. Lett. 2013, 365, 86–96. [Google Scholar] [CrossRef]
- Kodolányi, J.; Pettke, T. Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite—An example from Guatemala. Chem. Geol. 2011, 284, 351–362. [Google Scholar] [CrossRef]
- Kodolányi, J.; Pettke, T.; Spandler, C.; Kamber, B.S.; Gméling, K. Geochemistry of ocean floor and forearc serpentinites: Constraints on the ultramafic input to subduction zones. J. Petrol. 2011, 53, 235–270. [Google Scholar] [CrossRef]
- Debret, B.; Koga, K.T.; Nicollet, C.; Andreani, M.; Schwartz, S. F, Cl and S input via serpentinite in subduction zones: Implications for the nature of the fluid released at depth. Terra Nova 2014, 26, 96–101. [Google Scholar] [CrossRef]
- Pagé, L.; Hattori, K. Tracing halogen and B cycling in subduction zones based on obducted, subducted and forearc serpentinites of the Dominican Republic. Sci. Rep. 2017, 7, 17776–17785. [Google Scholar] [CrossRef] [PubMed]
- Bonifacie, M.; Busigny, V.; Mével, C.; Philippot, P.; Agrinier, P.; Jendrzejewski, N.; Scambelluri, M.; Javoy, M. Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes. Geochim. Cosmochim. Acta 2008, 72, 126–139. [Google Scholar] [CrossRef]
- Huang, R.; Sun, W.; Zhan, W.; Ding, X.; Zhu, J.; Liu, J. Influence of temperature, pressure, and fluid salinity on the distribution of chlorine into serpentine minerals. J. Asian Earth Sci. 2017, 145, 101–110. [Google Scholar] [CrossRef]
- Huang, R.; Ding, X.; Lin, C.T.; Zhan, W.; Ling, M. Effect of saline fluids on chlorine incorporation in serpentine. Solid Earth Sci. 2018, 3, 61–66. [Google Scholar] [CrossRef]
- Eggins, S.M.; Rudnick, R.L.; McDonough, W.F. The composition of peridotites and their minerals: A laser-ablation ICP–MS study. Earth Planet. Sci. Lett. 1998, 154, 53–71. [Google Scholar] [CrossRef]
- John, T.; Scambelluri, M.; Frische, M.; Barnes, J.D.; Bach, W. Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet. Sci. Lett. 2011, 308, 65–76. [Google Scholar] [CrossRef]
- Li, Y.H. A brief discussion on the mean oceanic residence time of elements. Geochim. Cosmochim. Acta 1982, 46, 2671–2675. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Scambelluri, M.; Hermann, J.; Padron-Navarta, J.A. Halogens and noble gases in serpentinites and secondary peridotites: Implications for seawater subduction and the origin of mantle neon. Geochim. Cosmochim. Acta 2018, 235, 285–304. [Google Scholar] [CrossRef]
- Gieskes, J.M.; Simoneit, B.R.; Goodfellow, W.D.; Baker, P.A.; Mahn, C. Hydrothermal geochemistry of sediments and pore waters in Escanaba Trough—ODP Leg 169. Appl. Geochem. 2002, 17, 1435–1456. [Google Scholar] [CrossRef]
- Rude, P.D.; Aller, R.C. Fluorine mobility during early diagenesis of carbonate sediment: An indicator of mineral transformations. Geochim. Cosmochim. Acta 1991, 55, 2491–2509. [Google Scholar] [CrossRef]
- Carpenter, R. Factors controlling the marine geochemistry of fluorine. Geochim. Cosmochim. Acta 1969, 33, 1153–1167. [Google Scholar] [CrossRef]
- Guillot, S.; De Sigoyer, J.; Lardeaux, J.M.; Mascle, G. Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): Evidence for continental subduction during India-Asia convergence. Contrib. Mineral. Petrol. 1997, 128, 197–212. [Google Scholar] [CrossRef]
- Pagé, L.; Hattori, K.; de Hoog, J.C.; Okay, A.I. Halogen (F, Cl, Br, I) behaviour in subducting slabs: A study of lawsonite blueschists in western Turkey. Earth Planet. Sci. Lett. 2016, 442, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.; Burgess, R.; Chavrit, D.; Pawley, A.; Tartèse, R.; Droop, G.; Ballentine, C.J.; Lyon, I. Halogen behaviour in subduction zones: Eclogite facies rocks from the Western and Central Alps. Geochim. Cosmochim. Acta 2018, 243, 1–23. [Google Scholar] [CrossRef]
- Guillot, S.; Hattori, K.; Agard, P.; Schwartz, S.; Vidal, O. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. In Subduction Zone Geodynamics. Frontiers in Earth Sciences; Lallemand, S., Funiciello, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 175–205. ISBN 978-3-540-87971-8. [Google Scholar]
- Jarrard, R.D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 2003, 4, 1–50. [Google Scholar] [CrossRef]
- Rüpke, L.H.; Morgan, J.P.; Hort, M.; Connolly, J.A. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 2004, 223, 17–34. [Google Scholar] [CrossRef]
- Barnes, J.D.; Sharp, Z.D.; Fischer, T.P. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology 2008, 36, 883–886. [Google Scholar] [CrossRef]
- Marschall, H.R.; Altherr, R.; Gméling, K.; Kasztovszky, Z. Lithium, boron and chlorine as tracers for metasomatism in high-pressure metamorphic rocks: A case study from Syros (Greece). Mineral. Petrol. 2009, 95, 291–302. [Google Scholar] [CrossRef]
- Selverstone, J.; Sharp, Z.D. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks. Earth Planet. Sci. Lett. 2015, 417, 120–131. [Google Scholar] [CrossRef]
- Debret, B.; Koga, K.T.; Cattani, F.; Nicollet, C.; Van den Bleeken, G.; Schwartz, S. Volatile (Li, B, F and Cl) mobility during amphibole breakdown in subduction zones. Lithos 2016, 44, 165–181. [Google Scholar] [CrossRef]
- Wei, W.; Kastner, M.; Deyhle, A.; Spivack, A.J. Geochemical cycling of fluorine, chlorine, bromine, and boron and implications for fluid-rock reactions in Mariana forearc, South Chamorro Seamount, ODP Leg 195. Proc. Ocean. Drill. Progr. Part B Sci. Results 2005, 195, 1–23. [Google Scholar] [CrossRef]
- Snyder, G.T.; Savov, I.P.; Muramatsu, Y. Iodine and boron in Mariana serpentinite mud volcanoes (ODP Legs 125 and 195): Implications for forearc processes and subduction recycling. Proc. Ocean. Drill. Progr. Sci. Results 2005, 195, 1–18. [Google Scholar] [CrossRef]
- Pagé, L.; Hattori, K.; Guillot, S. Mantle wedge serpentinites: A transient reservoir of halogens, boron, and nitrogen for the deeper mantle. Geology 2018, 46, 883–886. [Google Scholar] [CrossRef]
- Sumino, H.; Burgess, R.; Mizukami, T.; Wallis, S.R.; Holland, G.; Ballentine, C.J. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet. Sci. Lett. 2010, 294, 163–172. [Google Scholar] [CrossRef]
- De Hoog, J.C.; Hattori, K.; Jung, H. Titanium-and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): Evidence for deep subduction of high-field strength and FME. Contrib. Mineral. Petrol. 2014, 167, 1–15. [Google Scholar] [CrossRef]
- Lopez Sánchez-Vizcaíno, V.L.; Trommsdorff, V.; Gómez-Pugnaire, M.T.; Garrido, C.J.; Müntener, O.; Connolly, J.A. Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contrib. Mineral. Petrol. 2005, 149, 627–646. [Google Scholar] [CrossRef]
- Barnes, J.D.; Manning, C.E.; Scambelluri, M.; Selverstone, J. The behavior of halogens during subduction-zone processes. In The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes; Harlov, D.E., Aranovich, L., Eds.; Springer: Cham, Switzerland, 2018; pp. 545–590. ISBN 978-3-319-61665-0. [Google Scholar]
- Workman, R.K.; Hauri, E.; Hart, S.R.; Wang, J.; Blusztajn, J. Volatile and trace elements in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth Planet. Sci. Lett. 2006, 241, 932–951. [Google Scholar] [CrossRef] [Green Version]
- Kendrick, M.A.; Jackson, M.G.; Kent, A.J.; Hauri, E.H.; Wallace, P.J.; Woodhead, J. Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem. Geol. 2014, 370, 69–81. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Arculus, R.J.; Danyushevsky, L.V.; Kamenetsky, V.S.; Woodhead, J.D.; Honda, M. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth Planet. Sci. Lett. 2014, 400, 165–176. [Google Scholar] [CrossRef]
- Syracuse, E.M.; Abers, G.A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. 2006, 7, 1–18. [Google Scholar] [CrossRef]
Thickness, m * | Average Concentration, µg/g | Global Flux, g/year | |||||||
---|---|---|---|---|---|---|---|---|---|
F | Cl | Br | I | F (×1012) | Cl (×1012) | Br (×109) | I (×109) | ||
Penrose model 1 | |||||||||
Incoming slab 2 | |||||||||
Sediment | 400 | 1000 | 700 | 12 | 4.0 | 2.5 | 1.7 | 30 | 9.9 |
AOC, layer 2 | 1500 | 260 | 160 | 0.3 | 0.02 | 2.4 | 1.5 | 2.8 | 0.2 |
AOC, layer 3 | 4500 | 50 | 360 | 0.7 | 0.01 | 1.4 | 10 | 19 | 0.3 |
Liz serpentinite | 500 | 50 | 1500 | 5.0 | 1.5 | 0.2 | 4.6 | 15 | 4.6 |
Bulk lithosphere | 6900 | 151 | 419 | 1.6 | 0.4 | 6.4 | 18 | 67 | 15 |
% in sediment | 38 | 10 | 44 | 66 | |||||
% in AOC | 59 | 64 | 33 | 3 | |||||
% in serpentinite | 2 | 26 | 23 | 31 | |||||
Metamorphosed slab | |||||||||
Metasediment 3 | 400 | 289 | 22 | 0.07 | 0.1 | 0.7 | 0.1 | 0.2 | 0.2 |
Eclogitic basalt 4 | 1500 | 341 | 18 | 0.006 | 0.0005 | 3.2 | 0.2 | 0.1 | 0.004 |
Eclogitic gabbro 4 | 4500 | 90 | 37 | 0.06 | 0.0007 | 2.5 | 1.0 | 1.8 | 0.02 |
Atg serpentinite 5 | 500 | 42 | 235 | 0.8 | 0.09 | 0.1 | 0.7 | 2.6 | 0.3 |
Bulk lithosphere | 6900 | 153 | 46 | 0.1 | 0.01 | 6.5 | 2.0 | 4.6 | 0.5 |
% in sediment | 11 | 3 | 4 | 45 | |||||
% in AOC | 87 | 60 | 40 | 4 | |||||
% in serpentinite | 2 | 37 | 56 | 50 | |||||
% retained in slab | 101 | 11 | 7 | 4 | |||||
Muller slow-spreading model 6 | |||||||||
Incoming slab | |||||||||
Sediment | 400 | 1000 | 700 | 12 | 4.0 | 2.5 | 1.7 | 30 | 9.9 |
AOC, layer 2 | 1500 | 260 | 160 | 0.3 | 0.02 | 2.4 | 1.5 | 2.8 | 0.2 |
AOC, layer 3 | 2000 | 50 | 360 | 0.7 | 0.01 | 0.6 | 4.4 | 8.6 | 0.1 |
Liz serpentinite | 3000 | 50 | 1500 | 5.0 | 1.5 | 0.9 | 28 | 92 | 28 |
Bulk lithosphere | 6900 | 151 | 832 | 3.1 | 0.9 | 6.4 | 35 | 133 | 38 |
% in sediment | 38 | 5 | 22 | 26 | |||||
% in AOC | 47 | 17 | 9 | 1 | |||||
% in serpentinite | 14 | 78 | 69 | 73 | |||||
Metamorphosed slab | |||||||||
Metasediment | 400 | 289 | 22 | 0.07 | 0.1 | 0.7 | 0.1 | 0.2 | 0.2 |
Eclogitic basalt | 1500 | 341 | 18 | 0.006 | 0.0005 | 3.2 | 0.2 | 0.1 | 0.004 |
Eclogitic gabbro | 2000 | 90 | 37 | 0.06 | 0.0007 | 1.1 | 0.5 | 0.8 | 0.01 |
Atg serpentinite | 3000 | 42 | 235 | 0.8 | 0.09 | 0.8 | 4.3 | 16 | 1.6 |
Bulk lithosphere | 6900 | 135 | 118 | 0.4 | 0.04 | 5.7 | 5.0 | 17 | 1.8 |
% in sediment | 12 | 1 | 1 | 13 | |||||
% in AOC | 74 | 12 | 5 | 1 | |||||
% in serpentinite | 13 | 87 | 94 | 86 | |||||
% retained in slab | 90 | 14 | 12 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagé, L.; Hattori, K. Abyssal Serpentinites: Transporting Halogens from Earth’s Surface to the Deep Mantle. Minerals 2019, 9, 61. https://doi.org/10.3390/min9010061
Pagé L, Hattori K. Abyssal Serpentinites: Transporting Halogens from Earth’s Surface to the Deep Mantle. Minerals. 2019; 9(1):61. https://doi.org/10.3390/min9010061
Chicago/Turabian StylePagé, Lilianne, and Keiko Hattori. 2019. "Abyssal Serpentinites: Transporting Halogens from Earth’s Surface to the Deep Mantle" Minerals 9, no. 1: 61. https://doi.org/10.3390/min9010061
APA StylePagé, L., & Hattori, K. (2019). Abyssal Serpentinites: Transporting Halogens from Earth’s Surface to the Deep Mantle. Minerals, 9(1), 61. https://doi.org/10.3390/min9010061