Increased As Adsorption on Maghemite-Containing Red Mud Prepared by the Alkali Fusion-Leaching Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Adsorbent Preparation
2.3. Adsorbent Characterization
2.4. Adsorption Experiments
3. Results and Discussion
3.1. Sorbent Preparation
3.2. Red Mud Characterization
3.3. As (V) Batch Adsorption Experiments
3.3.1. Arsenic Adsorption Effectiveness by Various Types of Red Mud
3.3.2. The Effect of the Initial pH of the Solution on the Arsenic Uptake Capacity of Red Muds
3.3.3. Arsenic Adsorption Isotherms
4. Conclusions
- Fusing bauxite with alkali at 300–500 °C is an efficient method of converting iron-containing minerals into maghemite nanoparticles.
- Red mud obtained in this way can be effectively used to remove arsenic from solutions, since its capacity is significantly higher than that of industrial samples (17.99 versus 0.42 mg/g under the same conditions).
- The efficiency of the adsorption of arsenic by maghemite-containing red mud depends on the original pH, the contact duration, and the initial concentration of As in the solution.
- The experimental data correlate well with Langmuir and Freundlich adsorption equations.
- The maximum As (V) uptake capacities of the adsorbents obtained at 300 and 500 °C at initial pH = 2.3 were 32.5 mg/g and 34.0 mg/g, respectively.
- The differences in uptake capacity appear to be related to the content of maghemite nanoparticles in the samples.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibson, B.; Wonyen, D.G.; Chehreh Chelgani, S. A review of pretreatment of diasporic bauxite ores by flotation separation. Miner. Eng. 2017, 114, 64–73. [Google Scholar] [CrossRef]
- Hind, A.; Bhargava, S.; Grocott, S. The surface chemistry of Bayer process solids: A review. Colloids Surf. A 1999, 146, 359–374. [Google Scholar] [CrossRef]
- Authier-Martin, M.; Forté, G.; Ostap, S.; See, J. The mineralogy of bauxite for producing smelter-grade alumina. JOM 2001, 53, 36–40. [Google Scholar] [CrossRef]
- Kaußen, F.; ·Friedrich, B. Methods for Alkaline Recovery of Aluminum from Bauxite Residue. J. Sustain. Metall. 2016, 2, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Paramguru, R.K.; Rath, P.C.; Misra, V.N. Trends in red mud utilization: A review. Miner. Process. Extr. Metall. Rev. 2005. [Google Scholar] [CrossRef]
- Li, X.B.; Xiao, W.; Liu, W.; Liu, G.H.; Peng, Z.H.; Zhou, Q.S.; Qi, T.G. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Trans. Nonferr. Metal. Soc. 2009, 19, 1342–1347. [Google Scholar] [CrossRef]
- Ruyters, S.; Mertens, J.; Vassilieva, E.; Dehandschutter, B.; Poffijn, A.; Smolders, E. The Red Mud Accident in Ajka (Hungary): Plant Toxicity and Trace Metal Bioavailability in Red Mud Contaminated Soil. Environ. Sci. Technol. 2011, 45, 1616–1622. [Google Scholar] [CrossRef]
- Winkler, D.; Bidló, A.; Bolodár-Varga, B.; Erdő, A.; Horváth, A. Long-term ecological effects of the red mud disaster in Hungary: Regeneration of red mud flooded areas in a contaminated industrial region. Sci. Total Environ. 2018, 644, 1292–1303. [Google Scholar] [CrossRef]
- Courtney, R.G.; Timpson, J.P. Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge—A two year field study. Plant Soil 2004, 266, 187–194. [Google Scholar] [CrossRef]
- Wehr, J.B.; Fulton, I.; Menzies, N.W. Revegetation Strategies for Bauxite Refinery Residue: A Case Study of Alcan Gove in Northern Territory, Australia. Environ. Manag. 2006, 37, 297–306. [Google Scholar] [CrossRef]
- Aughinish Alumina Ltd. Annual Environmental Report 2008. Available online: http://www.epa.ie/licences/lic_eDMS/090151b2802a9459.pdf (accessed on 12 February 2018).
- Power, G.; Gräfe, M.; Klauber, C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 2011, 108, 33–45. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Lu, G.; Liu, Y.; Zhang, W.; Zhao, Q. Comprehensive Utilization of Red Mud: Current Research Status and a Possible Way Forward for Non-hazardous Treatment. In Light Metals 2018, Proceedings of the TMS 2018, Phoenix, AZ, USA, 11–15 March 2018; The Minerals, Metals & Materials Series; Martin, O., Ed.; Springer: Cham, Switzerland, 2018; pp. 135–141. [Google Scholar]
- Tsakiridis, P.E.; Agatzini-Leonardou, S.; Oustadakis, P. Red mud addition in the raw meal for the production of Portland cement clinker. J. Hazard. Mater. 2004, 116, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, J.; Xiao, B. Review on treatment and utilization of bauxite residues in China. Int. J. Miner. Process. 2009, 93, 220–231. [Google Scholar] [CrossRef]
- Liu, W.; Yang, J.; Xiao, B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J. Hazard. Mater. 2009, 161, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, C.; Pan, L.; Lu, H.; Sun, H.; Hu, X. Preparation of double-layer glass-ceramic/ceramic tile from bauxite tailings and red mud. J. Eur. Ceram. Soc. 2009, 29, 1887–1894. [Google Scholar] [CrossRef]
- Borra, C.R.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, H. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy 2015, 155, 29–43. [Google Scholar] [CrossRef]
- Klauber, C.; Gräfe, M.; Power, G. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy 2011, 108, 11–32. [Google Scholar] [CrossRef]
- Fan, H.L.; Li, C.H.; Xie, K.C. Testing of iron oxide sorbent for high-temperature coal gas desulfurization. Energy Sources 2005, 27, 245–250. [Google Scholar] [CrossRef]
- Santona, L.; Castaldi, P.; Melis, P. Evaluation of the interaction mechanisms between red muds and heavy metals. J. Hazard. Mater. 2006, 136, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Sahu, K.K.; Pandey, B.D. A comparative adsorption study of copper on various industrial solid wastes. AICHE J. 2004, 50, 2430–2438. [Google Scholar] [CrossRef]
- Ahmed, M.D.J.K.; Ahmaruzzaman, M. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J. Water Process Eng. 2016, 10, 39–47. [Google Scholar] [CrossRef]
- Altundogan, H.S.; Altundogan, S.; Tümen, F.; Bildik, M. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manag. 2000, 20, 761–767. [Google Scholar] [CrossRef]
- Wang, S.; Mulligan, C.N. Speciation and surface structure of inorganic arsenic in solid phases: A review. Environ. Int. 2008, 34, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Cullen, W.R.; Reimer, K.J. Arsenic Speciation in the Environment. Chem. Rev. 1989, 89, 713–764. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Bhattacharya, P.; Hasan, M.A.; Akhter, A.H.; Alam, S.M.M.; Bhuyian, M.A.H.; Imam, M.B.; Khan, A.A.; Sracek, O. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Appl. Geochem. 2004, 19, 181–200. [Google Scholar] [CrossRef]
- Brammer, H.; Ravenscroft, P. Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environ. Int. 2009, 35, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Stute, M.; Van Geen, A.; Gavrieli, I.; Dhar, R.; Simpson, H.J.; Schlosser, P.; Ahmed, K.M. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 2004, 19, 201–214. [Google Scholar] [CrossRef]
- Karimov, K.A.; Naboichenko, S.S. Sulfuric acid leaching of high-arsenic dust from copper smelting. Metallurgist 2016, 60, 456–459. [Google Scholar] [CrossRef]
- Piret, N.L. Removal and safe disposal of arsenic in copper processing. JOM 1999, 51, 16–17. [Google Scholar] [CrossRef]
- McClintock, T.R.; Chen, Y.; Bundschuh, J.; Oliver, J.T.; Navoni, J.; Olmos, V.; Lepori, E.V.; Ahsan, H.; Parvez, F. Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Sci. Total Environ. 2012, 429, 76–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.-C.; Chou, W.-C.; Chen, W.-Y.; Liao, C.-M. Assessing the cancer risk associated with arsenic-contaminated seafood. J. Hazard. Mater. 2010, 181, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.H.; Smith, M.M.H. Arsenic drinking water regulations in developing countries with extensive exposure. Toxicology 2004, 198, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.H.; Lopipero, P.A.; Bates, M.N.; Steinmaus, C.M. Arsenic epidemiology and drinking water standards. Science 2002, 296, 2145–2146. [Google Scholar] [CrossRef] [PubMed]
- Bissen, M.; Frimmel, F.H. Arsenic—A review. Part II: Oxidation of arsenic and its removal in water treatment. Acta Hydrochim. Hydrobiol. 2003, 31, 97–107. [Google Scholar] [CrossRef]
- Kumar, P.R.; Chaudhari, S.; Khilar, K.C.; Mahajan, S.P. Removal of arsenic from water by electrocoagulation. Chemosphere 2004, 55, 1245–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Klerk, R.J.; Jia, Y.; Daenzer, R.; Gomez, M.A.; Demopoulos, G.P. Continuous circuit coprecipitation of arsenic(V) with ferric iron by lime neutralization: Process parameter effects on arsenic removal and precipitate quality. Hydrometallurgy 2012, 111, 65–72. [Google Scholar] [CrossRef]
- Abejón, A.; Garea, A.; Irabien, A. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Sep. Purif. Technol. 2015, 144, 46–53. [Google Scholar] [CrossRef]
- Yuan, S.; Xie, S.; Zhao, K.; Gan, Y.; Wang, Y. Field tests of in-well electrolysis removal of arsenic from high phosphate and iron groundwater. Sci. Total Environ. 2018, 644, 1630–1640. [Google Scholar] [CrossRef]
- Kim, J.; Benjamin, M.M. Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res. 2004, 38, 2053–2062. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.I.; Chaudhry, S.A. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process. Saf. Environ. 2017, 111, 592–626. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ. Technol. 2011, 32, 231–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, R.C.; Patel, R.; Ray, B.C. Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions. J. Hazard. Mater. 2010, 179, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, G.; Narayanan, S.L. Synthesis of Fe2O3-coated and HCl-treated bauxite ore waste for the adsorption of arsenic (III) from aqueous solution: Isotherm and kinetic models. Chem. Eng. Commun. 2018, 205, 34–46. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Luan, Z.; Peng, X.; Ren, H.; Wang, J. Arsenate removal from aqueous solutions using modified red mud. J. Hazard. Mater. 2008, 152, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Genç-Fuhrman, H.; Tjell, J.C.; McConchie, D. Adsorption of Arsenic from Water Using Activated Neutralized Red Mud. Environ. Sci. Technol. 2004, 38, 2428–2434. [Google Scholar] [CrossRef]
- Altundogan, H.S.; Altundogan, S.; Tümen, F.; Bildik, M. Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag. 2002, 22, 357–363. [Google Scholar] [CrossRef]
- Genç-Fuhrman, H.; Tjell, J.C.; McConchie, D. Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol). J. Colloid Interface Sci. 2004, 271, 313–320. [Google Scholar] [CrossRef]
- López-García, M.; Martínez-Cabanas, M.; Vilariño, T.; Lodeiro, P.; Rodríguez-Barro, P.; Herrero, R.; Barriada, J.L. New polymeric/inorganic hybrid sorbents based on red mud and nanosized magnetite for large scale applications in As(V) removal. Chem. Eng. J. 2017, 311, 117–125. [Google Scholar] [CrossRef]
- Wu, C.; Huang, L.; Xue, S.-G.; Huang, Y.-Y.; Hartley, W.; Cui, M.-Q.; Wong, M.-H. Arsenic sorption by red mud-modified biochar produced from rice straw. Environ. Sci. Pollut. Res. 2017, 24, 18168–18178. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.; Guilherme, L.R.G.; Costa, E.T.S.; Curi, N.; Penha, H.G.V. Increasing arsenic sorption on red mud by phosphogypsum addition. J. Hazard. Mater. 2013, 262, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Tuutijärvi, T.; Lub, J.; Sillanpää, M.; Chen, G. As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater. 2009, 166, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Shokrollahi, H. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Linley, S.; Leshuk, T.; Gu, F.X. Magnetically separable water treatment technologies and their role in future advanced water treatment: A patent review. Clean-Soil Air Water 2013, 41, 1152–1156. [Google Scholar] [CrossRef]
- Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: A critical review. Environ. Sci. Water Res. 2016, 2, 43–70. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Bringas, E.; Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 2014, 256, 187–204. [Google Scholar] [CrossRef]
- Akin, I.; Arslan, G.; Tor, A.; Ersoz, M.; Cengeloglu, Y. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. J. Hazard. Mater. 2012, 235–236, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.-H.; Wen, Z.-G.; Chen, J.-N.; Zheng, S.-L. An environmentally friendly design for low-grade diasporic-bauxite processing. Miner. Eng. 2009, 22, 793–798. [Google Scholar] [CrossRef]
- Le, T.; Ju, S.; Lu, L.; Peng, J.; Zhou, L.; Wang, S. A novel process and its mechanism for recovering alumina from diasporic bauxite. Hydrometallurgy 2017, 169, 124–134. [Google Scholar] [CrossRef]
- Le, T.; Ju, S.; Koppala, S.; Peng, J.; Pan, B.; Zhang, L.; Wang, Q.; Li, X. Kinetics study of microwave enhanced reactions between diasporic bauxite and alkali solution. J. Alloy. Compd. 2018, 749, 652–663. [Google Scholar] [CrossRef]
- Loginova, I.V.; Kyrchikov, A.V.; Lebedev, V.A.; Ordon, S.F. Investigation into the question of complex processing of bauxites of the srednetimanskoe deposit. Russ. J. Non-Ferrous Met. 2013, 54, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Loginova, I.V.; Shoppert, A.A.; Chaikin, L.I. Extraction of Rare-Earth Metals during the Systematic Processing of Diaspore-Boehmite Bauxites. Metallurgist 2016, 60, 198–203. [Google Scholar] [CrossRef]
- Hristovski, K.D.; Markovski, J. Engineering metal (hydr)oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: A critical review with emphasis on factors governing sorption processes. Sci. Total Environ. 2017, 598, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Barrn, V.; Torrent, J. Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochim. Cosmochim. Acta 2002, 66, 2801–2806. [Google Scholar] [CrossRef]
- Streat, M.; Hellgardt, K.; Newton, N.L.R. Hydrous ferric oxide as an adsorbent in water treatment, Part 2. Adsorption studies. Process Saf. Environ. Prot. 2008, 86, 11–20. [Google Scholar] [CrossRef]
Al2O3 | Fe2O3 | FeO | SiO2 | TiO2 | CaO | CO2 | MgO | LOI | µSi |
---|---|---|---|---|---|---|---|---|---|
51.00 | 25.36 | 2.38 | 4.44 | 2.84 | 0.62 | 0.60 | 0.33 | 11.15 | 11.49 |
Red Mud | Na2O | Al2O3 | Fe2O3 | SiO2 | TiO2 | CaO | LOI |
---|---|---|---|---|---|---|---|
Bayer process | 5.16 | 13.3 | 53.21 | 12.04 | 5.48 | 5.98 | 4.20 |
Sinter process | 7.82 | 12.8 | 40.10 | 12.05 | 4.10 | 8.40 | 12.54 |
Alkali fusion 300 °C | 1.53 | 3.87 | 67.80 | 4.93 | 6.88 | 1.50 | 10.84 |
Alkali fusion 500 °C | 2.60 | 7.02 | 66.83 | 5.30 | 6.78 | 1.48 | 7.10 |
Alkali fusion 700 °C | 2.50 | 7.84 | 65.34 | 5.18 | 6.63 | 1.40 | 8.20 |
Red Mud | BET Specific Surface Area (m2/g) | Pore Volume ×10−3 (sm3/g) | pHpzc | VSM Magnetization at 10 kOe (emu/g) |
---|---|---|---|---|
Bayer process | 22.51 | 38.7 | - 1 | - 2 |
Sinter process | 7.15 | 11.4 | - 1 | - 2 |
Alkali fusion at 300 °C | 54.97 | 76.4 | 7.5 | 19 |
Alkali fusion at 500 °C | 51.77 | 70.6 | 7.4 | 20 |
Alkali fusion at 700 °C | 6.40 | 13.3 | - 1 | - 2 |
Red Mud | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL (L/mg) | qmax (mg/g) | R2 | Kf ((mg/g)(L/mg)1/n) | n | R2 | |
Alkali fusion 300 °C | 0.0145 | 32.5 | 0.98 | 1.10 | 1.67 | 0.96 |
Alkali fusion 500 °C | 0.0180 | 34.0 | 0.95 | 1.95 | 2.00 | 0.97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoppert, A.A.; Loginova, I.V.; Rogozhnikov, D.A.; Karimov, K.A.; Chaikin, L.I. Increased As Adsorption on Maghemite-Containing Red Mud Prepared by the Alkali Fusion-Leaching Method. Minerals 2019, 9, 60. https://doi.org/10.3390/min9010060
Shoppert AA, Loginova IV, Rogozhnikov DA, Karimov KA, Chaikin LI. Increased As Adsorption on Maghemite-Containing Red Mud Prepared by the Alkali Fusion-Leaching Method. Minerals. 2019; 9(1):60. https://doi.org/10.3390/min9010060
Chicago/Turabian StyleShoppert, Andrei A., Irina V. Loginova, Denis A. Rogozhnikov, Kirill A. Karimov, and Leonid I. Chaikin. 2019. "Increased As Adsorption on Maghemite-Containing Red Mud Prepared by the Alkali Fusion-Leaching Method" Minerals 9, no. 1: 60. https://doi.org/10.3390/min9010060
APA StyleShoppert, A. A., Loginova, I. V., Rogozhnikov, D. A., Karimov, K. A., & Chaikin, L. I. (2019). Increased As Adsorption on Maghemite-Containing Red Mud Prepared by the Alkali Fusion-Leaching Method. Minerals, 9(1), 60. https://doi.org/10.3390/min9010060