Further Characterization of the RW-1 Monazite: A New Working Reference Material for Oxygen and Neodymium Isotopic Microanalysis
Abstract
:1. Introduction
2. Sample Descriptions
3. Analytical Methods
3.1. Spectroscopic and Image Investigations
3.2. Major and Trace Element Compositions
3.3. SIMS Oxygen Isotopic Analysis
3.4. LF-IRMS Oxygen Isotopic Analysis
3.5. Sm–Nd Isotopic Composition
3.6. TIMS Nd Isotopic Analysis
4. Results and Discussion
4.1. RW-1 Mineralogical Features and Elemental Compositions
4.2. Oxygen Isotopic Compositions
4.3. Nd Isotopic Compositions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Williams, M.L.; Jercinovic, M.J.; Hetherington, C.J. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annu. Rev. Earth Planet. Sci. 2007, 35, 137–175. [Google Scholar] [CrossRef]
- Franz, G.; Andrehs, G.; Rhede, D. Crystal chemistry of monazite and xenotime from Saxothuringian–Moldanubian metapelites, NE Bavaria, Germany. Eur. J. Mineral. 1996, 8, 1097–1118. [Google Scholar] [CrossRef]
- Catlos, E.J.; Miller, N.R. Speculations linking monazite compositions to origin: Llallagua Tin ore deposit (Bolivia). Resources 2017, 6, 36. [Google Scholar] [CrossRef]
- Meldrum, A.; Boatner, L.A.; Weber, W.J.; Ewing, R.C. Radiation damage in zircon and monazite. Geochim. Cosmochim. Acta 1998, 62, 2509–2520. [Google Scholar] [CrossRef]
- Parrish, R.R. U–Pb dating of monazite and its application to geological problems. Can. J. Earth Sci. 1990, 27, 1431–1450. [Google Scholar] [CrossRef]
- Perumalsamy, C.; Bhadra, S.; Balakrishnan, S. Decoding evolutionary history of provenance from beach placer monazites: A case study from Kanyakumari coast, southwest India. Chem. Geol. 2016, 427, 83–97. [Google Scholar] [CrossRef]
- Ayers, J.C.; Loflin, M.; Miller, C.F.; Barton, M.D.; Coath, C.D. In situ oxygen isotope analysis of monazite as a monitor of fluid infiltration during contact metamorphism: Birch Creek Pluton aureole, White Mountains, eastern California. Geology 2006, 34, 653–656. [Google Scholar] [CrossRef]
- Pyle, J.M.; Spear, F.S.; Rudnick, R.L.; McDonough, W.F. Monazite–xenotime–garnet equilibrium in metapelites and a new monazite–garnet thermometer. J. Petrol. 2001, 42, 2083–2107. [Google Scholar] [CrossRef]
- Gratz, R.; Heinrich, W. Monazite–xenotime thermobarometry; experimental calibration of the miscibility gap in the binary system CePO4–YPO4. Am. Mineral. 1997, 82, 772–780. [Google Scholar] [CrossRef]
- Gauthiez-Putallaz, L.; Rubatto, D.; Hermann, J. Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis. Contrib. Mineral. Petrol. 2016, 171, 15. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Lan, Z.; Guo, C.; Yang, Y.; Liu, Y.; Tang, G. Monazite and xenotime U–Th–Pb geochronology by ion microprobe: Dating highly fractionated granites at Xihuashan tungsten mine, SE China. Contrib. Mineral. Petrol. 2013, 166, 65–80. [Google Scholar] [CrossRef]
- Liu, Z.-C.; Wu, F.-Y.; Yang, Y.-H.; Yang, J.-H.; Wilde, S.A. Neodymium isotopic compositions of the standard monazites used in U–Th–Pb geochronology. Chem. Geol. 2012, 334, 221–239. [Google Scholar] [CrossRef]
- Breecker, D.O.; Sharp, Z.D. A monazite oxygen isotope thermometer. Am. Mineral. 2007, 92, 1561–1572. [Google Scholar] [CrossRef]
- Rubatto, D.; Putlitz, B.; Gauthiez-Putallaz, L.; Crépisson, C.; Buick, I.S.; Zheng, Y.F. Measurement of in-situ oxygen isotope ratios in monazite by SHRIMP ion microprobe: Standards, protocols and implications. Chem. Geol. 2014, 380, 84–96. [Google Scholar] [CrossRef]
- Didier, A.; Putlitz, B.; Baumgartner, L.P.; Bouvier, A.-S.; Vennemann, T.W. Evaluation of potential monazite reference materials for oxygen isotope analyses by SIMS and laser assisted fluorination. Chem. Geol. 2017, 450, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Förster, H.-J. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany, Part I: The monazite-(Ce)–brabantite solid solution series. Am. Mineral. 1998, 83, 259–272. [Google Scholar] [CrossRef]
- Ling, X.-X.; Huyskens, M.H.; Li, Q.-L.; Yin, Q.-Z.; Werner, R.; Liu, Y.; Tang, G.-Q.; Yang, Y.-N.; Li, X.-H. Monazite RW-1: A homogeneous natural reference material for SIMS U–Pb and Th–Pb isotopic analysis. Mineral. Petrol. 2017, 111, 163–172. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Zhang, X.Y.; Nakamura, M.; Watson, E.B. Oxygen diffusion in monazite. Earth Planet. Sci. Lett. 2004, 226, 161–174. [Google Scholar] [CrossRef]
- Gonçalves, G.; Lana, C.; Scholz, R.; Buick, I.; Gerdes, A.; Kamo, S.L.; Corfu, F.; Rubatto, D.; Wiedenbeck, M.; Nalini, H.A.; et al. The Diamantina monazite: A new low-Th reference material for microanalysis. Geostand. Geoanal. Res. 2017, 42, 25–47. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol. Soc. Am. Bull. 2006, 118, 39–64. [Google Scholar] [CrossRef]
- Harrison, M.T.; Grove, M.; McKeegan, K.D.; Coath, C.D.; Lovera, O.M.; Fort, P.L. Origin and episodic emplacement of the Manaslu Intrusive Complex, central Himalaya. J. Petrol. 1999, 40, 3–19. [Google Scholar] [CrossRef]
- Gasquet, D.; Bertrand, J.-M.; Paquette, J.-L.; Lehmann, J.; Ratzov, G.; De Ascencão Guedes, R.; Tiepolo, M.; Boullier, A.-M.; Scaillet, S.; Nomade, S. Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: New U–Th–Pb and argon ages from the Lauzière massif. Bull. Soc. Geol. Fr. 2010, 181, 227–241. [Google Scholar] [CrossRef]
- Paquette, J.L.; Tiepolo, M. High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem. Geol. 2007, 240, 222–237. [Google Scholar] [CrossRef]
- Knoper, M.; Armstrong, R.; Andreoli, M.; Ashwal, L. The Steenkampskraal monazite vein: A subhorizontal stretching shear zone indicating extensional collapse of Namaqualand at 1033 Ma? J. Afr. Earth Sci. 2000, 31, 38. [Google Scholar]
- Ayers, J.C.; Miller, C.F.; Loflin, M.; Barton, M.D.; Coath, C. Dating fluid infiltration using monazite. In Proceedings of the Eleventh International Symposium on Water–Rock Interaction, Saratoga Springs, NY, USA, 27 June 2004; pp. 247–251. [Google Scholar]
- Wu, S.; Karius, V.; Schmidt, B.C.; Simon, K.; Wörner, G. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation–inductively coupled plasma–mass spectrometry. Geostand. Geoanal. Res. 2018, 42, 575–591. [Google Scholar] [CrossRef]
- Griffin, W.L. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues; Mineralogical Association of Canada: Toronto, QC, Canada, 2008; pp. 308–311. [Google Scholar]
- Li, X.-H.; Li, W.-X.; Li, Q.-L.; Wang, X.-C.; Liu, Y.; Yang, Y.-H. Petrogenesis and tectonic significance of the ∼850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U–Pb dating, Hf–O isotopes and whole-rock geochemistry. Lithos 2010, 114, 1–15. [Google Scholar] [CrossRef]
- Tang, G.-Q.; Li, X.-H.; Li, Q.-L.; Liu, Y.; Ling, X.-X.; Yin, Q.-Z. Deciphering the physical mechanism of the topography effect for oxygen isotope measurements using a Cameca IMS-1280 SIMS. J. Anal. At. Spectrom. 2015, 30, 950–956. [Google Scholar] [CrossRef]
- Coplen, T.B.; Kendall, C.; Hopple, J. Comparison of stable isotope reference samples. Nature 1983, 302, 236–238. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Xie, L.; Fan, H.; Wu, F. In situ Nd isotopic measurement of natural geological materials by LA-MC-ICPMS. Chin. Sci. Bull. 2008, 53, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Dubois, J.C.; Retali, G.; Cesario, J. Isotopic analysis of rare earth elements by total vaporization of samples in thermal ionization mass spectrometry. Int. J. Mass Spectrom. 1992, 120, 163–177. [Google Scholar] [CrossRef]
- Isnard, H.; Brennetot, R.; Caussignac, C.; Caussignac, N.; Chartier, F. Investigations for determination of Gd and Sm isotopic compositions in spent nuclear fuels samples by MC–ICPMS. Int. J. Mass Spectrom. 2005, 246, 66–73. [Google Scholar] [CrossRef]
- Li, C.-F.; Chen, F.; Li, X.-H. Precise isotopic measurements of sub-nanogram Nd of standard reference material by thermal ionization mass spectrometry using the NdO+ technique. Int. J. Mass Spectrom. 2007, 266, 34–41. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Silva, E.N.; Ayala, A.P.; Guedes, I.; Paschoal, C.W.A.; Moreira, R.L.; Loong, C.K.; Boatner, L.A. Vibrational spectra of monazite-type rare-earth orthophosphates. Opt. Mater. 2006, 29, 224–230. [Google Scholar] [CrossRef]
- Huittinen, N.; Arinicheva, Y.; Kowalski, P.M.; Vinograd, V.L.; Neumeier, S.; Bosbach, D. Probing structural homogeneity of La1−xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. J. Nucl. Mater. 2017, 486, 148–157. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Itano, K.; Iizuka, T.; Chang, Q.; Kimura, J.I.; Maruyama, S. U–Pb chronology and geochemistry of detrital monazites from major African rivers: Constraints on the timing and nature of the Pan-African Orogeny. Precambrian Res. 2016, 282, 139–156. [Google Scholar] [CrossRef]
- York, D.; Evensen, N.M.; Martínez, M.L.; Delgado, J.D.B. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 2004, 72, 367–375. [Google Scholar] [CrossRef]
Name | Th Content (wt.%) | 2SD a | δ18OV-SMOW (‰) b | 2SD | Reference Age (Ma) | 2SD | 143Nd/144Nd | 2SD | Host Lithology (Location) | Quantity | References |
---|---|---|---|---|---|---|---|---|---|---|---|
RW-1 | 8.3 | 0.4 | 6.30 | 0.16 | 904.2 | 0.3 | 0.512282 | 0.000011 | pegmatite (Norway) | limited | this study, [17] |
eBay | 0.02–0.34 (heterogeneous) | - | 9.34 (heterogeneous) | 0.62 | - | - | - | - | unknown (Hiddenite, North Carolina) | limited | [7,13,18] |
9.52 | - | ||||||||||
Diamantina | 0.2 | 0.1 | - | - | 495.3 | 0.5 | 0.511427 | 0.000023 | hydrothermal quartz vein (Brazil) | unlimited | [19] |
UNIL1-Mnz1 | 0.6 | 0.3 | 8.45 | 0.38 | - | - | - | - | carbonatite (Namibia) | limited | [15] |
USGS-44069 | 2.1–5.5 (heterogeneous) | - | 7.67 | 0.52 | 424.9 | 0.4 | 0.512175 | 0.000040 | metapsamittic layer (USA) | unlimited | [12,14,15,20] |
554 | 3.3 | - | 7.54 (heterogeneous) | 0.24 | 45.3 | 1.4 | 0.512075 | 0.000041 | granite (Santa Catalina, Mountains, Arizona) | unlimited | [7,12,21] |
Itambe | 6.3 (heterogeneous) | 1.2 | 0.46 | 0.42 | ~509–514 | - | - | - | pegmatite (Brazil) | limited | [14] |
Moacyr | 6.5 | 0.4 | 1.45 | 0.10 | 506.4 | 0.7 | 0.512421 | 0.000011 | pegmatite (Brazil) | unlimited | [15,22] |
UNIL-Mnz2 | 9.4 (heterogeneous) | 1 | 9.51 | 0.54 | - | - | - | - | pegmatite (Madagascar) | limited | [15] |
Manangoutry | 12.1 | 0.2 | 10.19 | 0.16 | 555 | 2 | 0.511044 | 0.000022 | charnockite (Madagascar) | limited | [12,15,23] |
Namaqualand | 8.3 | 0.2 | - | - | ~1033 | - | 0.511894 | 0.000025 | monazite vein (South Africa) | unlimited | [12,24] |
Brazil | 6.1 | - | 1.43 | 0.16 | - | - | - | - | unknown | limited | [7,25] |
Brazil c | 13.3 | 0.5 | 7.89 | 0.28 | - | - | - | - | unknown | limited | [13] |
M1 | 7.9–14.3 (heterogeneous) | - | - | - | ~535 | - | 0.511716 | 0.000052 | unknown | limited | [12] |
M4 | 6.4–8.5 (heterogeneous) | - | - | - | ~525 | - | 0.511761 | 0.000020 | unknown | limited | [12] |
Methods | EPMA, wt.% * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | P2O5 | Y2O3 | ThO2 | UO2 | PbO | La2O3 | Ce2O3 | Pr2O3 | Nd2O3 | |
Average | 1.81 | 0.66 | 28.03 | 2.39 | 9.48 | 0.23 | 0.39 | 7.85 | 25.05 | 3.68 | 14.26 |
2SD | 0.20 | 0.06 | 0.76 | 0.17 | 0.50 | 0.05 | 0.03 | 0.28 | 0.60 | 0.51 | 0.28 |
2RSD (%) | 10.77 | 8.51 | 2.73 | 7.21 | 5.32 | 22.39 | 8.62 | 3.53 | 2.41 | 13.92 | 1.98 |
Methods | EPMA, wt.% | LA, ppm, N = 23 | |||||||||
Sm2O3 | Gd2O3 | Dy2O3 | Total | Eu | Tb | Ho | Er | Tm | Yb | Lu | |
Average | 3.60 | 1.65 | 0.28 | 99.12 | 33 | 972 | 254 | 407 | 49 | 306 | 27 |
2SD | 0.35 | 0.30 | 0.05 | 1.38 | 2 | 58 | 18 | 34 | 5 | 42 | 5 |
2RSD (%) | 9.85 | 18.09 | 19.14 | 1.39 | 5 | 6 | 7 | 8 | 10 | 14 | 18 |
Monazite | Date | Weight (mg) | δ18OVSMOW (‰) | Yield (%) |
---|---|---|---|---|
RW-1 | 2017/11/8 | 2.04 | 6.34 | 90 |
2017/11/8 | 2.03 | 6.20 | 92 | |
2018/1/25 | 1.75 | 6.37 | 97 | |
2018/1/25 | 1.87 | 6.28 | 93 | |
Average | 6.30 | |||
2SD | 0.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.-G.; Li, X.-H.; Ling, X.-X.; Yang, Y.-H.; Li, C.-F.; Li, Y.-L.; Mao, Q.; Li, Q.-L.; Putlitz, B. Further Characterization of the RW-1 Monazite: A New Working Reference Material for Oxygen and Neodymium Isotopic Microanalysis. Minerals 2019, 9, 583. https://doi.org/10.3390/min9100583
Wu L-G, Li X-H, Ling X-X, Yang Y-H, Li C-F, Li Y-L, Mao Q, Li Q-L, Putlitz B. Further Characterization of the RW-1 Monazite: A New Working Reference Material for Oxygen and Neodymium Isotopic Microanalysis. Minerals. 2019; 9(10):583. https://doi.org/10.3390/min9100583
Chicago/Turabian StyleWu, Li-Guang, Xian-Hua Li, Xiao-Xiao Ling, Yue-Heng Yang, Chao-Feng Li, You-Lian Li, Qian Mao, Qiu-Li Li, and Benita Putlitz. 2019. "Further Characterization of the RW-1 Monazite: A New Working Reference Material for Oxygen and Neodymium Isotopic Microanalysis" Minerals 9, no. 10: 583. https://doi.org/10.3390/min9100583
APA StyleWu, L. -G., Li, X. -H., Ling, X. -X., Yang, Y. -H., Li, C. -F., Li, Y. -L., Mao, Q., Li, Q. -L., & Putlitz, B. (2019). Further Characterization of the RW-1 Monazite: A New Working Reference Material for Oxygen and Neodymium Isotopic Microanalysis. Minerals, 9(10), 583. https://doi.org/10.3390/min9100583