Petrographical and Geochemical Signatures Linked to Fe/Mn Reduction in Subsurface Marine Sediments from the Hydrate-Bearing Area, Dongsha, the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Background
2.2. Analytical Methods
2.2.1. Analysis of Porewater Geochemistry
2.2.2. Grain Size Analysis
2.2.3. Analysis of Total Organic Carbon and Total Inorganic Carbon in Sediments
2.2.4. Major Element Analysis of Sediments
2.2.5. Analysis of Minerals and Sediment Textures
3. Results
3.1. Grain Composition of Sediments
3.2. Porewater Geochemistry
3.3. Contents of TOC and TIC in Sediments
3.4. Composition of Major Elements in Sediments
3.5. Mineral Assemblages
3.6. Sediment Textures
4. Discussion
4.1. Sulfate Reduction Coupled with AOM in Subsurface Sediments in the Dongsha Area, the SCS
4.2. Petrological and Geochemical Signatures for Fe/Mn Reduction in Unit B
4.3. AOM vs. OMO Coupled with Fe/Mn Reduction in Unit B
4.4. Probable Biogeochemical Processes for Fe/Mn Reduction in the High-Flux Methane Emission Region
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microbial. Ecol. 2000, 16, 41–84. [Google Scholar] [CrossRef]
- Lovley, D.R. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 2004, 49, 219–286. [Google Scholar] [CrossRef] [PubMed]
- Emerson, S.; Hedges, J. Sediment diagenesis and benthic flux. Treatise Geochem. 2003, 6, 293–319. [Google Scholar] [CrossRef]
- Canfield, D.E. Sulfate reduction in deep-sea sediments. Am. J. Sci. 1991, 291, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Froelich, P.N.; Klinkhammer, G.P.; Bender, M.L.; Luedtke, N.A.; Heath, G.R.; Cullen, D.; Dauphin, P.; Hammond, D.; Hartman, B.; Maynard, V. Early oxidation of organic matter in pelagic sediments of the eastern equatorial atlantic: Suboxic diagenesis. Geochim. Cosmochim. Acta 1979, 43, 1075–1090. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Y.; Sivan, O.; Wang, F. Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. Sci. China Life Sci. 2019, 1–9. [Google Scholar] [CrossRef]
- Jørgensen, B.B.; Kasten, S. Sulfur cycling and methane oxidation. In Marine Geochemistry; Springer: Berlin, Germany, 2006; pp. 271–309. [Google Scholar]
- Canfield, D.E.; Thamdrup, B.; Hansen, J.W. The anaerobic degradation of organic matter in danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 1993, 57, 3867–3883. [Google Scholar] [CrossRef]
- Nickel, M.; Vandieken, V.; Bruechert, V.; Jørgensen, B.B. Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition. Deep Sea Res. Part II 2008, 55, 2390–2398. [Google Scholar] [CrossRef]
- Thamdrup, B.; Dalsgaard, T. The fate of ammonium in anoxic manganese oxide-rich marine sediment. Geochim. Cosmochim. Acta 2000, 64, 4157–4164. [Google Scholar] [CrossRef]
- Vandieken, V.; Nickel, M.; Jørgensen, B.B. Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways. Mar. Ecol. Prog. Ser. 2006, 322, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Vandieken, V.; Pester, M.; Finke, N.; Hyun, J.H.; Friedrich, M.W.; Loy, A.; Thamdrup, B. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME J. 2012, 6, 2078. [Google Scholar] [CrossRef] [PubMed]
- Edlund, A.; Jansson, J.K. Changes in active bacterial communities before and after dredging of higly polluted Baltic Sea sediments. Appl. Environ. Microbiol. 2006, 72, 6800–6807. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Hyacinthe, C.; Bonneville, S. 10.1128/AEM.00971-06 Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ. Microbiol. 2007, 9, 1956–1968. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.M.; Bowman, J.P.; Snape, I.; Stark, J.S. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol. Ecol. 2003, 45, 135–145. [Google Scholar] [CrossRef]
- Sinkko, H.; Lukkari, K.; Jama, A.S.; Sihvonen, L.M.; Sivonen, K.; Leivuori, M.; Lyra, C. Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges. PLoS ONE 2011, 6, e21555. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.; Dellwig, O.; Dähnke, K.; Gehre, M.; Noriega-Ortega, B.E.; Böttcher, M.E.; Meister, P.; Friedrich, M.W. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing. FEMS Microbiol. Ecol. 2016, 92, fiw054. [Google Scholar] [CrossRef]
- Beal, E.J.; House, C.H.; Orphan, V.J. Manganese- and iron-dependent marine methane oxidation. Science 2009, 325, 184–187. [Google Scholar] [CrossRef]
- Cai, C.; Leu, A.O.; Xie, G.J.; Guo, J.; Hu, S. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 2018, 12, 1929–1939. [Google Scholar] [CrossRef]
- Egger, M.; Rasigraf, O.; Sapart, C.J.; Jilbert, T.; Jetten, M.S.; Röckmann, T.; Van der Veen, C.; Banda, N.; Kartal, B.; Ettwig, K.F. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ. Sci. Technol. 2014, 49, 277–283. [Google Scholar] [CrossRef]
- Sivan, O.; Adler, M.; Pearson, A.; Gelman, F.; Bar-Or, I.; John, S.G.; Eckert, W. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 2011, 56, 1536–1544. [Google Scholar] [CrossRef] [Green Version]
- Weber, H.S.; Habicht, K.S.; Thamdrup, B. Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment. Front. Microbiol. 2017, 8, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Oni, O.E.; Friedrich, M.W. Metal oxide reduction linked to anaerobic methane oxidation. Trends Microbiol. 2017, 25, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 1989, 53, 619–632. [Google Scholar] [CrossRef] [Green Version]
- Severmann, S.; Johnson, C.M.; Beard, B.L.; Mcmanus, J. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments. Geochim. Cosmochim. Acta 2006, 70, 2006–2022. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.; Bai, S.; Chen, Z.; Van Nostrand, J.D. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough. Geochim. Cosmochim. Acta 2018, 222, 363–382. [Google Scholar] [CrossRef]
- Peng, X.; Guo, Z.; Chen, S.; Sun, Z.; Xu, H.; Ta, K.; Zhang, J.; Zhang, L.; Li, J.; Du, M. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochim. Cosmochim. Acta 2017, 205, 1–13. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, H.; Zhang, X.; Shang, L.; Yin, X.; Sun, Y.; Xu, L.; Huang, W.; Zhang, X. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea. Deep Sea Res. Part I 2015, 95, 37–53. [Google Scholar] [CrossRef]
- Oni, O.; Miyatake, T.; Kasten, S.; Richter-Heitmann, T.; Fischer, D.; Wagenknecht, L.; Kulkarni, A.; Blumers, M.; Shylin, S.I.; Ksenofontov, V. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front. Microbiol. 2015, 6, 365–379. [Google Scholar] [CrossRef]
- Riedinger, N.; Formolo, M.J.; Lyons, T.W.; Henkel, S.; Beck, A.; Kasten, S. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 2014, 12, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Vigderovich, H.; Liang, L.; Herut, B.; Wang, F.; Wurgaft, E.; Rubin-Blum, M.; Sivan, O. Evidence for microbial iron reduction in the methanogenic sediments of the oligotrophic SE Mediterranean continental shelf. Biogeosci. Discuss 2019, 16, 1–25. [Google Scholar] [CrossRef]
- Xu, X.M.; Fu, S.Y.; Zhu, Q.; Xiao, X.; Yuan, J.P.; Peng, J.; Wu, C.F.; Wang, J.H. Depth-related coupling relation between methane-oxidizing bacteria (MOBs) and sulfate-reducing bacteria (SRBs) in a marine sediment core from the Dongsha region, the South China Sea. Appl. Microbiol. Biotechnol. 2014, 98, 10223–10230. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, L.; Bai, S.; Ta, K.; Xu, H.; Chen, S.; Pan, J.; Li, M.; Du, M.; Peng, X. New insight into the biogeochemical cycling of methane, S and Fe above the Sulfate-Methane Transition Zone in methane hydrate-bearing sediments: A case study in the Dongsha area, South China Sea. Deep Sea Res. Part I 2019, 145, 97–108. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, Z.; González, F.J.; Hein, J.R.; Zheng, X.; Li, G.; Luo, Y.; Mo, A.; Tian, Y.; Wang, S. Composition and genesis of ferromanganese deposits from the northern South China Sea. J. Asian Earth Sci. 2017, 138, 110–128. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.X.; Suess, E.; Wu, N.Y. Methane and Gas Hydrate Geology of the Northern South China Sea: Sino-German Cooperative So-177 Cruise Report; Geological Publishing House: Beijing, China, 2008; p. 48. [Google Scholar]
- Li, L.; Lei, X.; Zhang, X.; Sha, Z. Gas hydrate and associated free gas in the dongsha area of northern South China Sea. Mar. Petrol. Geol. 2013, 39, 92–101. [Google Scholar] [CrossRef]
- Feng, D.; Chen, D. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity. Deep Sea Res. Part II 2015, 122, 74–83. [Google Scholar] [CrossRef]
- Feng, D.; Cheng, M.; Kiel, S.; Qiu, J.W.; Yang, Q.; Zhou, H.; Peng, Y.B.; Chen, D. Using Bathymodiolus tissue stable carbon, nitrogen and sulfur isotopes to infer biogeochemical process at a cold seep in the South China Sea. Deep Sea Res. Part I 2015, 104, 52–59. [Google Scholar] [CrossRef]
- Zhang, G.; Liang, J.; Lu, J.A.; Yang, S.; Zhang, M.; Holland, M.; Schultheiss, P.; Su, X.; Sha, Z.; Xu, H.; et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea. Mar. Petrol. Geol. 2015, 67, 356–367. [Google Scholar] [CrossRef]
- Gong, J.; Sun, X.; Xu, L.; Lu, H. Contribution of thermogenic organic matter to the formation of biogenic gas hydrate: Evidence from geochemical and microbial characteristics of hydrate-containing sediments in the Taixinan Basin, South China Sea. Mar. Petrol. Geol. 2017, 80, 432–449. [Google Scholar] [CrossRef]
- Wu, L.; Yang, S.; Liang, J.; Su, X.; Fu, S.; Sha, Z.; Yang, T. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea. Sci. China Earth Sci. 2013, 56, 530–540. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, S.Y.; Yang, J.H.; Lu, G.; Wu, N.Y.; Liu, J.; Chen, D.H. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea. J. Oceanogr. 2008, 64, 303–310. [Google Scholar] [CrossRef]
- Cheng, S.H.; Li, Q. A determination method for the alkalinity of pore-water in marine sediment. Chem. Anal. Meterage 2012, 21, 34–36, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wu, L.S.; Yang, S.X.; Liang, J.Q.; Su, X.; Yang, T.; Zhang, X.; Cheng, S.H.; Lu, H.F. Geochemical characteristics of sediments at site HQ-48PC in Qiongdongnan Area, the north of the South China Sea, and their implication for gas hydrates. Geosicence 2010, 24, 534–544, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Cline, J.D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 1969, 14, 454–458. [Google Scholar] [CrossRef]
- Ge, L.; Yang, T.; Jiang, S.Y.; Yang, J.H. Ion chromatogram method for analyzing anions and cations in pore water from marine sediments. Mar. Geol. Quart. Geol. 2006, 26, 125–130, (In Chinese with English Abstract). [Google Scholar]
- Xu, X.M.; Zhu, Q.; Zhou, Q.Z.; Liu, J.Z.; Yuan, J.P.; Wang, J.H. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores. J. Oceanol. Limnol. 2018, 36, 105–113. [Google Scholar] [CrossRef]
- Chen, Y.F.; Ussler, W.I.; Haflidason, H.; Lepland, A.; Rise, L.; Hovland, M.; Hjelstuen, B.O. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway. Chem. Geol. 2010, 275, 127–138. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Strauss, H.; Lu, Y.; Gong, J.; Xu, L.; Lu, H.; Teichert, B.M.A.; Peckmann, J. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea. Geochim. Cosmochim. Acta. 2017, 211, 153–173. [Google Scholar] [CrossRef]
- Sha, Z.; Liang, J.; Zhang, G.; Yang, S.; Lu, J.; Zhang, Z.; McConnell, D.R.; Humphrey, G. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations. Mar. Geol. 2015, 366, 69–78. [Google Scholar] [CrossRef]
- Chen, F.; Hu, Y.; Feng, D.; Zhang, X.; Cheng, S.; Cao, J.; Lu, H.; Chen, D. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chem. Geol. 2016, 443, 173–181. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, J.; Algeo, T.J.; Su, P.; Hu, G. Formation mechanism of authigenic gypsum in marine methane hydrate settings: Evidence from the northern South China Sea. Deep Sea Res. Part I 2016, 115, 210–220. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, L.; Feng, D.; Liang, Q.; Xia, Z.; Chen, D. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments: A case study from the South China Sea. J. Asian Earth Sci. 2017, 138, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Jiang, S.Y.; Blumenberg, M.; Reitner, J. Lipid biomarkers and their specific carbon isotopic compositions of cold seep carbonates from the South China Sea. Mar. Petrol. Geol. 2015, 66, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Luo, M.; Chen, L.; Liang, Q.; Feng, D.; Tao, J.; Yang, S.; Chen, D. Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: Porewater geochemistry and numerical model constraints. J. Asian Earth Sci. 2018, 168, 87–95. [Google Scholar] [CrossRef]
- Ussler, W.; Paull, C.K. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth Planet. Sci. Lett. 2008, 266, 271–287. [Google Scholar] [CrossRef]
- Boetius, A.; Ravenschlag, K.; Schubert, C.J.; Rickert, D.; Widdel, F.; Gieseke, A.; Amann, R.; Jørgensen, B.B.; Witte, U.; Pfannkuche, O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000, 407, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Hein, J.R.; Koski, R.A. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges. Geology 1987, 15, 722–726. [Google Scholar] [CrossRef]
- González, F.J.; Somoza, L.; León, R.; Medialdea, T.; de Torres, T.; Ortiz, J.E.; Lunar, R.; Martínez-Frías, J.; Merinero, R. Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic): Palaeoenvironmental records of fluid venting and bottom currents. Chem. Geol. 2012, 310, 56–78. [Google Scholar] [CrossRef]
- Langley, S.; Igric, P.; Takahashi, Y.; Sakai, Y.; Fortin, D.; Hannington, M.D.; Schwarz-Schampera, U. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, Southwest Pacific Ocean. Geobiology 2009, 7, 35–49. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.; Zhou, H.; Li, J.; Sun, Z. Molecular evidence for microorganisms participating in Fe, Mn, and S biogeochemical cycling in two low-temperature hydrothermal fields at the Southwest Indian Ridge. J. Geophys. Res. Biogeosci. 2013, 118, 665–679. [Google Scholar] [CrossRef]
- Roden, E.E. Fe(III) Oxide Reactivity Toward Biological versus Chemical Reduction. Environ. Sci. Technol. 2003, 37, 1319–1324. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Feng, D.; Chen, L.; Zheng, G.; Peckmann, J.; Chen, D. Using iron speciation in authigenic carbonates from hydrocarbon seeps to trace variable redox conditions. Mar. Petrol. Geol. 2015, 67, 111–119. [Google Scholar] [CrossRef]
- Pierre, C.; Blanc-Valleron, M.M.; Caquineau, S.; März, C.; Ravelo, A.C.; Takahashi, K.; Zarikian, C.A. Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343–U1345). Deep Sea Res. Part II 2016, 125, 133–144. [Google Scholar] [CrossRef]
- Tong, H.; Feng, D.; Cheng, H.; Yang, S.; Wang, H.; Min, A.G.; Edwards, R.L.; Chen, Z.; Chen, D. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Mar. Petrol. Geol. 2013, 43, 260–271. [Google Scholar] [CrossRef]
- Matsumoto, R. Isotopically heavy oxygen containing siderite derived from the decomposition of methane hydrate. Geology 1989, 17, 707–710. [Google Scholar] [CrossRef]
- Mozley, P.S.; Wersin, P. Isotopic composition of siderite as an indicator of depositional environment. Geology 1992, 20, 817–820. [Google Scholar] [CrossRef]
- Pierre, C.; Bayon, G.; Blanc-Valleron, M.M.; Mascle, J.; Dupré, S. Authigenic carbonates related to active seepage of methane-rich hot brines at the Cheops mud volcano, Menes caldera (Nile deep-sea fan, eastern Mediterranean Sea). Geo Mar. Lett. 2014, 34, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Viola, I.; Capozzi, R.; Bernasconi, S.M.; Rickli, J. Carbon, oxygen and strontium isotopic constraints on fluid sources, temperatures and biogeochemical processes during the formation of seep carbonates–Secchia River site, Northern Apennines. Sediment. Geol. 2017, 357, 1–15. [Google Scholar] [CrossRef]
- Achtnich, C.; Bak, F.; Conrad, R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fert. Soils. 1995, 19, 65–72. [Google Scholar] [CrossRef]
- Lovley, D.R.; Phillips, E.J. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Microbiol. Biotechnol. 1987, 53, 2636–2641. [Google Scholar] [CrossRef]
- Van Cappellen, P.; Wang, Y. Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. Am. J. Sci. 1996, 296, 197–243. [Google Scholar] [CrossRef]
- Hong, W.L.; Torres, M.E.; Kim, J.H.; Choi, J.; Bahk, J.J. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin. Biogeochemistry 2013, 115, 129–148. [Google Scholar] [CrossRef]
- Chen, F.; Chen, J.; Jin, H.; Li, H. Correlation of δ13Corg in surface sediments with sinking particulate matter in south china sea and implication for reconstructing paleo-environment. Acta Sedimentol. Sin. 2012, 30, 340–345, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Feng, J.; Yang, S.; Wang, H.; Liang, J.; Fang, Y.; Luo, M. Methane source and turnover in the shallow sediments to the west of Haima cold seeps on the northwestern slope of the South China Sea. Geofluids 2019, 2019, 1–18. [Google Scholar] [CrossRef]
- Borowski, W.S.; Hoehler, T.M.; Alperin, M.J.; Rodriguez, N.M.; Paull, C.K. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates. NASA Ames Res. Cent. 2000, 164, 87–99. [Google Scholar]
- Li, Q.; Cai, F.; Liang, J.; Shao, H.; Dong, G.; Wang, F.; Yang, C.S.; Hu, G. Geochemical constraints on the methane seep activity in western slope of the middle Okinawa Trough, the East China Sea. Sci. China Earth Sci. 2015, 58, 986–995. [Google Scholar] [CrossRef]
- Berner, R.A. Early Diagenesis: A Theoretical Approach, 1st ed.; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Xu, C.; Wu, N.; Sun, Z.; Zhang, X.; Geng, W.; Cao, H.; Wang, L.; Zhang, X.; Xu, G. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough. Mar. Petrol. Geol. 2018, 98, 306–315. [Google Scholar] [CrossRef]
- Haeckel, M.; Boudreau, B.P.; Wallmann, K. Bubble-induced porewater mixing: A 3-D model for deep porewater irrigation. Geochem. Cosmochim. Acta. 2007, 71, 5135–5154. [Google Scholar] [CrossRef]
- Wu, D.; Wu, N.; Ye, Y.; Zhang, M.; Liu, L.; Guan, H.; Cong, X. Early diagenesis records and pore water composition of methane-seep sediments from the southeast Hainan basin, South China Sea. J. Geol. Res. 2011, 2011, 1–10. [Google Scholar] [CrossRef]
- Chen, F.; Su, X.; Nürnberg, D.; Lu, H.; Zhu, Y.; Liu, J.; Liao, Z. Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from Dongsha area of the South China Sea. Mar. Geol. Quart. Geol. 2006, 26, 9–17, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- He, Z.; Zhang, Q.; Feng, Y.; Luo, H.; Pan, X.; Gadd, G.M. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Sci. Total Environ. 2018, 610, 759–768. [Google Scholar] [CrossRef]
- Li, W.; Alves, T.M.; Wu, S.; Rebesco, M.; Zhao, F.; Mi, L.; Ma, B. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea). Earth Planet. Sci. Lett. 2016, 451, 272–284. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, R.; Liang, X.; Ma, L.; Lin, X.; Zhu, J.; He, H.; Parker, S.C.; Molinari, M. Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: An in situ ATR-FTIR/2D-COS study. Chem. Geol. 2018, 477, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Treude, N.; Rosencrantz, D.; Liesack, W.; Schnell, S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol. Ecol. 2003, 44, 261–269. [Google Scholar] [CrossRef]
- Fu, L.; Li, S.W.; Ding, Z.W.; Ding, J.; Lu, Y.Z.; Zeng, R.J. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II). Water Res. 2016, 88, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Swedlund, P.J.; Webster, J.G. Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res. 1999, 33, 3413–3422. [Google Scholar] [CrossRef]
- Zachara, J.M.; Girvin, D.C.; Schmidt, R.L.; Resch, C.T. Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ. Sci. Technol. 1987, 21, 589–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, D.C. Ion Exchange, Thermal Transformations, and Oxidizing Properties of Birnessite. Clay Clay Miner. 1986, 34, 511–520. [Google Scholar] [CrossRef]
- Mckenzie, R.M. The surface charge on manganese dioxides. Soil Res. 1981, 19, 41–50. [Google Scholar] [CrossRef]
- González, F.J.; Somoza, L.; Lunar, R.; Martínez-Frías, J.; Rubí, J.M.; Torres, T.; Ortiz, J.E.; Díaz-del-Río, V. Internal features, mineralogy and geochemistry of ferromanganese nodules from the Gulf of Cadiz: The role of the Mediterranean outflow water undercurrent. J. Mar. Syst. 2010, 80, 203–218. [Google Scholar] [CrossRef]
- Magalhães, V.H.; Pinheiro, L.M.; Ivanov, M.K.; Kozlova, E.; Blinova, V.; Kolganova, J.; Vasconcelos, C.; McKenzie, J.A.; Bernasconi, S.M.; Kopf, A.J. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz. Sediment. Geol. 2012, 243, 155–168. [Google Scholar] [CrossRef]
- Cangemi, M.; Di Leonardo, R.; Bellanca, A.; Cundy, A.; Neri, R.; Angelone, M. Geochemistry and mineralogy of sediments and authigenic carbonates from the Malta Plateau, Strait of Sicily (Central Mediterranean): Relationships with mud/fluid release from a mud volcano system. Chem. Geol. 2010, 276, 294–308. [Google Scholar] [CrossRef]
- Zheng, G.; Fu, B.; Takahashi, Y.; Kuno, A.; Matsuo, M.; Zhang, J. Chemical speciation of redox sensitive elements during hydrocarbon leaching in the Junggar Basin, Northwest China. J. Asian Earth Sci. 2010, 39, 713–723. [Google Scholar] [CrossRef]
- Yan, Z.; Joshi, P.; Gorski, C.A.; Ferry, J.G. A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nat. Commun. 2018, 9, 1642. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Zhou, Q.-Z.; Fu, S.-Y.; Liang, Q.-Y.; Xu, X.-P.; Li, Y.; Wang, J.-H. Petrographical and Geochemical Signatures Linked to Fe/Mn Reduction in Subsurface Marine Sediments from the Hydrate-Bearing Area, Dongsha, the South China Sea. Minerals 2019, 9, 624. https://doi.org/10.3390/min9100624
Xiao X, Zhou Q-Z, Fu S-Y, Liang Q-Y, Xu X-P, Li Y, Wang J-H. Petrographical and Geochemical Signatures Linked to Fe/Mn Reduction in Subsurface Marine Sediments from the Hydrate-Bearing Area, Dongsha, the South China Sea. Minerals. 2019; 9(10):624. https://doi.org/10.3390/min9100624
Chicago/Turabian StyleXiao, Xi, Qian-Zhi Zhou, Shao-Ying Fu, Qian-Yong Liang, Xiang-Po Xu, Yan Li, and Jiang-Hai Wang. 2019. "Petrographical and Geochemical Signatures Linked to Fe/Mn Reduction in Subsurface Marine Sediments from the Hydrate-Bearing Area, Dongsha, the South China Sea" Minerals 9, no. 10: 624. https://doi.org/10.3390/min9100624
APA StyleXiao, X., Zhou, Q. -Z., Fu, S. -Y., Liang, Q. -Y., Xu, X. -P., Li, Y., & Wang, J. -H. (2019). Petrographical and Geochemical Signatures Linked to Fe/Mn Reduction in Subsurface Marine Sediments from the Hydrate-Bearing Area, Dongsha, the South China Sea. Minerals, 9(10), 624. https://doi.org/10.3390/min9100624