Geochemistry and Mineralogy of Basalts from the South Mid-Atlantic Ridge (18.0°–20.6°S): Evidence of a Heterogeneous Mantle Source
Abstract
:1. Introduction
2. Geological Background and Sample Descriptions
3. Analytical Methods
3.1. Whole-Rock Geochemical Analyses
3.2. Mineral Chemical Analyses
4. Results
4.1. Whole-Rock Geochemical Compositions
4.2. Mineral Chemical Compositions
4.2.1. Plagioclase
4.2.2. Olivine
5. Petrogenesis
5.1. Crystal Fractionation
5.2. Magma Mixing
5.3. Nature of the Magma Sources
6. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilkinson, J.F.G. The genesis of Mid-ocean ridge basalt. Earth-Sci. Rev. 1982, 18, 1–57. [Google Scholar] [CrossRef]
- Hart, S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Langmuir, C.H.; Klein, E.M.; Plank, T. Petrological systematics of Mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In Mantle Flow and Melt Generation at Mid-Ocean Ridges; Blackman, D., Ed.; Wiley: New York, NY, USA, 1992; pp. 183–280. [Google Scholar]
- Hoffmann, A.W. Mantle geochemistry: the message from oceanic volcanism. Nature 1997, 385, 219–228. [Google Scholar] [CrossRef]
- Niu, Y.L.; Batiza, R. Extreme mantle source heterogeneities beneath the Northern East Pacific rise: Trace element evidence from Near-ridge seamounts. In Proceedings of the 30th International Geological Congress, Beijing, China, 4–14 August 1996; pp. 109–120. [Google Scholar]
- Langmuir, C.H.; Forsyth, D.W. Mantle melting beneath mid-ocean ridges. Oceanography 2007, 20, 78–89. [Google Scholar] [CrossRef]
- Klein, E.M.; Langmuir, C.H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res.-Solid Earth 1987, 92, 8089–8115. [Google Scholar] [CrossRef]
- Niu, Y.L.; Batiza, R. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting. J. Geophys. Res. 1991, 96, 21753–21777. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Hékinian, R. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 1997, 385, 326–329. [Google Scholar] [CrossRef]
- Rubin, K.H.; Sinton, J.M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet. Sci. Lett. 2007, 260, 257–276. [Google Scholar] [CrossRef]
- Yu, M. Petrology and Geochemistry Differences of MORB and Their Significance between Fast and Slow Spreading Ridge. Ph.D. Thesis, China University of Geoscience, Beijing, China, 2013. [Google Scholar]
- Zhang, H.T. Mid-Oceanic Ridge Basalts (MORBS) Chemistry and Characteristics of Plagioclase-Hosted Melt Inclusions in the South Atlantic Ridge 19°S and Implications for Magmatic Processes. Master’s Thesis, First Institute of Oceanography SOA, Qingdao, China, 2015. [Google Scholar]
- Qi, Q. Petrogeochemical Characteristics Comparison and Implication for Magmatic Processes of the MORBs between SAR and SWIR. Master’s Thesis, Ocean University of China, Qingdao, China, 2015. [Google Scholar]
- Kent, G.M.; Harding, A.J.; Orcutt, J.A. Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30′N. Nature 1990, 344, 650–653. [Google Scholar] [CrossRef]
- Sinha, M.C.; Constable, S.C.; Peirce, C.; White, A.; Heinson, G.; MacGregor, L.M.; Navin, D.A. Magmatic processes at slow spreading ridges: Implications of the RAMESSES experiment at 57° 45′N on the Mid-Atlantic Ridge. J. Geophys. J. Int. 1998, 135, 731–745. [Google Scholar] [CrossRef]
- Niu, Y.; Regelous, M.; Wendt, I.J.; Batiza, R.; O’Hara, M.J. Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth Planet. Sci. Lett. 2002, 199, 327–345. [Google Scholar] [CrossRef]
- Nishio, Y.; Shun’ichi, N.; Ishii, T.; Sano, Y. Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction: Constraints on the origin of the DUPAL anomaly. Geochim. Cosmochim. Acta 2007, 71, 745–759. [Google Scholar] [CrossRef]
- Sinton, J.M.; Detrick, R.S. Mid-Ocean Ridge Magma Chambers. J. Geophys. Res. 1992, 97, 197–216. [Google Scholar] [CrossRef]
- Scheirer, D.S.; Macdonald, K.C. Variation in cross-sectional area of the axial ridge along the East Pacific Rise: Evidence for the magmatic budget of a fast spreading center. J. Geophys. Res.-Solid Earth. 1993, 98, 7871–7885. [Google Scholar] [CrossRef]
- Dick, H.J.; Lin, J.; Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.T. Hydrothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochem. Geophys. Geosyst. 2004, 5, Q08002. [Google Scholar] [CrossRef]
- Cannat, M.; Sauter, D.; Bezos, A.; Meyzen, C.; Humeler, E.; Rigoleur, M.L. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2008, 9, 1525–2027. [Google Scholar] [CrossRef]
- Niu, Y.L.; O’Hara, M.J. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective. J. Petrol. 2008, 49, 633–664. [Google Scholar] [CrossRef]
- Zhang, G.L. Characteristics and Implications for Magmatism of the MORBs in the East Pacific Rise 13°N. Ph.D. Thesis, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, 2010. [Google Scholar]
- Stakes, D.S.; Shervais, J.W.; Hopson, C.A. The volcanic-tectonic cycle of the FAMOUS and AMAR Valleys, Mid-Atlantic Ridge (36°47′N): Evidence from basalt glass and phenocryst compositional variations for a steady state magma chamber beneath the valley midsections, AMAR 3. J. Geophys. Res.-Solid Earth. 1984, 89, 6995–7028. [Google Scholar] [CrossRef]
- Fontignie, D.; Schilling, J.G. Mantle heterogeneities beneath the South Atlantic: A Nd-Sr-Pb isotope study along the Mid-Atlantic Ridge (3°S-46°S). Earth Planet. Sci. Lett. 1996, 142, 209–221. [Google Scholar] [CrossRef]
- Escrig, S.; Schiano, P.; Schilling, J.G.; Allegre, C. Rhenium–osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40–50°S). Earth Planet. Sci. Lett. 2005, 235, 528–548. [Google Scholar] [CrossRef]
- Skolotnev, S.G.; Peive, A.A.; Belyatskii, B.V. Geochemical and isotopic features of basalts in the axial Mid-Atlantic Ridge near the Martin Vaz Fracture Zone, South Atlantic (19°–20° S). Dokl. Earth Sci. 2006, 407, 401–407. [Google Scholar] [CrossRef]
- Ding, X.; Li, J.; Zheng, C.Q.; Huang, W.; Cui, N.Y.; Dou, Y.G.; Sun, Z.L. Chemical composition of the basalts on East Pacific rise (1.5°N~1.5°S) and South Mid-Atlantic ridge (13.2°S). Marin. Geol. Quat. Geol. 2014, 34, 57–66. [Google Scholar]
- Turner, S.; Kokfelt, T.; Hauff, F.; Hasse, K.; Lundstrom, C.; Hoernle, K.; Yeo, I.; Devey, C. Mid-ocean ridge basalt generation along the slow-spreading, South Mid-Atlantic Ridge (5–11°S): Inferences from 238U–230Th–226Ra disequilibria. Geochim. Cosmochim. Acta 2015, 169, 152–166. [Google Scholar] [CrossRef]
- Qi, Q.; Lai, Z.Q.; Long, X.J.; Leng, C.X.; Zhao, G.T. Characteristics and Petrogenesis Significance of Plagioclases in Basalt from the South Mid-Atlantic Ridge. Perio. China Univ. Ocean. 2016, 46, 105–112, (In Chinese with English Abstract). [Google Scholar]
- Hargraves, R.B. Faster spreading or greater ridge length in the Archean? Geology 1986, 14, 50–752. [Google Scholar] [CrossRef]
- Hanan, B.B.; Kingsley, R.H.; Schilling, J. Pb isotope evidence in the South Atlantic for migrating ridge—hotspot interactions. Nature 1986, 322, 137–144. [Google Scholar] [CrossRef]
- Schilling, J.G.; Zajac, M.; Evans, R.; Johnston, T.; White, W.; Devine, J.D.; Kingsley, R. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N. Am. J. Sci. 1983, 283, 510–586. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Agranier, A.; Andres, M.; Kingsley, R.; Schilling, J.G.; Albarede, F. Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge–hot spot interaction in the North Atlantic. Geochem. Geophys. Geosyst. 2005, 6, 1525–2027. [Google Scholar] [CrossRef]
- Beltenev, V.E.; Skolotnev, S.G.; Rozhdestvenskaya, I.I. New chemical and isotopic data for basalts from the axial segment of the Mid-Atlantic ridge between the Vema and Mercury fracture zones. Dokl. Earth Sci. 2014, 459, 1488–1494. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Global seafloor topography from satellite altimetry and ship depth soundings. Science 1997, 277, 1957–1962. [Google Scholar] [CrossRef]
- Larson, R.L.; Ladd, J.W. Evidence for the Opening of the South Atlantic in the Early Cretaceous. Nature 1973, 246, 209–212. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Rousse, S.; Labails, C.; Smethurst, M.A. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int. 2009, 177, 1315–1333. [Google Scholar] [CrossRef] [Green Version]
- Valencio, D.A.; Mendía, J.E.; Giudicl, A.; Gascon, J.O. Palaeomagnetism of the Cretaceous Pirgua Subgroup (Argentina) and the age of the opening of the South Atlantic. Geophys. J. Int. 2007, 51, 47–58. [Google Scholar] [CrossRef]
- Storey, B.C. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 1995, 377, 301–308. [Google Scholar] [CrossRef]
- le Roux, P.J.; Roex, A.L.; Schilling, J.G. Crystallization processes beneath the southern Mid-Atlantic Ridge (40–55°S), evidence for high-pressure initiation of crystallization. Contrib. Mineral. Petrol. 2002, 142, 582–602. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Gallagher, K.; Kelley, S.; Mantovani, M.; Peate, D.W.; Regelous, M.; Rogers, N.W. Parana magmatism and the opening of the South Atlantic. Geol. Soc. Lond. Spec. Publ. 1992, 68, 221–240. [Google Scholar] [CrossRef]
- Wilson, M. Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of Lower Cretaceous super-plume activity? Geol. Soc. Lond. Spec. Publ. 1992, 68, 241–255. [Google Scholar] [CrossRef]
- Shi, X.F.; Li, B.; Ye, J.; Li, C.X. Hydrothermal activity and formation mechanism of the South Atlantic Mid-ridge. J. Min. 2015, S1, 782–783. (In Chinese) [Google Scholar]
- Zhang, Y.S.; Tanimoto, T.; Stolper, E.M. S-wave velocity, basalt chemistry and bathymetry along the Mid-Atlantic Ridge. Phys. Earth Planet. Inter. 1994, 79, 0–93. [Google Scholar] [CrossRef]
- Douglass, J.; Schilling, J.G. Systematics of three-component, pseudo-binary mixing lines in 2D isotope ratio space representations and implications for mantle plume–ridge interaction. Chem. Geol. 2000, 163, 1–23. [Google Scholar] [CrossRef]
- Douglass, J.; Schilling, J.G.; Fontignie, D. Plume-ridge interactions of the Discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40°–55°S). J. Geophys. Res.-Solid Earth. 1999, 104, 2941–2962. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Maas, R.; Sushchevskaya, N.M.; Norman, M.D.; Cartwright, I.; Peyve, A.A. Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology 2001, 29, 243–246. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Z.F.; Zheng, Y.F. Origin of andesitic rocks: Geochemical constraints from Mesozoic volcanics in the Luzong basin, South China. Lithos 2014, 190, 220–239. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, L.H.; Wang, X.J.; Zhang, G.L.; Xie, L.W.; Zeng, G. Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth Planet. Sci. Lett. 2017, 463, 127–135. [Google Scholar] [CrossRef]
- Jochum, K.P.; Nohl, U. Reference materials in geochemistry and environmental research and the GeoReM database. Chem. Geol. 2008, 253, 50–53. [Google Scholar] [CrossRef]
- Li, W.; Tao, C.; Zhang, W.; Liu, J.; Liang, J.; Liao, S.; Yang, W. Melt Inclusions in Plagioclase Macrocrysts at Mount Jourdanne, Southwest Indian Ridge (~64°E): Implications for an Enriched Mantle Source and Shallow Magmatic Processes. Minerals 2019, 9, 493. [Google Scholar] [CrossRef]
- Le BAS, M.J.; Maitre, R.W.L.E.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Irvine, T.N.J.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalt: Implication for mantle composition and processes. Spec. Publ. Geol. Soc. London. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. The role of lower crustal recycling in continent formation. Geochim. Cosmochim. Acta. 2003, 67, 1–10. [Google Scholar]
- Chaffey, D.J.; Cliff, R.A.; Wilson, B.M. Characterization of the St Helena magma source. Geo. Soc. Lond. Spec. Publ. 1989, 42, 257–276. [Google Scholar] [CrossRef]
- Kawabata, H.; Hanyu, T.; Chang, Q.; Kimura, J.I.; Nichols, A.R.L.; Tatsumi, Y. The petrology and geochemistry of St. Helena alkali basalts: evaluation of the oceanic crust-recycling model for HIMU OIB. J. Petrol. 2011, 52, 791–838. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Takahashi, E.; Orihashi, Y.; Johnson, K.T.M. Petrogenesis of tholeiitic lavas from the submarine Hana Ridge, Haleakala volcano, Hawaii. J. Petrol. 2004, 45, 2067–2099. [Google Scholar] [CrossRef]
- Herzberg, C. Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins. J. Petrol. 2011, 52, 113–146. [Google Scholar] [CrossRef]
- Tarney, J.; Wood, D.A.; Saunders, A.D.; Cann, J.R.; Varet, J. Nature of Mantle Heterogeneity in the North Atlantic: Evidence from Deep Sea Drilling. Philos. Trans. R. Soc. B-Biol. Sci. 1980, 297, 179–202. [Google Scholar] [CrossRef]
- Xu, X.S.; Qiu, J.S. Igneous Petrology; Science Press: Beijing, China, 2010; pp. 183–184. [Google Scholar]
- Couch, S.; Sparks, R.S.J.; Carroll, M.R. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 2001, 411, 1037–1039. [Google Scholar] [CrossRef]
- Wittke, J.H.; Mack, L.E. OIB-Like Mantle Source for Continental Alkaline Rocks of the Balcones Province, Texas: Trace-Element and Isotopic Evidence. J. Geol. 1993, 101, 333–344. [Google Scholar] [CrossRef]
- Bryan, W.B. Regional variation and petrogenesis of basalt glasses from the FAMOUS area, Mid-Atlantic Ridge. J. Petrol. 1979, 20, 293–325. [Google Scholar] [CrossRef]
- Roex, A.P.L.; Erlank, A.J.; Needham, H.D. Geochemical and mineralogical evidence for the occurrence of at least three distinct magma types in the ‘famous’ region. Contrib. Mineral. Petrol. 1981, 77, 24–37. [Google Scholar] [CrossRef]
- Danyushevsky, L.V. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J. Volcanol. Geotherm. Res. 2001, 110, 265–280. [Google Scholar] [CrossRef]
- Coogan, L.A.; Jenkin, G.R.; Wilson, R.N. Constraining the cooling rate of the lower oceanic crust: a new approach applied to Oman ophiolite. Earth Planet. Sci. Lett. 2002, 199, 127–146. [Google Scholar] [CrossRef]
- O’Hara, M.J.; Herzberg, C. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochim. Cosmochim. Acta 2002, 66, 2167–2191. [Google Scholar] [CrossRef]
- Zhang, G.L.; Zeng, Z.G.; Yin, X.B.; Chen, D.G.; Wang, X.Y.; Wang, X.M. Periodical mixing of MORB magmas near East Pacific Rise 13 N: evidence from modeling and zoned plagioclase phenocrysts. J. Geophys. Res.-Solid Earth. 2008, 51, 1786. [Google Scholar] [CrossRef]
- Miao, Y.U.; Xin, S.U.; Tao, C.H.; Wu, G.H.; Li, H.M.; Lou, H.L. Petrological and Geochemical Features of Basalts at 49.6°E and 50.5°E Hydrothermal Fields along the Southwest Indian Ridge. Geoscience 2013, 3. (In Chinese with English Abstract). [Google Scholar]
- Gill, R. Igneous Rocks and Processes: A Practical Guide; Wiley-Blackwell: West Sussex, UK, 2010. [Google Scholar]
- Green, D.H. Experimental testing of “equilibrium” partial melting of peridotite under water-saturated, high-pressure conditions. Can. Mineral. 1976, 14, 255–268. [Google Scholar]
- Frey, F.A.; Green, D.H.; Roy, S.D. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J. Petrol. 1978, 19, 463–513. [Google Scholar] [CrossRef]
- O’hara, M.J. Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature 1977, 266, 503–507. [Google Scholar] [CrossRef]
- Rhodes, J.M.; Dungan, M.A.; Blanchard, D.P.; Long, P.E. Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 22°N on the Mid-Atlantic Ridge. Tectonophysics 1979, 55, 35–61. [Google Scholar] [CrossRef]
- Walker, D.; Shibata, T.; DeLong, S.E. Abyssal tholeiites from the Oceanographer fracture zone. Contrib. Mineral. Petrol. 1979, 70, 111–125. [Google Scholar] [CrossRef]
- Nixon, G.T.; Pearce, T.H. Laser-interferometry study of oscillatory zoning in plagioclase; the record of magma mixing and phenocryst recycling in calc-alkaline magma chambers, Iztaccihuatl Volcano, Mexico. Am. Miner. 1987, 72, 1144–1162. [Google Scholar]
- Li, W.X.; Dong, C.W.; Zhou, X.M. Plagioclase xenocryst and magma mingling in Pingtan and Zhangzhou Complexes. Acta Petrol. Sin. 1999, 15, 586–590, (In Chinese with English Abstract). [Google Scholar]
- Perugini, D.; Poli, G.; Valentini, L. Strange attractors in plagioclase oscillatory zoning: Petrological implications. Contrib. Mineral. Petrol. 2005, 149, 482–497. [Google Scholar] [CrossRef]
- Landi, P.; Métrich, N.; Bertagnini, A.; Rosi, M. Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contrib. Mineral. Petrol. 2004, 147, 629–631. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Y.; Cong, B.L. Geothermometers and Geobarometers; Geological Publishing House: Beijing, China, 1983; pp. 142–144. [Google Scholar]
- Putirka, K.D. Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations. Am. Miner. 2005, 90, 336–346. [Google Scholar] [CrossRef]
- Cashman, K.V. Groundmass crystallization of Mount St. Helens Dacite. Contrib. Mineral. Petrol. 1980, 109, 431–449. [Google Scholar] [CrossRef]
- Wood, D.A.; Joron, J.L.; Treuil, M.; Norry, M.; Tarney, J. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib. Mineral. Petrol. 1979, 70, 319–339. [Google Scholar] [CrossRef]
- Sun, S.S.; Nesbit, R.W.; Sharaskin, A. Chemical characteristics of mid-ocean ridge basalts. Earth Planet. Sci. Lett. 1979, 45, 119–138. [Google Scholar] [CrossRef]
- White, W.M.; Hofmann, A.W. Mantle heterogeneity and isotopes in oceanic basalts. Nature 1982, 295, 363–364. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S. Chemical Geodynamics. Annu. Rev. Earth Planet. Sci. 2003, 14, 493–571. [Google Scholar] [CrossRef]
- Hart, S.R.; Hauri, E.H.; Oschmann, L.A.; Whitehead, J.A. Mantle Plumes and Entrainment: Isotopic Evidence. Science 1992, 256, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction related metasomatism in the upper mantle. Precambrian Res. 2007, 152, 27–47. [Google Scholar] [CrossRef]
- Hirose, K.; Kushiro, I. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 1993, 114, 477–489. [Google Scholar] [CrossRef]
- Shen, Y.; Scheirer, D.S.; Forsyth, D.W.; Macdonald, K.C. Trade-off in production between adjacent seamount chains near the East Pacific Rise. Nature 1995, 373, 140–143. [Google Scholar] [CrossRef]
- Niu, Y.L.; Waggoner, D.G.; Sinton, J.M.; Mahoney, J.J. Mantle source heterogeneity and melting processes beneath seafloor spreading centres: The East Pacific Rise, 18°–19°S. J. Geophys. Res. 1996, 101, 27711–27733. [Google Scholar] [CrossRef]
- Hekiniana, R.; Francheteaub, J.; Armijoc, R.; Cogne, J.P.; Constantin, M.; Girardeau, J.; Hey, R.; Naar, D.F.; Searle, R. Petrology of the Easter microplate region in the South Pacific. J. Volcanol. Geotherm. Res. 1996, 72, 259–289. [Google Scholar] [CrossRef]
- Taylor, B.; Martinez, F. Back-arc basin basalt systematics. Earth Planet. Sci. Lett. 2003, 210, 481–497. [Google Scholar] [CrossRef]
- O’Hara, M.J.; Richardson, S.W.; Wilson, G. Garnet-peridotite stability and occurrence in crust and mantle. Contrib. Mineral. Petrol. 1971, 32, 48–68. [Google Scholar] [CrossRef]
- Klemme, S.; O’Neill, H.S.C. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib. Mineral. Petrol. 2000, 138, 237–248. [Google Scholar] [CrossRef]
- Wang, K.; Plank, T.; Walker, J.D.; Smith, E.I. A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res. 2002, 107, ECV-5. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Thompson, R.N.; Morrison, M.A.; Hendry, G.L.; Parry, S.J. An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach. Philos. Trans. R. Soc. A-Math. Phys. Sci. 1984, 310, 549–590. [Google Scholar] [CrossRef]
- Alibert, C. Mineralogy and geochemistry of a basalt from Site 738: Implications for the tectonic history of the southernmost part of the Kerguelen Plateau. In Proceedings of the Ocean Drilling Program, Scientific Results; Barron, J., Larsen, B., Eds.; Publications Distribution Center: Texas, TX, USA, 1991; pp. 293–297. [Google Scholar]
- Mahoney, J.J.; Jones, W.B.; Frey, F.A.; Salters, V.J.M.; Pyle, D.G.; Davies, H.L. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the southeast Indian Ocean. Chem. Geol. 1995, 120, 315–345. [Google Scholar] [CrossRef]
- Frey, F.A.; Mcnaughton, N.J.; Nelson, D.R.; deLaeter, J.R.; Duncan, R.A. Petrogenesis of the Bunbury Basalt, Western Australia: interaction between the Kerguelen plume and Gondwana lithosphere? J. Afr. Earth Sci. 1996, 26, 519–522. [Google Scholar] [CrossRef]
- Albarède, F. Introduction to Geochemical Modeling; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Salters, V.J.M.; White, W.M. Hf isotope constraints on mantle evolution. Chem. Geol. 1998, 145, 447–460. [Google Scholar] [CrossRef]
- Hoernle, K.A.J. Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): Implications for crustal recycling and assimilation. J. Petrol. 1998, 39, 859–880. [Google Scholar] [CrossRef]
- St. Weaver, B. Helena Revisited: Characteristics and Origin of the Type HIMU OIB. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 11–15 December 2006. [Google Scholar]
- Schilling, J.G.; Thompson, G.; Kingsley, R.; Humphris, S. Hotspot-migrating ridge interaction in the South Atlantic. Nature 1985, 313, 187–191. [Google Scholar] [CrossRef]
- Mahoney, J.; LeRoex, A.P.; Peng, Z.; Fisher, R.L.; Natland, J.H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the central southwest Indian Ridge (17°–50°E). J. Geophys. Res. 1992, 19771–19790. [Google Scholar] [CrossRef]
- Saunders, A.D.; Storey, M.; Kent, R.W.; Norry, M.J. Consequences of plume-lithosphere interaction. Geol. Soc. Lond. Spec. Publ. 1992, 68, 41–60. [Google Scholar] [CrossRef]
Sample | Latitude | Longitude | Depths (m) | Rock Type |
---|---|---|---|---|
SA1 series | 18.03876°S | 12.85351°W | 3312 | basalt |
SA2 series | 18.02350°S | 12.91643°W | 3386 | basalt |
SA3 series | 20.57449°S | 11.64572°W | 3302 | basalt |
SA4 series | 18.70782°S | 12.67380°W | 2386 | basalt |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Liu, W.; Sun, Z.; Yakymchuk, C.; Ren, K.; Liu, J.; Li, W.; Ma, Y.; Xia, B. Geochemistry and Mineralogy of Basalts from the South Mid-Atlantic Ridge (18.0°–20.6°S): Evidence of a Heterogeneous Mantle Source. Minerals 2019, 9, 659. https://doi.org/10.3390/min9110659
Zhong Y, Liu W, Sun Z, Yakymchuk C, Ren K, Liu J, Li W, Ma Y, Xia B. Geochemistry and Mineralogy of Basalts from the South Mid-Atlantic Ridge (18.0°–20.6°S): Evidence of a Heterogeneous Mantle Source. Minerals. 2019; 9(11):659. https://doi.org/10.3390/min9110659
Chicago/Turabian StyleZhong, Yun, Weiliang Liu, Zhilei Sun, Chris Yakymchuk, Kefa Ren, Jinnan Liu, Wei Li, Yaoliang Ma, and Bin Xia. 2019. "Geochemistry and Mineralogy of Basalts from the South Mid-Atlantic Ridge (18.0°–20.6°S): Evidence of a Heterogeneous Mantle Source" Minerals 9, no. 11: 659. https://doi.org/10.3390/min9110659
APA StyleZhong, Y., Liu, W., Sun, Z., Yakymchuk, C., Ren, K., Liu, J., Li, W., Ma, Y., & Xia, B. (2019). Geochemistry and Mineralogy of Basalts from the South Mid-Atlantic Ridge (18.0°–20.6°S): Evidence of a Heterogeneous Mantle Source. Minerals, 9(11), 659. https://doi.org/10.3390/min9110659