Fabrication and Thermal Properties of Capric Acid/Calcinated Iron Tailings/Carbon Nanotubes Composite as Form-Stable Phase Change Materials for Thermal Energy Storage
Abstract
:1. Introduction
2. Experiment
2.1. Material
2.2. Preparation of FSPCM
2.3. Characterization of FSPCM
3. Results and Discussion
3.1. The Leakage Tests of CA/CIT/CNT Composites
3.2. Morphology of the CA, CIT, CNT, CA/CIT, and CA/CIT/CNT Composites
3.3. Chemical Compatibility of the CA/CIT/CNT Composites
3.4. Thermal Properties of the CA/CIT/CNT FSPCMs
3.5. Thermal Stability of the CA/CIT/CNT FSPCMs
3.6. Thermal Storage/Release Performance of the CA/CIT/CNT FSPCMs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, M.; Mu, B. Effect of different dimensional carbon materials on the properties and application of phase change materials: A review. Appl. Energy 2019, 242, 695–715. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 2015, 95, 193–228. [Google Scholar] [CrossRef]
- Su, X.; Jia, S.; Lv, G.; Yu, D. A unique strategy for polyethylene glycol/hybrid carbon foam phase change materials: Morphologies, thermal properties, and energy storage behavior. Materials 2018, 11, 2011. [Google Scholar] [CrossRef]
- Said, M.A.; Hamdy, H. Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit. Energy Convers. Manag. 2018, 171, 903–916. [Google Scholar] [CrossRef]
- Irsyad, M.; Suwono, A.; Indartono, Y.S.; Pasek, A.D.; Pradipta, M.A. Phase change materials development from salt hydrate for application as secondary refrigerant in air-conditioning systems. Sci. Technol. Built Environ. 2017, 24, 90–96. [Google Scholar] [CrossRef]
- Arshad, A.; Ali, H.M.; Ali, M.; Manzur, S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction. Appl. Therm. Eng. 2017, 112, 143–155. [Google Scholar] [CrossRef]
- Liang, Z.; Xing, Y.; Wang, Z.; Xin, L. The passive thermal management system for electronic device using low-melting-point alloy as phase change material. Appl. Therm. Eng. 2017, 125, 317–327. [Google Scholar]
- Bakan, G.; Gerislioglu, B.; Dirisaglik, F.; Jurado, Z.; Sullivan, L.; Dana, A.; Lam, C.; Gokirmak, A.; Silva, H. Extracting the temperature distribution on a phase-change memory cell during crystallization. J. Appl. Phys. 2016, 120, 164504. [Google Scholar] [CrossRef] [Green Version]
- Gerislioglu, B.; Ahmadivand, A.; Karabiyik, M.; Sinha, R.; Pala, N. VO2-based reconfigurable antenna platform with addressable microheater matrix. Adv. Electron. Mater. 2017, 3, 1700170. [Google Scholar] [CrossRef]
- Michel, A.K.U.; Chigrin, D.N.; Mass, T.W.; Schoenauer, K.; Salinga, M.; Wuttig, M.; Taubner, T. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 2013, 13, 3470–3475. [Google Scholar] [CrossRef]
- Xu, H.; Romagnoli, A.; Jia, Y.S.; Py, X. Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery. Appl. Energy 2017, 187, 281–290. [Google Scholar] [CrossRef]
- Dal Magro, F.; Xu, H.; Nardin, G.; Romagnoli, A. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants. Waste Manag. 2018, 73, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Xiong, X. A parametric investigation on energy-saving effect of solar building based on double phase change material layer wallboard. Int. J. Photoenergy 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Aketouane, Z.; Malha, M.; Bruneau, D.; Bah, A.; Michel, B.; Asbik, M.; Ansari, O. Energy savings potential by integrating phase change material into hollow bricks: The case of moroccan buildings. Build. Simul. 2018, 11, 1109–1122. [Google Scholar] [CrossRef]
- Yi, S.; Sun, S.; Deng, Y.; Feng, S. Preparation of composite thermochromic and phase-change materials by the sol–gel method and its application in textiles. J. Text. Inst. 2014, 106, 1071–1077. [Google Scholar] [CrossRef]
- Iqbal, K.; Khan, A.; Sun, D.; Ashraf, M.; Rehman, A.; Safdar, F.; Basit, A.; Maqsood, H. Phase change materials, their synthesis and application in textiles—A review. J. Text. Inst. 2019, 110, 625–638. [Google Scholar] [CrossRef]
- Reyes, A.; Vásquez, J.; Pailahueque, N.; Mahn, A. Effect of drying using solar energy and phase change material on kiwifruit properties. Dry. Technol. 2018, 37, 232–244. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Fei, Y. Microencapsulated phase change material modified by graphene oxide with different degrees of oxidation for solar energy storage. Sol. Energy Mater. Sol. Cells 2018, 174, 453–459. [Google Scholar] [CrossRef]
- Bicer, A.; Sari, A. Synthesis and thermal energy storage properties of xylitol pentastearate and xylitol pentapalmitate as novel solid-liquid PCMs. Sol. Energy Mat. Sol. Cells 2012, 102, 125–130. [Google Scholar] [CrossRef]
- Karaipekli, A.; BicEr, A.; Sari, A.; Tyagi, V. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers. Manag. 2017, 134, 373–381. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, X.; Chen, C.; Xu, T.; Fang, Y.; Zhang, Z. A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Compos. Part A Appl. Sci. Manuf. 2016, 87, 138–145. [Google Scholar] [CrossRef]
- Ates, M.; Caliskan, S.; Gazi, M. A ternary nanocomposites of graphene/TiO2/polypyrrole for energy storage applications. Fuller. Nanotub. Carbon Nanostructures 2018, 26, 631–642. [Google Scholar] [CrossRef]
- Benmoussa, D.; Molnar, K.; Hannache, H.; Cherkaoui, O. Development of thermo-regulating fabric using microcapsules of phase change material. Mol. Cryst. Liq. Cryst. 2015, 627, 163–169. [Google Scholar] [CrossRef]
- Sobolciak, P.; Karkri, M.; Al-Maadeed, M.; Krupa, I. Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renew. Energy 2016, 88, 372–382. [Google Scholar] [CrossRef]
- Liu, S.; Han, L.; Xie, S.; Jia, Y.; Sun, J.; Jing, Y.; Zhang, Q. A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites. Sol. Energy 2017, 143, 22–30. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Wang, X.; Sanjayan, J. Thermal enhancement of paraffin/hydrophobic expanded perlite granular phase change composite using graphene nanoplatelets. Energy Build. 2018, 169, 206–215. [Google Scholar] [CrossRef]
- Sari, A. Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings. Energy Build. 2015, 96, 193–200. [Google Scholar] [CrossRef]
- Liu, S.; Yang, H. Composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material. Energy Technol. 2015, 3, 77–83. [Google Scholar] [CrossRef]
- Jeong, S.; Jeon, J.; Chung, O.; Kim, S.; Kim, S. Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties. J. Therm. Anal. Calorim. 2013, 114, 689–698. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, D.; Lv, H.; Zhang, Y.; Wu, F.; Shen, D.; Fu, P. Mixed mill-heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum-based materials. Appl. Therm. Eng. 2017, 118, 703–713. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sarı, A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage. J. Ind. Eng. Chem. 2010, 16, 767–773. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Wang, X.; Sanjayan, J.; Wilson, J. Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of pcm leakage. Mater. Lett. 2017, 192, 88–91. [Google Scholar] [CrossRef]
- Dong, Z.; Meizhu, C.; Quantao, L.; Jiuming, W.; Jinxuan, H. Preparation and thermal properties of molecular-bridged expanded graphite/polyethylene glycol composite phase change materials for building energy conservation. Materials 2018, 11, 818. [Google Scholar]
- Wang, F.; Xie, Z.; Liang, J.; Fang, B.; Piao, Y.; Hao, M.; Wang, Z. Tourmaline-Modified FeMnTiOx Catalysts for Improved Low-Temperature NH3-SCR Performance. Environ. Sci. Technol. 2019, 53, 6989–6996. [Google Scholar] [CrossRef]
- Zhang, S.; Xue, X.; Liu, X.; Duan, P.; Yang, H.; Jiang, T.; Wang, D.; Liu, R. Current situation and comprehensive utilization of iron ore tailing resources. J. Min. Sci. 2006, 42, 403–408. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Yi, Z.; Li, L. Innovative methodology for comprehensive utilization of iron ore tailings: Part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material. J. Hazard. Mater. 2010, 174, 78–83. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Bai, J.; Li, L. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. J. Hazard. Mater. 2010, 174, 71–77. [Google Scholar] [CrossRef]
- Lv, P.; Liu, C.; Rao, Z. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications. Renew. Sustain. Energy Rev. 2017, 68, 707–726. [Google Scholar] [CrossRef]
- Song, X.; Cai, Y.; Huang, C.; Gu, Y.; Zhang, J.; Qiao, H.; Wei, Q. Cu nanoparticles improved thermal property of form-stable phase change materials made with carbon nanofibers and LA-MA-SA eutectic mixture. J. Nanosci. Nanotechnol. 2018, 18, 2723–2731. [Google Scholar] [CrossRef]
- Han, J.; Liu, S. Myristic acid-hybridized diatomite composite as a shape-stabilized phase change material for thermal energy storage. RSC Adv. 2017, 7, 22170–22177. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Pang, Y.; Liu, Y.; Guo, H. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving. Mater. Lett. 2018, 216, 220–223. [Google Scholar] [CrossRef]
- Amin, M.; Putra, N.; Kosasih, E.; Prawiro, E.; AchmadLuanto, R.; Mahlia, T. Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 2017, 112, 273–280. [Google Scholar] [CrossRef]
- Li, M.; Guo, Q.; Nutt, S. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol. Energy 2017, 146, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari, A.; Bicer, A.; Al-Sulaiman, F.; Karaipekli, A.; Tyagi, V. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties. Energy Build. 2018, 164, 166–175. [Google Scholar] [CrossRef]
- Wen, R.; Zhang, X.; Huang, Z.; Fang, M.; Liu, Y.; Wu, X.; Min, X.; Gao, W.; Huang, S. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2018, 178, 273–279. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Liu, L.; Lu, Z.; Sanjayan, J.; Duan, W. Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage. Sol. Energy 2016, 137, 179–188. [Google Scholar] [CrossRef]
- Lv, P.; Liu, C.; Rao, Z. Experiment study on the thermal properties of paraffin/kaolin thermalenergy storage form-stable phase change material. Appl. Energy 2016, 182, 475–487. [Google Scholar] [CrossRef]
- Gu, X.; Peng Liu, P.; Liang Bian, L.; He, H. Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage. Renew. Energy 2019, 138, 833–841. [Google Scholar] [CrossRef]
- Gu, X.; Liu, P.; Liu, C.; Peng, L.; He, H. A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage. Mater. Lett. 2019, 248, 12–15. [Google Scholar] [CrossRef]
- Gu, X.; Liu, P.; Bian, L.; Peng, L.; Liu, Y.; He, H. Mullite stabilized palmitic acid as phase change materials for thermal energy storage. Minerals 2018, 8, 440. [Google Scholar] [CrossRef]
- Sarı, A.; Karaipekli, A. Thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater. Chem. Phys. 2008, 109, 459–464. [Google Scholar] [CrossRef]
- Mei, D.; Zhang, B.; Liu, R.; Zhang, Y.; Liu, J. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95, 2772–2777. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sari, A. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol. Energy 2009, 83, 323–332. [Google Scholar] [CrossRef]
- Shilei, L.; Neng, Z.; Guohui, F. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage. Energy Build. 2006, 38, 708–711. [Google Scholar] [CrossRef]
- Feldman, D.; Banu, D.; Hawes, D. Development and application of organic phase change mixtures in thermal storage gypsum wallboard. Sol. Energy Mater. Sol. Cells 1995, 36, 147–157. [Google Scholar] [CrossRef]
- Karaman, S.; Karaipekli, A.; Sari, A.; Bicer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95, 1647–1653. [Google Scholar] [CrossRef]
- Hawes, D.; Feldman, D.; Banu, D. Latent heat storage in building materials. Energy Build. 1993, 20, 77–86. [Google Scholar] [CrossRef]
- Memon, S.; Liao, W.; Yang, S.; Cui, H.; Shah, S. Development of composite PCMs by incorporation of paraffin into various building materials. Materials 2015, 8, 499–518. [Google Scholar] [CrossRef]
- Biçer, A.; Sarı, A. New kinds of energy-storing building composite PCMs for thermal energy storage. Energy Convers. Manag. 2013, 69, 148–156. [Google Scholar] [CrossRef]
- Sari, A.; Karaipekli, A.; Kaygusuz, K. Capric acid and myristic acid for latent heat thermal energy storage. Energy Sources Part A 2008, 30, 1498–1507. [Google Scholar] [CrossRef]
- Feldman, D.; Banu, D. DSC analysis for the evaluation of an energy storing wallboard. Thermochim. Acta 1996, 272, 243–251. [Google Scholar] [CrossRef]
- Fang, G.; Li, H.; Cao, L.; Shan, F. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage. Mater. Chem. Phys. 2012, 137, 558–564. [Google Scholar] [CrossRef]
- Liu, P.; Gu, X.; Bian, L.; Cheng, X.; Peng, L.; He, H. Thermal properties and enhanced thermal conductivity of capric acid/diatomite/carbon nanotube composites as form-stable phase change materials for thermal energy storage. ACS Omega 2019, 4, 2964–2972. [Google Scholar] [CrossRef]
Material | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O + Na2O | Others |
---|---|---|---|---|---|---|---|
Iron tailings | 31.98 | 6.49 | 10.23 | 30.77 | 13.84 | 1.64 | 5.05 |
CIT | 33.97 | 7.23 | 10.59 | 31.14 | 13.91 | 1.66 | 1.50 |
Diatomite | 97.91 | 1.04 | 0.65 | - | 0.05 | 0.12 | 0. 23 |
Perlite | 74.6 | 13.1 | 0.83 | 0.83 | 0.19 | 7.87 | 2.58 |
Properties | CA | CNT |
---|---|---|
CAS number | 334-48-5 | 308068-56-6 |
Chemical formula | C10H20O2 | - |
Molecular weight | 172.26 | - |
Purity (%) | 98.5 | 91% |
Melting point (°C) | 31.4 °C | 3550 °C |
Solidifying point (°C) | ≥29.0 °C | - |
Thermal conductivity (w/(m∙k)) | - | 2860 |
Step | Sample | The Composition Ratio of the CA/CIT Composites | Leakage Ratio (%) | Leakage Area of the Sample (cm2) |
---|---|---|---|---|
1 | S1-1 | Pure CA | 46.07 | 72.35 |
1 | S1-2 | 50% CA + 50% CIT | 21.80 | 39.57 |
1 | S1-3 | 40% CA + 60% CIT | 15.43 | 26.41 |
1 | S1-4 | 30% CA + 70% CIT | 12.89 | 18.85 |
1 | S1-5 | 20% CA + 80% CIT | 0.50 (negligible) | (Missing) |
1 | S1-6 | 10% CA + 90% CIT | 0.33 (negligible) | 0 |
Item | Melting Temperature (°C) | Solidifying Temperature (°C) | Latent Heat of Melting (J/g) | Latent Heat of Solidifying (J/g) | References |
---|---|---|---|---|---|
Capric-myristic acid (20 wt.%)/VMT | 19.8 | 17.1 | 27.46 | 31.42 | [53] |
Capric-myristic acid (20 wt.%)/VMT + EG (2 wt.%) | 19.7 | 17.1 | 26.9 | (Missing) | [53] |
Capric-lauric acid (26 wt.%)/gypsum | 19.11 | (Missing) | 35.24 | (Missing) | [54] |
Dodecanol (25–30 wt.%)/gypsum | 20.0 | 21.0 | 17.0 | (Missing) | [55,56] |
Propyl palmitate (25–30 wt.%)/gypsun | 19.0 | 16.0 | 40.0 | [55,56] | |
Capric-lauric acid (25–30 wt.%) + fire retardant/gypsum | 17.0 | 21.0 | 28.0 | (Missing) | [57] |
Paraffin (18 wt.%)/kaolin | 23.9 | 26.3 | 27.9 | (Missing) | [58] |
Xylitol pentalaurate (19 wt.%)/cement | 44.07 | 41.08 | 31.09 | 27.36 | [59] |
Xylitol pentalaurate (20 wt.%)/gypsum | 40.44 | 39.53 | 31.77 | 29.47 | [59] |
Capric-palmitic acid (25 wt.%)/gypsum wallboard | 21.12 | 21.46 | 36.23 | 38.28 | [60] |
Emerest 2326 (25.7 wt.%)/gypsum | 16.32 | 19.7 | 34.77 | 33.97 | [61] |
PA (25 wt.%)/active aluminum oxide | 74.13 | 59.57 | 28.56 | 17.53 | [62] |
S1-5 (CA 20 wt.% + CIT 80 wt.%) | 30.73 | 28.98 | 25.14 | 23.05 | This study |
CA/CIT/CNT (CA20 wt.% + CIT 80 wt.%/CNT 5 wt.%) | 29.70 | 28.09 | 22.69 | 21.17 | This study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Gu, X.; Zhang, Z.; Shi, J.; Rao, J.; Bian, L. Fabrication and Thermal Properties of Capric Acid/Calcinated Iron Tailings/Carbon Nanotubes Composite as Form-Stable Phase Change Materials for Thermal Energy Storage. Minerals 2019, 9, 648. https://doi.org/10.3390/min9110648
Liu P, Gu X, Zhang Z, Shi J, Rao J, Bian L. Fabrication and Thermal Properties of Capric Acid/Calcinated Iron Tailings/Carbon Nanotubes Composite as Form-Stable Phase Change Materials for Thermal Energy Storage. Minerals. 2019; 9(11):648. https://doi.org/10.3390/min9110648
Chicago/Turabian StyleLiu, Peng, Xiaobin Gu, Zhikai Zhang, Jianping Shi, Jun Rao, and Liang Bian. 2019. "Fabrication and Thermal Properties of Capric Acid/Calcinated Iron Tailings/Carbon Nanotubes Composite as Form-Stable Phase Change Materials for Thermal Energy Storage" Minerals 9, no. 11: 648. https://doi.org/10.3390/min9110648
APA StyleLiu, P., Gu, X., Zhang, Z., Shi, J., Rao, J., & Bian, L. (2019). Fabrication and Thermal Properties of Capric Acid/Calcinated Iron Tailings/Carbon Nanotubes Composite as Form-Stable Phase Change Materials for Thermal Energy Storage. Minerals, 9(11), 648. https://doi.org/10.3390/min9110648